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Abstract: With the quick development of sensor technology in recent years, online detection of early
fault without system halt has received much attention in the field of bearing prognostics and health
management. While lacking representative samples of the online data, one can try to adapt the
previously-learned detection rule to the online detection task instead of training a new rule merely
using online data. As one may come across a change of the data distribution between offline and
online working conditions, it is challenging to utilize the data from different working conditions to
improve detection accuracy and robustness. To solve this problem, a new online detection method of
bearing early fault is proposed in this paper based on deep transfer learning. The proposed method
contains an offline stage and an online stage. In the offline stage, a new state assessment method
is proposed to determine the period of the normal state and the degradation state for whole-life
degradation sequences. Moreover, a new deep dual temporal domain adaptation (DTDA) model is
proposed. By adopting a dual adaptation strategy on the time convolutional network and domain
adversarial neural network, the DTDA model can effectively extract domain-invariant temporal
feature representation. In the online stage, each sequentially-arrived data batch is directly fed into
the trained DTDA model to recognize whether an early fault occurs. Furthermore, a health indicator
of target bearing is also built based on the DTDA features to intuitively evaluate the detection results.
Experiments are conducted on the IEEE Prognostics and Health Management (PHM) Challenge
2012 bearing dataset. The results show that, compared with nine state-of-the-art fault detection
and diagnosis methods, the proposed method can get an earlier detection location and lower false
alarm rate.

Keywords: fault detection; deep learning; transfer learning; anomaly detection; bearing

1. Introduction

Early fault detection always plays a key role in the field of bearing prognostics and
health management (PHM). In most recent years, the quick development of sensor tech-
niques and artificial intelligence gave rise to a new problem: early fault online detection [1].
Compared with the traditional fault detection and diagnosis problems [2–4], early fault
online detection is essentially a problem of anomaly detection with streaming data, that
is the monitoring data of the target bearing arrive sequentially, and fault detection is
conducted within a sampling interval. This new detection mode can evaluate the change
of the working status of bearings in a very short time, avoiding economic losses caused
by system halt. Obviously, early fault online detection should not only be sensitive to an
early fault, but also be robust enough to avoid false alarms that are usually caused by
running-in, lubrication, and so on. Especially, a false alarm can cause unplanned equipment
shutdown, so online detection should pay more attention to avoiding false alarms rather
than missing alarms. Such characteristics and requirements present a new challenge to the
online detection method.
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This paper mainly tackles early fault online detection in unsupervised mode, i.e., with
no available state information for whole-life degradation data. For online scenarios, a
straightforward solution is using the initial part of online data (regarded as the normal
state) to construct a one-class classification model. However, a trustful model can usually be
built waiting for a long enough time to get sufficient data for model training, especially for
a deep neural network. One can certainly accumulate enough whole-life degradation data
in an offline environment, e.g., a laboratory. However, the distribution drift between offline
data and online data is inevitable due to the change of working conditions. In this scenario,
the offline trained model cannot be directly applied to the online task. Therefore, how to
transfer fault information (e.g., detection rules) between different working conditions has
become a key issue to improve the accuracy and robustness of early fault online detection.

Presently, most traditional fault detection methods heavily rely on the fault features [5]
extracted from vibration signals, such as wavelet features [6] and envelop spectrum fea-
tures [7]. These features are then fed into a classification model such as support vector
machine (SVM) [5], naive Bayesian [8], Fisher discrimination analysis [9], artificial neu-
ral network [10], and support vector data description (SVDD) [11]. In the past decade,
deep learning techniques have been successfully introduced to bearing PHM due to their
superior capability of end-to-end feature extraction. As the process of deep feature ex-
traction is self-adaptive with no human intervention, various deep learning techniques
have been successfully applied to the fault detection and diagnosis of different rotating
machinery [12–15]. However, neither traditional machine learning methods, nor deep
learning techniques can effectively solve the problem of distribution drift. Therefore, these
methods are not applicable to online detection. According to the authors’ literature survey,
very few works were found to conduct online anomaly detection. For instance, Lu et al. [16]
utilized merely the initial part of online data to build a long short-term memory (LSTM)
network and then recognized anomalies by calculating the residual error between real
data and the LSTM prediction. Mao et al. [17] utilized semi-supervised SVM and a deep
auto-encoder network to sequentially update the classification model for online detection.
However, as this method merely used a small amount of normal state data to train the
initial model, the extracted deep features are easily biased and then cause a false alarm.

From the discussion above, the most vital challenge to improve the performance of
online detection is the effective transfer of fault knowledge between offline and online work-
ing conditions. As one of the research hotspots in machine learning, transfer learning aims
to improve the predictive performance in one domain (called the target domain) by using
the prior information contained in the data of another related, but different domain (called
the source domain) [18]. As a kind of transfer learning technique, domain adaptation [19]
focuses on the across-domain transfer of domain information. Domain adaptation can be
realized well on deep neural networks by adaptively extracting domain-invariant feature
representation [20]. Especially in the recent 2–3 years, deep domain adaptation has been
applied to fault diagnosis [21–23] and remaining useful life prediction [24,25]. According
to our literature survey, there are some preliminary research works [26] in the field of
early fault detection. In these works, the role of deep domain adaptation is to learn fault
information by leveraging the data from different working conditions. However, there
still are some shortcomings: (1) most of these works need labeled data to train a classi-
fication model, which is not easy to realize in real-world applications; (2) most of these
works mainly focus on anomalous samples rather than the temporal relationship between
consecutive samples. As a result, the fault information cannot be sufficiently extracted,
which may cause false alarms and reduce detection accuracy.

To solve such shortcomings, this paper proposes a new online detection method of
bearing early fault based on deep transfer learning techniques. Specifically, this method
contains an offline stage and an online stage. In the offline stage, a new state assessment
method is firstly proposed by integrating the Hilbert–Huang transform (HHT) and support
vector data description (SVDD) to determine the period of the normal state and the degra-
dation state. The assessment results can provide the corrected data label for further domain
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adaptation. Furthermore, a new deep dual temporal domain adaptation (DTDA) model
is proposed to extract temporal common fault information between different working
conditions. In the online stage, the sequentially collected monitoring signals are directly
fed into the DTDA model to recognize if a fault occurs. This process does not need a
re-training model, since the domain-invariant feature representation has been extracted
by the DTDA model. Finally, a set of comparative experiments is conducted on the IEEE
PHM Challenge 2012 bearing dataset, and the results demonstrate the effectiveness of the
proposed method.

The main contributions of this paper can be summarized as follows:

(1) This paper proposes a new dual temporal domain adaptation model with a dual
adaptation strategy. Different from most current deep transfer learning techniques,
this model can transfer temporal information of degradation sequences by integrating
the time convolutional network (TCN) [27] and the domain adversarial neural network
(DANN) [28]. This model can enlarge the temporal characteristics in domain-invariant
feature representation and then raise the discrimination between the early fault feature
and the normal state feature. According to the authors’ best knowledge, there are very
few fault detection methods based on transfer learning with temporal information.

(2) This paper presents a new online health indicator (HI) construction method of bearings.
This method adopts the temporal common features extracted by the DTDA model and
uses principal component analysis (PCA) [29] to get a one-dimensional component. As
the extracted common features are representative of the online working condition, the
obtained HI can effectively describe the degradation process and provide an intuitive
evaluation of online detection results.

This paper is organized as follows. In Section 2, a brief summary about TCN and
DANN is provided. In Section 3, the details of the proposed method are elaborated.
Section 4 is devoted to showing the experimental results on a widely-used bearing dataset,
the IEEE PHM Challenge 2012 dataset, followed by the conclusion of this paper in the
last section.

2. Background
2.1. Introduction of the TCN

Rooted in the convolutional neural network (CNN) [30], the TCN has been proven
equal to or even better than the recurrent neural network (RNN) [31] in dealing with
temporal data [27]. The TCN is mainly composed of three parts: causal convolution,
dilated convolution, and residual module, as depicted in Figure 1. A detailed introduction
of each part will be given as follows.

Causal convolution is a one-way structure, i.e., the value at time t of the upper layer
only depends on the value at time t and before time t of the next layer [27], as shown in
Figure 1a. Causal convolution brings the time constraint structure. Dilated convolution is
designed to solve the problem that the modeling length with temporal data is restrained by
the size of the convolution kernel. In Figure 1b for example, the dilated factor d = 1 in the
first layer means that every sample is calculated in convolution. If d = 4, all four samples
are calculated together. As a result, the TCN can obtain a larger receptive field through
fewer layers. Here, the function F of dilated convolution with the element s of the sequence
X is shown as:

F(s) = (X ∗ d f )(s) =
k−1

∑
i=0

f (i) · Xs−d·i (1)

where f is the convolution operation and k is the size of the convolutional kernel.
As shown in Figure 1c, the residual module contains two layers of dilated causal

convolution and ReLU mapping. Besides, the TCN runs the dropout after each convolution
layer to achieve regularization. The residual module can be expressed as:

ẑ(i) = ẑ(i−1) + F(s) (2)
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Figure 1. Structure of the time convolutional network (TCN) with (a) causal convolution, (b) dilated convolution, and (c) the
residual module.

2.2. Introduction of the DANN

Proposed by Ganin et al. [28], the DANN has become an overwhelming domain
adaptation model. The structure of the DANN is shown in Figure 2. In Figure 2, given
source domain samples (xs

i , yi) and domain samples (xi, di), the green part is a feature
extractor G f (·; θ f ), the blue part is a source domain classifier Gy(·; θy), and the red part
is a domain classifier Gd(·; θd). The adversarial training strategy means that Gy(·; θy) can
recognize the data from the source domain using the features extracted by G f (·; θ f ) while
ensuring that Gd(·; θd) cannot recognize from which domain the data come.

The training process of the DANN mainly concentrates on optimizing Gy(·; θy) and
Gd(·; θd). Then, the loss function of Gy(·; θy) is:

Li
y(θ f , θy) = Ly(Gy(G f (xs

i ; θ f ); θy), yi) (3)

The loss function of Gd(·; θd) is:

Li
d(θ f , θd) = Ld(Gd(G f (xi; θ f ); θd), di) (4)

By adding a gradient reversal layer between Gy(·; θy) and Gd(·; θd), the total loss
function of the DANN becomes:

E(θ f , θy, θd) = ∑
i=1,2,...N

Ly(Gy(G f (xi; θ f ); θy), yi)− λ ∑
i=1,2,...N

Ld(Gd(G f (xi; θ f ); θd), di)

= ∑
i=1,2,...N

Li
y(θ f , θy)− λ ∑

i=1,2,...N
Li

d(θ f , θd)
(5)

Using a back-propagation optimization algorithm like the stochastic gradient descent
(SGD) algorithm, Equation (5) can be minimized to reach equilibrium. Then, a domain-
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invariant feature representation can be determined. The test data can then be classified
using Gy(G f (xi; θ f ); θy).

Figure 2. Schematic diagram of the domain adversarial neural network (DANN).

3. Proposed Approach of Early Fault Online Detection

It is worth noting that the proposed method is unsupervised, i.e., all training data are
whole-life degradation sequences with no state labels. The training data include a sufficient
amount of data from offline working conditions (for example, in a laboratory) and a small
amount of data from online working conditions (for example, in a real application). The
goal of the proposed method is to recognize the occurrence of an early fault in the online
data of a target bearing.

To reach this goal, the proposed method contains an offline stage and an online stage.
In the offline stage, it needs to first grab the label information of offline data via state
assessment and then extract the domain-invariant feature representation between the
offline and online working conditions. Following this idea, a new state assessment method
and a novel deep domain adaptation model named DTDA are proposed. In the online
stage, the sequentially collected data batch is simply fed into such a feature representation
to get the discriminative features for the online tasks and directly get the detection results.
The steps stated above are shown in Figure 3.

3.1. State Assessment

The offline data are a whole-life degradation sequence, so we need to determine the
label information of the normal state and early fault before conducting domain adaptation.
Therefore, an efficient state assessment method is first presented in this section. Given a
raw vibration signal sequence of a rolling bearing, the steps of the state assessment are
as follows:

(1) Obtain the HHT [32] marginal spectrum data from the raw signal. First, decom-

pose the raw signal x(t) as: x(t) =
k
∑

i=1
ci(t) + rk(t), where ci(t) is the i-th intrinsic

mode function (IMF) component and rk(t) is the residual term. Second, run the

Hilbert transform for each IMF component: H[x(t)] = 1
π

+∞∫
−∞

x(τ)
t−τ dτ, and get the

corresponding analytic signal: CA
i (t) = ci(t) + jcH

i (t) = ai(t)ejθi(t), where cH
i (t) =
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1
π

+∞∫
−∞

ci(s)
t−s ds, ai(t) =

√
ci

2 + (cH
i )

2, θi(t) = arctan(cH
j /ci), with the instantaneous fre-

quency ω = dθ(t)
dt . Third, calculate the Hilbert spectrum: H(ω, t) =

n
∑

i=1
ai(t)ejθi(t), and

obtain the marginal spectrum: H(ω) =
∫

H(ω, t)dt.
Here, the HHT is regarded as a signal processing method, as the HHT has two merits
for analyzing signals: (1) no need to preset the orthogonal basis and (2) the good
capability of processing the non-stationary signal. Therefore, here, the HHT is chosen
as the signal processing method.

(2) Select the initial 500 samples of the whole-life degradation sequence. Set the HHT
marginal spectrum of these samples as the normal state data, and train an SVDD
model. Specifically, the optimization target of the SVDD is:

min
a,R,ξ

R2 + C
n
∑

i=1
ξi

s.t.‖φ(xi − a)‖2 ≤ R2 + ξi, ξi ≥ 0, ∀i = 1, 2, . . . n
(6)

where ξ is the slack variable, R and a are the radius and center of the hyper-sphere,
and C is the regularization parameter.

(3) Select the sample sequentially from the beginning and feed the spectrum of the
sample into the obtained SVDD. Calculate the distance between this sample and the
hyper-sphere center of the SVDD:

d =

√√√√K(xtest, xtest)− 2
n

∑
i=1

αiK(xtest, xi) +
n

∑
i=1

n

∑
j=1

αiαiK(xi, xj) (7)

where K(xi, xj) is the kernel function and αi is the Lagrange coefficient. If d ≤ R, the
sample xtest is recognized as in the normal state, otherwise it is a fault sample. As a
result, the boundary between the normal state and the fault state can be determined.

3.2. Proposed DTDA Model

To realize an effective domain adaptation between offline and online working condi-
tions, the DANN is chosen as the baseline algorithm. The DANN adopts the adversarial
training strategy and can get a better domain-invariant feature representation even between
quite different domains [28]. As training the DANN requires label the information of the
source domain, the results of the state assessment presented in Section 3.1 can be used.
Different from mature fault data, early fault data generally have a temporal character-
istic that reflects the degradation process from the normal state to the fault state. More
importantly, the degradation part of the early fault is similar between different bearing
sequences [1]. Therefore, the effect of domain adaptation by the DANN can be further
enhanced by extracting common temporal information. To extract temporal information
well, the TCN is adopted as the feature extractor in the classical DANN, and we propose a
new DTDA model.

Specifically, a strategy of dual adaptation is proposed in the DTDA model. This
strategy comes from the following observations: (1) Different domains have different
requirements on the amount of temporal information, e.g., degradation length. Then, the
TCN may perform poorly due it not having a sufficiently large receptive field. (2) The
adversarial training strategy used in the DANN may perform unstably when tackling the
data with a large distribution difference. Following this analysis, an adaptation layer with
the maximum mean discrepancy (MMD) [33] is first added after the TCN’s residual blocks.
This layer can shrink the distribution difference of temporal features between the source
domain and the target domain to some extent. Then, the DANN is run based on such
adapted TCN features and can improve the stability of the DANN training as well.
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Figure 3. Flowchart of the proposed online detection method of early fault. SVDD, support vector data description; DTDA,
dual temporal domain adaptation.

The above idea is shown in Figure 4. Specifically, the orange part represents the source
data with labels that are obtained by the state assessment in Section 3.1. The purple part
represents the available input data in the target domain. The green part is the feature
extractor using the TCN, linked by an MMD adaptation layer. The blue part is the source
domain label classifier that aims to recognize the normal state data from the fault data. The
pink part is the domain classifier whose task is to discriminate the source domain data and
the target domain data. The blue part and pink part are the same as the ones in Figure 2.

The training process of the DTDA model can be summarized as follows:
Step 1. Initialize randomly the weight w and bias b.
Step 2. Combine the source domain data and the target domain data as a whole, and

feed them into the TCN to get the output:

H1 = G f (
m+n

∑
i=1

wixi − b) (8)

where m and n are the sample number in the source domain and target domain, respectively,
and G f (·) is the feature extractor of the TCN.

Step 3. Denote by Xs and Xt the source domain feature and target domain feature
in H1, respectively. Then, realize the domain adaptation for Xs and Xt by using an MMD
layer. The definition of the MMD is as follows:

MMD(Xs, Xt) =

∥∥∥∥∥ 1
m

m

∑
i=1

φ(xs
i )−

1
n

n

∑
j=1

φ(xt
j)

∥∥∥∥∥
H

(9)

where the function φ(·) indicates a nonlinear mapping to a reproducing kernel Hilbert
space (RKHS) and the subscriptH refers to this RKHS.
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Figure 4. Structure diagram of the proposed DTDA model.

Step 4. Denote by Xs
MMD the source domain feature set adapted by the MMD layer.

Feed Xs
MMD into the source domain label classifier Gy(·) in Figure 4, and get the output

Gy(Xs
MMD; wy). The loss function of Gy(·) can be expressed as:

Li
y(w f , wy) = Ly(Gy(Xs

MMD; wy), yi) (10)

where w f is the model parameter of the feature extractor composed of the TCN and MMD
adaptation layer and wy is the model parameter of the source domain label classifier.

Step 5. Feed the adapted feature set XMMD of the source and target domains into the
domain classifier Gd(·), then get the output: Gd(XMMD; wd). The loss function of Gd(·) can
be expressed as:

Li
d(w f , wd) = Ld(Gd(XMMD; wd), di) (11)

where wd is the model parameter of the domain classifier.
Step 6. After combining Equations (9)–(11), the optimization function of the DTDA

model is:
E(w f , wy, wd) = Li

y(w f , wy)− λLi
d(w f , wd) + µMMD(Xs, Xt) (12)

where λ, µ > 0 are the regularization parameters, which are used to tune a trade-off
between these three quantities during the learning process. Specifically, the larger the
value of µ is, the higher the requirement for extracting common features is, and vice
versa. Similarly, if the value of λ becomes smaller, the effect of the domain classifier is
equivalent to being enhanced, and correspondingly, the samples are more difficult to
recognize from the source domain or the target domain. In Section 4, a reverse cross-
validation approach, which was adopted in the original DANN model [28], is employed
to update the regularization parameters λ and µ. It is worth noting that the minus sign
in Equation (12) means gradient reversal for reducing the distribution difference between
source domain features and target domain features.

Another thing that needs to be noticed is that the classifier parameters of wy and wd
are optimized in order to minimize their error on the training set; the feature extractor
parameter of w f is optimized in order to minimize the loss of the source domain label
classifier and to maximize the loss of the domain classifier; and the SGD algorithm is
employed to minimize Equation (12) to update all three of them.
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Step 7. In the training process, if the iteration number reaches a pre-defined number
ρ or the difference between two consecutive training errors is less than a pre-defined
threshold, the training is terminated; otherwise, go to Step 6.

After dual adaptation, i.e., MMD adaptation and the DANN, the feature distribution
of the source domain data and target domain data tends to be consistent. After reaching
convergence, the DTDA model can extract the common temporal feature representation of
different domain data. In the experiment of this paper, the offline working condition is set
as the source domain, and the online working condition is set as the target domain, then
such a common feature representation can provide a channel to transfer fault information
from the offline data to the online task.

3.3. Online Detection

Once the DTDA is trained, the common temporal feature representation can be ob-
tained. The source domain label classifier Gy(·) can then be used well to recognize the fault
in the data of the target domain. Therefore, in the online stage, the sequentially collected
data batch is directly fed into Gy(·) to determine if a fault has occurred. This process does
no need to re-train the DTDA, while the main computational cost is the linear calculation
in Gy(·). As a result, the detection speed is very fast.

3.4. HI Construction

To intuitively evaluate the reliability of the detection results, a new HI construction
method is also proposed based on the DTDA model. This method is simple and effective.
Specifically, through feeding sequentially the online data batch into Gy(·), not only the
detection results, but also the temporal features of the target bearing can be obtained.
After detecting all the online data, the features of the whole degradation sequence can
be obtained. Then, PCA is run to get the first principal component. After the smoothing
operation, the obtained feature sequence is the HI of the target bearing. Since the feature
extractor in the DTDA model can extract domain-invariant feature representation with
strong discriminative ability, the HI constructed based on such a feature representation
can be more sensitive to reflect various state changes of the target bearing. Certainly, the
obtained HI can also verify the reliability of the online detection results.

4. Experimental Results

To verify the effectiveness of the proposed method, a set of comparative experiments is
run on the IEEE PHM Challenge 2012 bearing dataset [34] in this section. The programming
environment was Python 3.6 and MATLAB R2014. The experiments used the Windows
operating system (OS) with an i5-7300 processor and 8 G memory.

4.1. Dataset Description

The IEEE PHM Challenge 2012 dataset was collected from PRONOSTIAtest platform,
as shown in Figure 5, on which an accelerated degradation experiment was conducted to
collect run-to-failure data within a few hours. The PRONOSTIA platform is composed
of three parts: rotating part, load part, and data collection part. The rotating part has a
motor with a power of 250 W. To accelerate degradation, the load part provides a 4000 N
load for the rolling bearing. Vibration signals were collected using an accelerometer sensor
placed in the horizontal direction. The sampling frequency was 25.6 kHz, while the data
were recorded every 10 s. In total, seventeen bearings were selected to collect whole-life
degradation data under three working conditions. The specific information of the working
conditions is shown in Table 1.

In this experiment, the seven bearings (i.e., Bearing1_1 to Bearing1_7) under the first
working condition were selected as the source domain data. Moreover, Bearing 2 and
Bearing 3 under the second working condition (i.e., Bearing2_2 and Bearing2_3) were
taken as the offline data in the target domain, and we took Bearing 1 (i.e., Bearing2_1) and
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Bearing 4 (i.e., Bearing2_4) under the second working condition as the target bearings to be
tested in the target domain.

Bearing tested Accelerometers 

TorquemeterSpeed sensorAC Motor

NI DAQ card Pressure regulator

Speed reducer

Force sensor

ThermocoupleCoupling

Cylinder Pressure 

Figure 1: Overview of PRONOSTIA

experimental platform allows to conduct bearings' degradations in only few hours. Also, com-
pared to other bearing test beds proposed in literature, the data provided by the PRONOSTIA
platform are di�erent in the sense that they correspond to �normally� degraded bearings. This
means that the defects are not initially initiated on the bearings and that each degraded bearing
contains almost all the types of defects (balls, rings and cage). Furthermore, even if the data
provided for the challenge concern constant operating conditions for each realized experiment,
the current design of PRONOSTIA enables to provide data related to bearings degraded under
variable operating conditions.
PRONOSTIA is composed of three main parts: a rotating part, a degradation generation part
(with a radial force applied on the tested bearing) and a measurement part, which are detailed
hereafter.

2.2 Rotating part

This part includes the asynchronous motor with a gearbox and its two shafts: the �rst one is
near to the motor and the second one is placed at the ride side of the incremental encoder.
The motor has a power equal to 250 W and transmits the rotating motion through a gearbox,
which allows the motor to reach its rated speed of 2830 rpm, so that it can deliver its rated torque
while maintaining the speed of the secondary shaft to a speed less than 2000 rpm. Compliant and
rigid shaft couplings are used to create connections for the transmission of the rotating motion
produced by the motor to the shaft support bearing.
The bearing support shaft (Fig. 2) leads the bearing through its inner race. This one is kept
�xed to the shaft with a shoulder on the right hand and a threaded locking ring on the left hand.
The shaft which is made of one piece is held by two pillow blocks and their large gearings. Two
clampings allow the longitudinal blocking of the shaft between the two pillow blocks. A human
machine interface allows the operator to set the speed, to select the direction of the motor's
rotation and to set the monitoring parameters such as the motor's instantaneous temperature
expressed in percentage of the maximum temperature of use.

IEEE PHM 2012 Prognostic Challenge Page 3

Figure 5. PRONOSTIAtest platform [34].

Table 1. Description of the three working conditions in IEEE Prognostics and Health Management
(PHM) Challenge 2012 dataset.

Operating Condition Rotating Speed (rpm) Radial Force (N)

First operating condition 1800 4000
Second operating condition 1650 4200
Third operating condition 1500 5000

4.2. Results of State Assessment

In this section, the results of the state assessment are provided. Taking Bearing 1_1
as an example, HHT was first run to get the marginal spectrum data for this bearing, and
then, we chose the first 500 samples to train an SVDD model. The Gaussian radial basis
function (RBF) kernel was adopted, and the regularization parameter and kernel parameter
of SVDD were set to one and 0.001, respectively. After feeding the HHT spectrum data into
the trained SVDD model sequentially, the results of the state assessment can be obtained.
Table 2 shows the period of the normal state and the fault state of all seven bearings under
the first working conditions. These results will be used as the label information for training
a DTDA model in the next section.

4.3. Results of Online Detection

In this section, Bearing2_1 and Bearing2_4 under the second working condition are cho-
sen as the target bearings to evaluate the effectiveness of the proposed method. Specifically,
these two bearings have quite different degradation trends and noise levels in the normal
state. Bearing2_1 has a long period of slow degradation, while Bearing2_4 has no apparent
early fault state and quickly evolves to the fast degradation state. Therefore, these two
bearings are believed to be representative enough to provide a comprehensive evaluation.
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Table 2. State assessment results of the IEEE PHM Challenge 2012 dataset.

Bearing Normal State Period Fault State Period

Bearing1_1 [1–1371] [1372–2803]
Bearing1_2 [1–716] [717–871]
Bearing1_3 [1–1165] [1166–2375]
Bearing1_4 [1–931] [932–1428]
Bearing1_5 [1–2235] [2236–2463]
Bearing1_6 [1–1587] [1588–2448]
Bearing1_7 [1–2067] [2068–2259]

4.3.1. Results of Bearing2_1

First, Figure 6 provides the visualized feature distribution after domain adaptation
by DTDA. Here, two bearings (Bearing1_2 and Bearing1_3) in the source domain and two
bearings (Bearing2_2 and Bearing2_3) in the target domain are chosen. For comparison,
Figure 6 also provides the feature distribution by using the deep autoencoder (DAE)
without domain adaptation. Here, PCA is used for visualization. From Figure 6b, before
domain adaptation, the feature distribution of the bearings in the source domain (red
points and blue points) and the target domain (purple points and green points) vary
largely, which indicates that different working conditions have different data distribution
characteristics. However, after domain adaptation by the DTDA, the feature distribution
of different domains tends to be consistent, as shown in Figure 6a. The results shown
in Figure 6 demonstrate that the DTDA model can effectively extract domain-invariant
feature representation between different working conditions.

(a) (b)

Figure 6. Feature distribution of the four bearings under the first and second working conditions extracted by (a) the DTDA
and (b) the deep autoencoder (DAE). Here, PCA is used for visualization.

Second, Figure 7 provides the results of early fault online detection on Bearing2_1. To
ensure the results are more reliable, the location of five successive anomalous samples is
defined as the occurrence of an early fault. The anomaly before the occurrence location
is defined as a false alarm. For straightforward comparison, Figure 7 also reports the HI
sequence built by the proposed method in Section 3.4 and the root mean square (RMS)
curve. From Figure 7a, an early fault occurs at Sample 162 with only four false alarms.
From Figure 7b, the HI sequence has a basically consistent trend with Figure 7a, which
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proves that the HI sequence can be used to evaluate the reliability of the detection results.
As a widely-used indicator to reflect the degradation trend, the RMS curve rises slowly
at Sample 180, which lags by nearly 20 samples. This comparison demonstrates that
the domain-invariant feature representation extracted by the DTDA model has a better
discriminative ability.
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Figure 7. Online anomaly detection results on Bearing2_1 using (a) the proposed method, (b) the constructed health
indicator (HI) by PCA, (c) the constructed HI by DAE, and (d) the RMS curve. Here, the label “1” in Subfigure (a) indicates
the normal state; “−1” indicates the fault state.

The effectiveness of the obtained HI sequence is further analyzed. In Section 3.4,
PCA is used to shrink the degradation features into a one-dimensional component, which
performs as an HI. To test the effectiveness of PCA in HI construction, the DAE is also
introduced to build an HI sequence by replacing PCA, as shown in Figure 7c. Specifically,
after extracting the domain-invariant feature representation, the features of Bearing2_2
and Bearing2_3 in the target domain can be generated. Then, a DAE model with one-
dimensional output is trained using the feature set of these two bearings. Finally, the
online features of Bearing2_1 are directly fed into the obtained DAE model to get a one-
dimensional output, i.e., the expected HI sequence. It is clear that the two HI sequences
built by PCA and DAE are nearly identical in geometric shape, and the location of the early
fault is almost the same. This phenomenon indicates that the common features obtained
by the DTDA have good representative capability to reflect the degradation trend, while
both PCA and the DAE can easily extract a representative component from the features to
build the HI. Still, the HI by PCA is a little more sensitive to the early fault. Since training a
DAE model generally needs a sufficient amount of data, less samples in the online stage
may cause over-fitting. Moreover, the DAE is trained by a gradient descent algorithm,
which has more computational cost than PCA. Under comprehensive consideration, PCA
is believed to be more suitable for HI construction than the DAE.

In Figure 7d, the RMS curve fluctuates drastically in the initial part, even locating
in the normal state. This phenomenon is mainly caused by the irregular vibration of
running-in, assembly errors, etc., not by early fault. If the features are not representative
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(like RMS), there will be many false alarms in the normal state. Quite different from the
RMS curve, the HI sequence has almost no irregular fluctuations in the normal state. This
phenomenon shows that the DTDA model can extract fault features that are robust to
the irregular fluctuations in the normal state. Moreover, the HI sequence has an obvious
upward trend after the location of the early fault, while the RMS curve keeps flat for a long
period. It is clear that the features extracted by the DTDA are more sensitive to early fault
than the RMS feature. As a result, the DTDA model can generate deep features with better
discriminative ability, which is helpful to improve the performance of early fault detection.

To further analyze the comparative advantage of the proposed method, the trained
DTDA in the offline stage is used to generate the online features of Bearing2_1, as shown
in Figure 8. It is worth noting that the visualization label in Figure 8 corresponds to the
results in Figure 7a. The features of the two states are almost linearly separable, which
indicates that the features extracted by DTDA are discriminative for early fault and very
applicable for online detection.

Figure 8. Online features of the target bearing Bearing2_1 in the IEEE PHM Challenge 2012 dataset.

4.3.2. Results of Bearing2_4

First, similar to Figure 7, Figure 9 shows the results of the online detection for Bear-
ing2_4. This bearing falls into the early fault state at Sample 744, with no false alarm. It
is also clear that the trend of the HI sequence and the RMS curve completely matches the
detection results in Figure 9a, as shown in the dotted frame. Moreover, compared with
the RMS curve, the HI sequence does not have an obvious fluctuation, which proves the
effectiveness of the proposed method in early fault online detection.
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Figure 9. Online anomaly detection results for Bearing2_4 using (a) the proposed method, (b) the constructed HI, and (c)
the RMS curve. Here, the label “1” in Subfigure (a) indicates the normal state; “−1” indicates the fault state.

Figure 10 further shows the online features of Bearing2_4, which were generated
using the domain-invariant feature representation extracted by the DTDA. The separability
of these features is even more obvious than the online features of Bearing2_1 shown in
Figure 8. This phenomenon is caused by the degradation process of Bearing2_4 in which
the bearing transitions directly from the normal state to the fault state. In this scenario,
the fault state data are certainly easy to distinguish from the normal state data. Figure 10
proves again that the proposed method can effectively recognize the normal state and the
early fault state.

4.4. Comparative Results with State-of-the-Art Methods

In this section, nine state-of-the-art methods of bearing fault detection are intro-
duced for a comprehensive comparison. These nine methods include one typical signal
analysis method (Method 1), five anomaly detection methods without transfer learning
(Methods 2–6), and three anomaly detection methods with transfer learning (Methods 7–9).
For simplicity, the proposed method is named DTDA.

Following [16], two evaluation metrics are employed: (1) the detection location, which
is the location (number) of the signal snapshot of the appearing fault; (2) the number of false
alarms, which is the number of anomalies before the detection location. The comparative
results are reported in Table 3.

From Table 3, the proposed method DTDA obtains the earliest detection location and
almost the lowest number of false alarms. Although RD-DTL and SDFMhave a lower
number of false alarms than the DTDA, the detection location of these two methods
is relatively late. It is worth noting that the detection locations of all ten methods on
Bearing2_4 are not much different. This is because the bearing evolves quickly from the
normal state to the fast degradation state, with a very short period of early fault. Since
the data of the fast degradation state are quite different from the normal state data, all
methods can detect faults at the location of the state change. However, the number of
false alarms produced by different methods on Bearing2_4 is not the same. Some methods
like iFOREST and the local outlier factor (LOF) produce too many false alarms. Moreover,



Entropy 2021, 23, 162 15 of 19

bandwidth empirical mode decomposition-adaptive multi-scale morphological analysis
(BEMD-AMMA) has no false alarm since it utilizes signal analysis to conduct fault detection
by observing the fault frequency.

Figure 10. Online features of the target Bearing2_4. Here, PCA is used for visualization.

Table 3. Comparative results of the proposed method with nine state-of-the-art methods. Earlier detection location
and lower number of false alarms indicate better. BEMD-AMMA, bandwidth empirical mode decomposition-adaptive
multi-scale morphological analysis; LOF, local outlier factor; TCA, transfer component analysis.

Type of Methods Methods
Bearing2_1 Bearing2_4

Detection
Location

Number of
False Alarms

Detection
Location

Number of
False Alarms

Signal analysis 1. BEMD-AMMA [35] 185 – 748 –

Anomaly detection without
transfer learning

2. LOF [36] 610 40 746 137
3. iFOREST [37] 307 35 745 152
4. SRD [38] 870 12 745 13

Online anomaly detection
without transfer learning

5. SDFM [1] 175 0 744 0
6. S4VM-SODRMB [17] 763 10 744 11

Anomaly detection with
transfer learning 7. TCA+SVDD 615 21 744 46

Online anomaly detection
with transfer learning

8. RD-DTL [39] 175 0 744 0
9. OD -DTL [26] 169 5 744 3
10. DTDA 162 3 744 0

Here, a detailed analysis of the comparative results is listed as follows:

(1) Comparison with BEMD-AMMA:
BEMD-AMMA can be viewed as a state-of-the-art signal analysis-based method for
bearing early fault detection. This method first uses the bandwidth empirical mode
decomposition (BEMD) to reconstruct the raw vibration signal and then utilizes an
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adaptive multi-scale morphological analysis (AMMA) algorithm to demodulate the
reconstructed signal to obtain time-domain signals. Finally, a fault can be determined if
the fault characteristic frequency can be observed. To calculate the fault characteristic
frequency, this method has to know the various parameters of the target bearing
and working condition in advance. Obviously, this limitation is too strict to achieve
in the online scenario. Moreover, a fault only evolves to a certain degree, and the
corresponding characteristic frequency can then appear. Therefore, the detection
location will be delayed. In contrast, benefiting from the sensitivity of the early
fault features extracted by the DTDA model, the proposed method can detect fault
occurrence at an earlier location.

(2) Comparison with LOF:
The LOF is a typical anomaly detection algorithm running on sample density. In this
experiment, the first 100 samples at the starting online stage were chosen to calculate
the LOF value, and then, the largest value is selected as the alarm threshold. The
parameter K in the LOF was set to 10. From Table 3, the detection location of the LOF
is later than that of the proposed method, while the number of false alarms is much
larger. This is because the normal state of a bearing may have unexpected irregular
fluctuations. Moreover, when using normal state data to train the LOF, the threshold
value will be relatively larger, resulting in a late detection location.

(3) Comparison with iFOREST:
iFOREST is also a typical anomaly detection algorithm adopting a random segmenta-
tion strategy. iFOREST segments all samples into various isolated outliers, and the
ones with a shorter path are viewed as anomalies. In this experiment, the number of
trees was set to 100. From Table 3, the detection location of iFOREST is much delayed
for Bearing2_1, and too many false alarms appear. This is because with online samples
arriving sequentially, the segmentation number continues to increase. Consequently,
the detection performance is not stable.

(4) Comparison with SRD:
SRD is a state-of-the-art early fault detection algorithm based on probability density
estimation. In the offline stage, this method directly uses the original signals of
multiple working conditions to establish a global model and determine the alarm
limit. The online signals are fed into this model to get the detection results. However,
this method does not take into account the difference between the bearing data under
different working conditions. The setting of the alarm limit is also too subjective.
Therefore, the detection location was very much delayed for Bearing2_1. In contrast,
the proposed method does not need to manually set a threshold for detection, and
the DTDA model can effectively transfer fault information between different working
conditions to improve the detection performance.

(5) Comparison with SDFM:
SDFM is a state-of-the-art online detection method for bearing early fault. This method
employs a sliding window to determine the location of early fault occurrence by means
of DAE features. The DAE network structure was set to [800, 512, 10], and the size of
the sliding window was set to 100. Benefiting from the sliding window, this method
had no false alarm, but the detection location was a bit delayed. The main reason is
that this method is not a transfer learning method and heavily relies on the amount
of offline training data. If the amount of training data is insufficient, the early fault
information could not be extracted completely. In contrast, the proposed method can
borrow data from offline working conditions to supplement early fault information
for online detection.

(6) Comparison with S4VM-SODRMB:
This method is also a state-of-the-art online detection method for bearing early fault.
This method only needs online data to update model training in an unsupervised
learning architecture. In this experiment, the first 100 samples of online data were
accumulated to extract the DAE features and then train an initial SVM model. The
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sequentially collected data batch was used to update the SVM model successively. The
radius-margin upper bound of leave-one-out error was then utilized to calculate an
index for online detection. In Table 3, the detection location of this method was much
delayed for Bearing2_1. The reason is that only a small amount of online data was
used to train an initial model. Once the data contain irregular fluctuation or colored
noise, the initial model will be biased, and the detection results will deteriorate. In
contrast, the proposed method can utilize offline data to facilitate online detection.
The transfer learning technique in the DTDA model guarantees the effective use of
early fault information from offline data.

(7) Comparison with TCA + SVDD:
Transfer component analysis (TCA) is a widely used transfer learning algorithm
by minimizing the MMD distance between different domains. In this experiment,
TCA was first run to conduct domain adaptation between the available data from
offline and online working conditions. Then, the common features were used to
train an SVDD model by using the available training data from the online working
condition. This SVDD model was used to recognize anomalies in the online stage. In
this experiment, the regularization parameter and kernel parameter were set to 10 and
one, respectively. From Table 3, it is clear that the detection location of TCA+SVDD
was much delayed for Bearing2_1, and the number of false alarms became larger. The
reason is that TCA conducts domain adaptation with a shallow model, while such
domain adaptation is in a single mode. In contrast, the proposed method not only
conducts dual domain adaptation, but also extracts common temporal information of
early fault. Therefore, the proposed method can provide more representative features
for online detection.

(8) Comparison with RD-DTL and OD-DTL:
RD-DTL and OD-DTL are both the newest state-of-the-art early fault online detection
methods based on deep transfer learning. RD-DTL first uses a robust auto-encoder to
determine the periods of different degradation states and then constructs an MMD-
based DAE network to extract common features for the normal state, followed by
an SVM model for recognition. This method focuses on the robustness of the online
detection model. OD-DTL utilizes a pre-trained VGG-16 network on the ImageNet
dataset to fine-tune a deep neural network for bearing online detection. This method
only conducts model-level domain adaptation, not considering the feature transfer.
Therefore, the performance of fault detection is limited. From Table 3, these two
methods get similar results as the proposed method. RD-DTL even gets zero false
alarms. However, the proposed method gets an earlier detection location than them.
The main reason is that the proposed method conducts dual domain adaptation with
temporal information. Therefore, the online features by DTDA are more sensitive to
early fault.

In summary, the proposed DTDA model can achieve dual domain adaptation at
the feature level, which can facilitate the transfer of fault information between different
working conditions. Moreover, the DTDA utilizes the TCN as the feature extractor to extract
the temporal information of the degradation process, which can improve the representative
ability of the online features for early fault. Therefore, the proposed method is more
applicable to the online detection of bearing early fault.

Another problem of online detection is computational time. The proposed method
needs to train the DTDA model in the offline stage and then directly inputs the sequentially
collected online data into the model to recognize the fault occurrence. The dual domain
adaptation by the DTDA provides a domain-invariant feature representation with a better
discriminative ability for the online task. The offline model training is computationally
expensive, since the adversarial training of the DTDA is an iteration process. However,
no additional training time is required in the online stage. The classification on an online
sample by the trained DTDA model is almost a linear operation, so the time for recognizing
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an online sample is very short. For this reason, the corresponding time data are not
provided in Table 3.

5. Conclusions

Online detection of bearing early fault is an application-oriented fault detection
method with significant practical meaning. This paper proposes a new online detec-
tion method of early fault based on deep dual temporal domain adaptation. This method
adopts deep domain adaptation with temporal information to extract domain-invariant
feature representation with stronger discriminative ability. Employing this representation
as the channel of information transfer, the proposed method can improve the detection
robustness and accuracy in the online scenario with fewer false alarms as well. This method
can directly tackle whole-life degradation data, with no need to manually mark fault data
in advance. Therefore, this method is more applicable for the online detection of early fault,
and the idea of this paper can be widely expanded for different objects.

In the next work, an attention mechanism will be introduced into domain adversarial
training to improve the effect of domain adaptation for time series data. Besides, this
paper focuses on the anomaly detection problem for a bearing across different working
conditions. How to achieve online transfer learning across different machinery and extract
common features from multiple sources is an interesting problem.
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