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Contrary to group-based brain connectivity analyses, the aim of this study was to
construct individual brain metabolic networks to determine age-related effects on brain
metabolic connectivity. Static 40–60 min [18F]FDG positron emission tomography (PET)
images of 67 healthy subjects between 20 and 82 years were acquired with an
integrated PET-MR system. Network nodes were defined by brain parcellation using
the Schaefer atlas, while connectivity strength between two nodes was determined
by comparing the distribution of PET uptake values within each node using a
Kullback–Leibler divergence similarity estimation (KLSE). After constructing individual
brain networks, a linear and quadratic regression analysis of metabolic connectivity
strengths within- and between-networks was performed to model age-dependency.
In addition, the age dependency of metrics for network integration (characteristic
path length), segregation (clustering coefficient and local efficiency), and centrality
(number of hubs) was assessed within the whole brain and within predefined functional
subnetworks. Overall, a decrease of metabolic connectivity strength with healthy aging
was found within the whole-brain network and several subnetworks except within the
somatomotor, limbic, and visual network. The same decrease of metabolic connectivity
was found between several networks across the whole-brain network and the functional
subnetworks. In terms of network topology, a less integrated and less segregated
network was observed with aging, while the distribution and the number of hubs did
not change with aging, suggesting that brain metabolic networks are not reorganized
during the adult lifespan. In conclusion, using an individual brain metabolic network
approach, a decrease in metabolic connectivity strength was observed with healthy
aging, both within the whole brain and within several predefined networks. These
findings can be used in a diagnostic setting to differentiate between age-related changes
in brain metabolic connectivity strength and changes caused by early development
of neurodegeneration.
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INTRODUCTION

[18F]FDG positron emission tomography (PET) is a valuable
molecular neuroimaging technique to study the glucose
metabolism in the human brain which in turn serves as a proxy
for neuronal activity. Many studies have shown a progressive
decrease of cerebral [18F]FDG uptake with aging, mainly
observed in the medial frontal lobe and anterior cingulate cortex
(Fujimoto et al., 2008; Knopman et al., 2014; Yoshizawa et al.,
2014; Kakimoto et al., 2016; Ishibashi et al., 2017; Malpetti et al.,
2017; Van Aalst et al., 2021). Whether these age-related changes
are a linear or quadratic function of adult age with the latter
showing accelerated changes in the elderly is still under debate.
In parallel, structural and functional cerebral changes have been
detected during the lifespan by different groups using MRI
techniques. Overall, these studies showed increased gray matter
(GM) atrophy observed by voxel-based morphometry MRI
analyses (Good et al., 2001; Allen et al., 2005; Smith et al., 2007;
Bagarinao et al., 2018) and reduced cerebral structural integrity
assessed by diffusion tensor imaging (DTI) (Moseley, 2002; Head
et al., 2004; Sullivan and Pfefferbaum, 2006) and differences in
brain activation patterns using functional MRI (fMRI) (Grady,
2012; Avelar-Pereira et al., 2017) due to aging. To study these
aging effects on brain structure and function, brain connectivity
analysis has proven to be a very useful approach as it reveals
important information about connections and interactions
between different brain regions and allows to study the brain
from a topological viewpoint. To assess brain connectivity, graph
theoretical methods are generally applied which model the brain
using a weighted, undirected graph. This way, a wide range of
graph-based connectivity measures, reflecting both local and
global brain connectivity, is extracted to quantify the underlying
network topology. In literature, the majority of connectivity
findings are derived from DTI and fMRI studies, which provide
information on axonal pathways, or on correlations between
the blood-oxygen-level-dependent (BOLD)-signal time course
of different brain regions (Betzel et al., 2014; Damoiseaux,
2017; Frau-Pascual et al., 2021). In contrast to structural and
functional connectivity, brain metabolic connectivity findings
using [18F]FDG PET are mainly based on group-level analyses
(Sala and Perani, 2019) where correlations between regional
uptake values across subjects are used as connectivity measures
between different brain regions. However, a novel approach
using the Kullback–Leibler divergence similarity estimation
(KLSE) was recently introduced to generate an individual brain
metabolic network for a single subject using static [18F]FDG
PET imaging (Wang et al., 2020a). This technique assumed
that brain regions with similar glucose metabolism are highly
interconnected while brain regions with differences in glucose
metabolism have a lower connectivity strength. To determine
the connectivity strength between two regions, KLSE was used
to compare the intra-regional distribution of PET uptake values
between different regions. Using these metabolic connectivity
strengths, the approach successfully predicted the individual
risk of progression from mild cognitive impairment (MCI) to
Alzheimer’s disease (AD) (Wang et al., 2020a). The aim of this
study was to apply this novel technique on [18F]FDG PET-MR
data of a cohort of 67 healthy controls, covering an age range

of 20–82 years, to evaluate age-related effects on graph-based
connectivity measures for network integration, segregation, and
centrality. We evaluated these age effects on the level of both
the whole brain and different functional brain networks where
we considered networks which represent the intrinsic functional
connectivity of the cerebral cortex. This study is also the first
step toward using these metrics in a diagnostic setting where it
is mandatory to discriminate effects of healthy aging from early
development of neurodegeneration as aging is the primary risk
factor for many neurodegenerative disorders (Hou et al., 2019).

MATERIALS AND METHODS

[18F]FDG PET-MR Imaging
A total of 67 healthy volunteers (33 males and 34 females; age:
52 ± 17 years, range 20–82 years) were recruited prospectively
between December 2015 and February 2017. The main exclusion
criteria for this study were major internal pathology or having
(had) cancer, having a first-degree relative with dementia, a
history of important neurological and/or psychiatric disorders,
and substance abuse or current use of centrally acting medication.
Subjects underwent a neurological examination resulting in a
Mini-Mental State Examination (MMSE) score ≥ 28 and a
score of ≤9 on the Beck’s Depression Inventory (BDI) for all
subjects. This study was approved by the local ethics committee
of UZ Leuven Gasthuisberg, and all participants gave written
informed consent.

Subjects received an intravenous bolus injection of [18F]FDG
(152 ± 10 MBq) and underwent a simultaneous [18F]FDG
PET-MR scan (General Electric Healthcare Signa PET-MR).
Listmode data acquired between 40 and 60 min were rebinned
in four frames of 5 min and corrected for motion. Sinograms
were corrected for dead time, random, and scatter, while a
proprietary template-based MR-based attenuation correction
(MRAC) was used for attenuation correction. Each frame was
reconstructed using ordered subset expectation maximization
(OSEM, 28 subsets and 4 iterations) and included time of
flight (TOF) information, resolution modeling, and a Gaussian
post-smoothing with a full width half maximum (FWHM)
of 4.5 mm. The multi-frame PET data were rescaled to
standardized uptake values (SUV) and averaged to obtain a
static SUV PET image.

Simultaneous with the PET acquisition, a 3D volumetric 3
Tesla T1 weighted BRAVO MR sequence was acquired using
an 8-channel phased-array coil (plane: sagittal; echo time (TE):
3.2 ms; repetition time (TR): 8.5 ms; inversion time (TI): 450 ms;
flip angle: 12◦; receiver bandwidth: 31.2 kHz; NEX: 1; voxelsize:
1 mm × 1 mm × 1 mm) followed by a 3D T2 weighted FLAIR
sequence (plane: sagittal; TE: 130 ms; TR: 8,500 ms; TI: 2,298 ms;
voxelsize: 1 mm× 1 mm× 1.4 mm).

Individual Brain Metabolic Connectivity
Networks
[18F]FDG PET images were spatially normalized using a non-
linear normalization using the CAT12 toolbox of Statistical
Parametric Mapping (SPM12; Welcome Trust Centre for
Neuroimaging, University College, London, United Kingdom)
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and smoothed with a Gaussian filter of 8 mm. For each subject,
[18F]FDG uptake was normalized to the total uptake in the GM.
Subject specific tissue probability maps for GM, white matter
(WM), and cerebrospinal fluid (CSF) were derived based on the
3D T1-weighted MR data in SPM12 and used to delineate volume
of interest (VOI) defined by the Schaefer atlas (Schaefer et al.,
2018). This functional atlas includes the frontoparietal (4 VOIs)
network together with seven functional subnetworks containing
the visual (13 VOIs), somatomotor (14 VOIs), dorsal attention
(13 VOIs), salience and ventral attention (14 VOIs), limbic (5
VOIs), control (16 VOIs), and default mode (21 VOIs) network
(Supplementary Table 1).

For depicting an individual metabolic network for each
subject, the 100 brain parcels, determined by the Schaefer atlas,
were considered as nodes, and the [18F]FDG uptake in each pair
of nodes was used to generate a metabolic correlation matrix. This
was performed by extracting the intensity values of voxels within
each node to estimate the probability density function (PDF) of
intensity values for that parcel. All PDFs were estimated using
brain parcels in MNI space containing minimum 800 voxels.
Furthermore, the PDF for each parcel was estimated using the
kernel density estimation (KDE) with optimal bandwidths for
the number of voxels of that specific parcel chosen automatically
using the diffusion Botev method as implemented in the KDE-
diffusion toolbox in Python version 3.9 (Botev et al., 2010).
In addition, PDFs were estimated in a standardized histogram
space with a fixed range of values and a fixed bin size for all
parcels and all subjects. Then, the KLSE method was used to
estimate the similarity between the PDFs of two nodes and
construct a correlation matrix which represents the pairwise
metabolic connections or edges. In general, KLSE is based on
the KL divergence (DKL) between two PDFs. However, to have
a symmetric measure, the following variation of DKL was used:

DKL (P,Q) =

∫
x

(
P (x) log

P (x)
Q (x)

+ Q (x) log
Q (x)
P (x)

)
dx

where P and Q are two PDFs defined on the same x range.
Finally, the metabolic connectivity strength between two nodes
was calculated as the KL similarity (KLS) measure as follows:

KLS (P,Q) = e−DKL(P,Q).

This way, an undirected weighted metabolic connectivity
matrix was estimated for each subject and quantified using
graph-based connectivity metrics without applying a threshold to
generate a binarized connectivity matrix.

Brain Metabolic Connectivity Metrics
Several graph theory metrics of metabolic connectivity were
calculated to characterize global and nodal connectivity. Global
connectivity of each network was assessed using the mean
connectivity strength and the characteristic path length, while
nodal connectivity was assessed using the clustering coefficient
and the local efficiency. All nodal metrics were averaged over all
pairs of nodes in order to examine network characterization of
the whole network. Furthermore, to assess network centrality,
four nodal metrics were used, being the degree, characteristic

path length, clustering coefficient, and betweenness centrality
to determine central nodes within the network, called hubs.
To calculate the clustering coefficient and the local efficiency,
a generalization for weighted undirected graphs was used
as proposed by Wang et al. (2017), while all other metrics
were calculated using the brain-connectivity toolbox in Python
(Rubinov and Sporns, 2010).

First, to quantify the connectivity within each individual
network, the average metabolic connectivity strength over
all pairs of nodes of each network was determined for
the whole-brain network. In addition to this whole-brain
connectivity measure, the metabolic connectivity strength within
each functional subnetwork was assessed as well as between-
network metabolic connectivity strengths. The average within-
network connectivity strength was calculated by averaging
the connectivity values over all nodes within each functional
subnetwork, while between-network connectivity strengths were
generated by averaging the connectivity values over all nodes
within two functional subnetworks (Varangis et al., 2019).

Then, two types of connectivity metrics were calculated for
each metabolic network. First, the characteristic path length
of each network was calculated as the measure of functional
integration of the brain network. Second, the average clustering
coefficient over all nodes, reflecting the average prevalence
of clustered connectivity around individual nodes, as well
as the average local efficiency which represents the average
strength of local connectedness within neighboring nodes, were
calculated as measures of functional segregation of the brain
network. Measures of network integration and segregation were
calculated for the whole-brain network, as well as within each
functional subnetwork.

Finally, hubs within each individual network were identified
based on the hub score using four criteria which are determined
based on whether the node belongs to the top 20% of nodes (a)
showing the highest degree, (b) showing the lowest path length,
(c) showing the lowest clustering coefficient, and (d) showing the
highest betweenness centrality. If the hub score was at least 2, the
node was considered a hub (Ran et al., 2020). As such, the number
of hubs is a measure of functional centrality in the corresponding
network. To examine a potential network reorganization during
aging, we divided our study population in a group of young
(n = 22, age: 32± 7 years), middle-aged (n = 22, age: 51± 5 years),
and elderly (n = 23, age: 69 ± 6 years) healthy volunteers and
compared the number of hubs within the whole brain and within
functional subnetworks between these groups.

Statistics
A multiple linear regression model was used to assess the
effect of age on the different network connectivity metrics
within the whole-brain network, as well as within and between
different functional subnetworks. Both a linear and second-order
polynomial (quadratic) age dependency of connectivity metrics
were considered while the sum-of-squares F test was used to
select the most appropriate model. Goodness of fit was reported
using the coefficient of multiple correlation r. All statistical
analyses were performed with Prism (version 9, GraphPad, San
Diego, CA, United States) using a significance level of p < 0.05.
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Then, significant multiple linear regression models were used
to assess% differences in connectivity metrics during the adult
lifespan by comparing a 20-year-old subject with an 80-year-
old subject.

RESULTS

An overview of linear and quadratic age effects on metabolic
connectivity metrics within the whole-brain network and the
functional subnetworks are given in Table 1. In addition,
representative mean and coefficient of covariation of metabolic
connectivity matrices for three age groups (young, middle-aged
and old, respectively) are shown in Supplementary Figure 1.

Age Effects on Mean Metabolic
Connectivity Strength
An overview of regression analysis results assessing the average
metabolic connectivity strength as function of age is given in
Table 2 and Figure 1 for the whole-brain network as well as
for different functional subnetworks. Within the whole network,
a linear decreasing age effect on the metabolic connectivity
strength was found (p = 0.0001, r = 0.45), resulting in a decrease
of 16.3% during the adult lifespan. This decrease in metabolic
strength within the brain network was also observed when
comparing the distribution of metabolic strength of a 20-year-old
with an 80-year-old subject (Supplementary Figure 2). For the
predefined functional subnetworks, a quadratic decreasing age
effect on the metabolic connectivity strength was found within
the frontoparietal network (p = 0.0008, r = 0.46), showing a
decrease in metabolic strength of 41.2% between a 20-year-old
and 80-year-old subject. In the default mode, control, dorsal
attention, and ventral attention network, a linear decrease of
metabolic connectivity strength with age was found (p = 0.0179,
r = 0.29; p = 0.0048, r = 0.34; p = 0.0061, r = 0.33; and
p < 0.0001, r = 0.48, respectively), resulting in a decrease of
14.9, 17.2, 18.4, and 28.3%, respectively, during the adult lifespan.
In contrast, no effect of age was found in the somatomotor,
limbic, and visual network. Representative connectome networks
of the ventral attention and the somatomotor network with an
upper connectivity threshold of 0.80 of a young and an old
healthy subject are given in Figure 2, showing lower connectivity

within the older subject compared with the younger subject in
the ventral attention, dorsal attention, frontoparietal, control,
and default mode network, but not in the somatomotor, limbic,
and visual network.

Finally, 26 out of 36 (72%) between-network metabolic
connectivity strengths showed a significant decrease with age
(Supplementary Table 2). In 7 out of 36 (19%) between-network
connectivity strengths, the quadratic model was the preferred
model to model age effects, while 19 out of 36 (53%) between-
networks showed a linear decrease with age.

Age Effects on Functional Integration
Metrics
Results of the regression analyses to model a functional
integration metric assessed by the characteristic path length as
a function of age within the whole-brain network and within
functional subnetworks are given in Table 2 and Figure 3. For
the characteristic path length, a linear increasing effect of age
was found within the whole-brain network (p < 0.001, r = 0.67),
resulting in an increase of 13.2% during the adult lifespan. Within
functional subnetworks, a quadratic increasing effect of age was
found within the frontoparietal network (p = 0.0001, r = 0.49).
During the adult lifespan, an increase in a characteristic path
length of 51.4% was found within this network. Otherwise, in
the default mode, control, dorsal attention, and ventral attention
network, a linear increase of network integration was found with
age as assessed by the characteristic path length (p = 0.0036,
r = 0.35; p = 0.0121, r = 0.30; p = 0.0031, r = 0.36; and p < 0.0001,
r = 0.51, respectively). Comparing the characteristic path length
of a 20-year-old and 80-year-old subject, an increase of 16.8, 13.9,
20.8, and 34.4% was found in the default mode, control, dorsal
attention, and ventral attention network, respectively. In contrast,
no effect of age on the characteristic path length was found in the
somatomotor, limbic, and visual network.

Age Effects on Functional Segregation
Metrics
Results of the regression analyses to model functional segregation
metrics assessed by the average clustering coefficient and the
average local efficiency, as function of age within the whole-brain
network and within functional subnetworks, are given in Table 2
and Figures 4, 5. For both the average clustering coefficient

TABLE 1 | Overview of linear and quadratic age effects (age and age2, respectively) on metabolic network characteristics within the whole-brain network, as well as
within functional subnetworks obtained from a multiple linear regression model.

Mean connectivity strength Characteristic path length Average clustering coefficient Average local efficiency

Whole brain network Age Age Age Age

Frontoparietal network Age2 Age2 Age2 Age2

Default mode network Age Age Age Age2

Control network Age Age Age Age

Dorsal attention network Age Age Age Age

Ventral attention network Age Age Age Age

Somatomotor network / / / /

Limbic network / / / /

Visual network / / / /
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TABLE 2 | Overview of multiple linear regression analyses to model network metrics as function of age within the whole-brain network and within functional subnetworks.

p-Value r-Value ß0 ß1 ß2 20y 80y %Diff

Mean connectivity strength

Whole brain network 0.0001 0.45 0.34 -0.88E-03 / 0.32 0.27 –16.3

Frontoparietal network 0.0003 0.48 0.13 6.80E-03 –0.08E-03 0.23 0.14 –41.2

Default mode network 0.0179 0.29 0.31 -0.739E-03 / 0.30 0.25 –14.9

Control network 0.0048 0.34 0.44 –1.182E-03 / 0.41 0.34 –17.2

Dorsal attention network 0.0061 0.33 0.50 –1.442E-03 / 0.47 0.38 –18.4

Ventral attention network <0.0001 0.48 0.48 –2.06E-03 / 0.44 0.31 –28.3

Somatomotor network 0.9922 / / / / / / /

Limbic network 0.4787 / / / / / / /

Visual network 0.2913 / / / / / / /

Characteristic path length

Whole brain network <0.0001 0.49 2.29 5.26E-03 / 2.39 2.71 13.2

Frontoparietal network 0.0001 0.49 4.56 –94.12E-03 1.21E-03 3.16 4.78 51.4

Default mode network 0.0036 0.35 2.43 7.19E-03 / 2.57 3.01 16.8

Control network 0.0121 0.30 1.97 4.78E-03 / 2.07 2.35 13.9

Dorsal attention network 0.0031 0.36 1.69 6.28E-03 / 1.81 2.19 20.8

Ventral attention network <0.0001 0.51 1.72 11.11E-03 / 1.94 2.61 34.4

Somatomotor network 0.9621 / / / / / / /

Limbic network 0.5648 / / / / / / /

Visual network 0.4884 / / / / / / /

Average clustering coefficient

Whole brain network 0.0001 0.45 0.36 –0.92E-03 / 0.34 0.28 –16.4

Frontoparietal network 0.0003 0.47 0.23 9.40E-03 –0.11E-03 0.37 0.28 –24.8

Default mode network 0.0314 0.26 0.34 –0.74E-03 / 0.33 0.29 –13.5

Control network 0.0048 0.34 0.49 –1.31E-03 / 0.46 0.39 –16.9

Dorsal attention network 0.0117 0.31 0.58 –1.54E-03 / 0.55 0.45 –16.9

Ventral attention network <0.0001 0.47 0.55 –2.29E-03 / 0.51 0.37 –27.0

Somatomotor network 0.9839 / / / / / / /

Limbic network 0.9913 / / / / / / /

Visual network 0.2458 / / / / / / /

Average local efficiency

Whole brain network <0.0001 0.50 0.24 –0.60E-03 / 0.23 0.20 –15.5

Frontoparietal network 0.0011 0.44 0.05 8.31E-03 –0.10E-03 0.18 0.08 –53.4

Default mode network 0.0134 0.36 0.15 2.22E-03 –0.03E-03 0.18 0.15 –16.1

Control network 0.0026 0.36 0.29 –0.93E-03 / 0.27 0.22 –20.4

Dorsal attention network 0.0096 0.31 0.34 –1.04E-03 / 0.32 0.26 –19.5

Ventral attention network 0.0001 0.46 0.29 –1.36E-03 / 0.27 0.19 –30.5

Somatomotor network 0.9425 / / / / / / /

Limbic network 0.1944 / / / / / / /

Visual network 0.8200 / / / / / / /

Multiple linear regressions are described as Y = ß0 + ß1.age + ß2.age2. Regression p-values, overall r-values, and regression coefficients are given. Significant p-values
and coefficients are given in bold. Metric values and differences between an 80-year-old and 20-year-old subject are also given.

and the average local efficiency, a linear decreasing effect of
age was found within the whole-brain network (p = 0.0001,
r = 0.45 and p < 0.0001, r = 0.50). This resulted in a decrease
of 16.4 and 15.5%, respectively, in terms of average clustering
coefficient and average local efficiency during the adult lifespan.
For the functional subnetworks, a decreasing quadratic effect
with age was observed in terms of average local efficiency
within the frontoparietal network (p = 0.0011, r = 0.44), as
well as within the default mode network (p = 0.0134, r = 0.36).
Within these networks, a decrease in the average local efficiency
of 53.4 and 16.1% was observed between a 20-year-old and

80-year-old subject. For the average clustering coefficient, a
decreasing quadratic effect with age was also found within the
frontoparietal network (p = 0.0003, r = 0.47), while a decreasing
linear effect with age was observed within the default network
(p = 0.0314, r = 0.26). During the adult lifespan, a decrease in the
average clustering coefficient of 24.8 and 13.5%, respectively, was
observed within these networks. Furthermore, a decreasing linear
age effect of network segregation was also found in the control
(p = 0.0048, r = 0.34), dorsal attention (p = 0.0117, r = 0.31),
and ventral attention network (p < 0.0001, r = 0.47) as assessed
by the average clustering coefficient. For these subnetworks, the
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FIGURE 1 | Multiple linear regression model of average metabolic connectivity strength with age within the whole-brain network and within functional subnetworks.

FIGURE 2 | Connectome for a young and elderly healthy subject within the ventral attention network and the somatomotor network with an upper threshold of 0.80
for the metabolic connectivity strength, showing a decreased metabolic connectivity strength with age in the ventral attention network but not in the somatomotor
network.

average local efficiency also showed a decreasing linear effect with
age (p = 0.0026, r = 0.36; p = 0.0096, r = 0.31; and p = 0.0001,
r = 0.46). Comparing a 20-year-old subject with an 80-year-old
subject showed a decrease in the average clustering coefficient

of 16.9%, 16.9%, and 27.0% respectively, and a decrease in the
average local efficiency of 20.4, 19.5, and 30.5%, respectively.
Again, no effect of age was found in the somatomotor, limbic,
and visual network.
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FIGURE 3 | Multiple linear regression model of the characteristic path length with age within the whole-brain network and within functional subnetworks.

FIGURE 4 | Multiple linear regression model of the average clustering coefficient with age within the whole-brain network and within functional subnetworks.

Age Effects on Functional Centrality
Metrics
The median and interquartile range (IQR) of the absolute number
of hubs within the whole brain as well as within the functional
subnetworks is given in Table 3. Within the whole brain, a linear
regression analysis did not show an effect of age on the number
of hubs (p = 0.20). In addition, no age-related reorganization
was observed as the number of hubs within the whole brain and

functional subnetworks remained stable in a young, middle-aged,
and old group (Table 3).

DISCUSSION

To our knowledge, this is the first study to explore the effect of age
on individual brain metabolic connectivity using [18F]FDG PET.
Our results showed that individual brain metabolic networks
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FIGURE 5 | Multiple linear regression model of the average local efficiency with age within the whole-brain network and within functional subnetworks.

became less integrated and less segregated during aging. We
observed these age-related effects on the level of the whole
brain as well as within the functional subnetworks except within
the control, limbic, and visual network. The same decrease
of metabolic connectivity was found between several networks
across the whole-brain network and the functional subnetworks.
Meanwhile, no network reorganization was observed with aging
as distribution of hubs throughout the brain, and different
subnetworks remained unchanged during aging.

In literature, only few studies explored the effect of aging on
metabolic connectivity networks in healthy subjects. While our
study found a decrease in metabolic connectivity with aging,
two other groups reported an opposite trend using a group-
based correlation approach (Arnemann et al., 2018; Huang et al.,
2021). However, it is not straightforward to compare our findings
with these studies as a group-based correlation approach highly

TABLE 3 | Overview of number of hubs within the whole-brain network, as well as
within functional subnetworks.

All subjects Young Middle-aged Old

Whole brain network 19 (18–21) 20 (18–21) 19 (18–21) 20 (19–22)

Default mode network 4 (3–5) 4 (3–4) 4 (3–5) 4 (3–5)

Control network 4 (3–5) 4 (3–4) 3 (2–4) 4 (3–5)

Dorsal attention network 3 (2–4) 4 (3–5) 3 (2–4) 3 (3–4)

Somatomotor network 3 (2–4) 2 (1–3) 3 (2–4) 3 (3–5)

Ventral attention network 2 (1–3) 2 (1–3) 2 (1–3) 2 (1–3)

Visual network 1 (0–2) 1 (0–2) 1 (0–2) 1 (0–2)

Limbic network 1 (0–2) 1 (1–2) 1 (0–2) 1 (0–2)

Frontoparietal network 1 (0–1) 1 (0–2) 1 (1–2) 1 (0–1)

Values are presented as median [interquartile range (IQR)] of all subjects, as well as
of a young, middle-aged, and old group.

depends on group composition where a homogeneous group with
low inter-subject variability in regional [18F]FDG uptake could
result in lower correlation measures. In addition, correlation
measures are not sensitive to differences in regional uptake
values which are consistent across subjects. On the contrary,
the KLSE approach compares the intra-regional metabolic
distribution between different regions within a single subject
where it uses all uptake values within each brain region and
thus much more information compared with correlation-based
measures which consider only the averaged regional uptake of
brain regions. As such, this approach provides a quantitative
representation of the tracer distribution throughout the brain and
the different subnetworks with a high average metabolic strength
between nodes representing a rather homogeneous [18F]FDG
uptake in the corresponding brain regions. This way, metabolic
connectivity estimated across subjects using correlation measures
and with-subject using the KLSE approach proved to be high
complementary. Meanwhile, univariate VOI-based and voxelwise
approaches have mainly been used so far to study age-related
effects on brain glucose metabolism. These studies showed
differences in the age-dependency of glucose metabolism between
different brain regions with consistently higher age-related
decrease of [18F]FDG uptake in the frontal, cingulate, temporal
cortex, and in subcortical GM regions compared with other
brain regions (Fujimoto et al., 2008; Knopman et al., 2014;
Yoshizawa et al., 2014; Kakimoto et al., 2016; Ishibashi et al., 2017;
Malpetti et al., 2017; Van Aalst et al., 2021). As this translates
into a more heterogeneous distribution of [18F]FDG uptake
throughout the brain with aging, this also results in a lower global
metabolic connectivity strength in elderly healthy persons which
is in line with our findings. More specifically, these VOI-based
results, showing higher age-related decrease of [18F]FDG uptake
in prefrontal cortex, medial frontal cortex, temporal and high
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parietal cortex, and insula (Van Aalst et al., 2021), also support
our findings of an age-related decrease of metabolic connectivity
in default mode, frontoparietal, control, dorsal attention, and
ventral attention network as these brain regions are involved in
these functional networks.

Contrary to metabolic connectivity, the effect of age on
functional connectivity has been extensively explored using fMRI
(Betzel et al., 2014; Geerligs et al., 2014; Damoiseaux, 2017;
Farras-Permanyer et al., 2019; Varangis et al., 2019; Mancho-Fora
et al., 2020). In general, functional connectivity based on fMRI
showed an age-related decrease in functional connectivity and a
loss in network integrity as well as in network segregation during
the lifespan, which are in line with our metabolic connectivity
findings. Within subnetworks, Varangis et al. (2019) reported
decreased functional connectivity based on fMRI in the default
mode, frontoparietal, ventral attention, and dorsal attention
network which is similar as our age-related changes within the
functional subnetworks using [18F]FDG PET. To compare our
findings with these fMRI studies on functional connectivity, we
used the Schaefer atlas for the brain parcellation as this allowed us
to define the major functional networks across the cerebral cortex
which are also frequently used in fMRI analysis (Watabe and
Hatazawa, 2019). Although connectivity metrics are not directly
comparable, we observed a similar decrease in local efficiency and
increase in characteristic path length and clustering coefficient
(Sun et al., 2012).

In terms of methodology, we applied a novel KLSE approach
to define metabolic connectivity at a subject level. This approach
has already been validated and successfully implemented to
predict the progression from MCI to AD using [18F]FDG PET
(Wang et al., 2020a,b). To determine an individual metabolic
network, the KLSE approach relies on a predefined atlas for
brain parcellation and defining the nodes of each individual
network. To assure a robust estimation of the PDF within
each parcel, a granularity of 100 parcels was selected for
the whole-brain parcellation as more parcels would result in
less voxels per parcel and impact PDF estimates (Brownlee,
2020). In addition, a fully weighted network approach was
chosen to preserve the higher information content over binary
network and avoid the need for a rather arbitrary threshold
for the binarization. Although weighted networks are often
more difficult to interpret, weighted networks are especially of
interest for studying brain metabolic connectivity as variations in
metabolic connectivity strength can be described by connectivity
weights (Fornito et al., 2016). Finally, we also implemented the
KLSE approach including a region-based voxelwise correction
for partial volume effects (PVC) to assess the contribution
of underlying morphology changes on aging (Thomas et al.,
2011; Greve et al., 2016). Age-related results from metabolic
connectivity based on PVC [18F]FDG PET images also showed
a less integrated and less segregated metabolic brain network
during aging within the whole brain and the same functional
subnetworks (Supplementary Table 3). In 18 out of 36 (50%)
between-networks, a similar age-related decrease in metabolic
connectivity was found across the whole brain and several
functional subnetworks (Supplementary Table 4). Altogether,
age-related results from metabolic connectivity based on PVC

[18F]FDG PET images agreed with the uncorrected PET FDG
results (Supplementary Table 3), suggesting a true observed
effect of aging on the metabolic connectivity.

In terms of study limitations, we considered only a limited
number of connectivity metrics. However, we made sure to
include metrics that represented both global and local brain
metabolic connectivity and measured network integration,
segregation, and centrality such that a wide range of connectivity
metrics was covered. Another limitation is that we did not
look at a gender effect on the metabolic connectivity due to
rather small sample size and because man and women were not
homogeneously distributed within our study population.

In the future, it would be interesting to further explore this
novel individual approach for PET tracers targeting specific
neurotransmission systems, amyloid load, or tau deposition (Sala
and Perani, 2019). For these tracers, single-subject network
metrics could serve as diagnostic markers to quantify differences
between healthy subjects and specific patient groups and to
explore the association between these individual metrics and
clinical outcome (Paldino et al., 2017; Fortier et al., 2019).
However, a diagnostic approach would probably benefit much
more from using a brain atlas for the parcellation, which is
more related to PET data analysis, such as the Hammers atlas,
instead of the Schaefer atlas which is more functionally oriented.
Furthermore, one could take advantage of this individual
approach and combine this individual metabolic network with
individual structural and functional networks to obtain an
integrated multiplex network. This way, the network topology of
the human brain can be explored from a multilayer perspective
which could further improve diagnosis and patient stratification
(Giuliano Zippo and Castiglioni, 2016).

CONCLUSION

In this study, age-related changes in brain metabolic connectivity
during the adult lifespan were revealed using an individual
brain metabolic network constructed with [18F]FDG PET.
Overall, metabolic connectivity within the whole-brain network
decreased with aging and resulted into a less integrated and
less segregated network, while no evidence was found for
reorganization of brain metabolic networks during healthy aging.
The same age-related decrease in metabolic connectivity was
also found in predefined functional subnetworks but not in
the control, limbic, and visual network. A similar decrease in
metabolic connectivity with aging was observed between several
networks across the whole brain and functional subnetworks.
Finally, these findings were in line with age-related functional
connectivity changes during the adult lifespan using fMRI.
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