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Abstract: All intracellular pathogens critically depend on host cell organelles and metabolites for
successful infection and replication. One hallmark of positive-strand RNA viruses is to induce
alterations of the (endo)membrane system in order to shield their double-stranded RNA replication
intermediates from detection by the host cell’s surveillance systems. This spatial seclusion also
allows for accruing host and viral factors and building blocks required for efficient replication of
the genome and prevents access of antiviral effectors. Even though the principle is iterated by
almost all positive-strand RNA viruses infecting plants and animals, the specific structure and the
organellar source of membranes differs. Here, we discuss the characteristic ultrastructural features
of the virus-induced membranous replication organelles in plant and animal cells and the scientific
progress gained by advanced microscopy methods.

Keywords: positive-strand RNA viruses; replication organelle; viral replication complex; membrane
alterations; electron microscopy

1. Introduction

During infection, positive-strand RNA viruses utilize the host’s cellular membranes to
support every step of their replication cycle, i.e., virus entry, replication of the genome, and
assembly and release of virions. These viruses induce (endo)membrane rearrangements
in host cells to create a protective microenvironment for replication of their genomes and
for subsequent production of new virions [1]. These endomembrane rearrangements form
structures termed viral replication organelles (ROs), which are essential for virus replication.
They are thought to shield viral replication intermediates from recognition and to protect
them from the host cell defense systems, such as RNA silencing or interferon induction [2].
The ROs are confined membranous compartments generated by extensive alteration of
(endo)membrane structures. While these membranous structures are essential for viral
RNA replication, expression of single viral proteins is often enough to induce them, but
size and detailed structural features may be different in the absence of virus replication.

These endomembrane re-arrangements can differ morphologically, from simple di-
lated membranous structures to very complex structures such as multi-vesicular bodies
(Figure 1).

During the infection, viral proteins as well as hijacked host proteins target the
(endo)membrane system of the host to remodel it. Through these virus-host interactions
different RO structures are created, depending on the virus and the membrane source. The
majority of ROs are vesicular structures. The simplest form are single membrane vesicles
(SMVs), typically 50–200 nm in diameter with or without small pores that are 10–20 nm
diameter which either link vesicles to each other or link the vesicle lumen to the external
environment, i.e., the cytosol. These SMVs with pores, also called spherules, are believed to
be generated from invaginations or evagination of the host organelle membranes. Multiple
SMVs can be packed together in an organelle to form higher order vesicle packets (VPs).
Slightly more complicated RO structures are double membrane vesicles (DMVs) normally
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ranging from 200 to 400 nm in diameter. The biogenesis process of DMVs is not well
understood. DMVs can be completely sealed with two membranous layers, the outer
membrane can be connected to the organelle membrane the DMV originated from, and
sometimes the inner vesicles share the same outer membrane and create a larger complex
of DMVs. Some DMVs have open necks linking the internal lumen of DMVs to the external
environment. More complex RO organizations such as multi-vesicular bodies (MVBs)
also occur. These MVB structures are big vacuoles containing numerous small disordered
membranous vesicles. Other, rarer membrane alterations are multi-membrane vesicles
(MMVs), which are big multi-layered membranous particles of 300–400 nm in diameter,
tubule-like structures of different diameters (20–50 nm) or zippered ER. Finally, massive
unstructured membranous aggregates, which are called convoluted membranes (CMs), are
frequently observed in virus-infected cells.

Figure 1. Membranous structures that occur in cell infected with positive-strand RNA viruses. Depicted are the most
common membranous structures.

Membrane sources are different membranous organelles such as the endoplasmic
reticulum (ER), the Golgi apparatus, peroxisomes, mitochondria, and the plasma mem-
brane, and in plants, chloroplasts, and tonoplasts. In the following sections, we discuss
the ultrastructural features and membrane origins of ROs to integrate them into the cell
biological context of the infected cell (Table 1).
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Table 1. Membrane sources and morphologies of the replication organelles (ROs).

Membrane
Source Replication Organelles (RO) Virus Virus

Family Ref.

pl
an

tv
ir

us
es

endoplasmic
reticulum (ER)

vesicle/spherule

single
membrane beet black scorch virus (BBSV) Tombusviridae [3]

double
membrane turnip mosaic virus (TuMV) Potyviridae [4]

multi-vesicular body peanut clump virus (PCV) Virgaviridae [5]

membranous inclusion body wheat yellow mosaic virus (WYMV) Potyviridae [6]

appressed double-membrane
layers brome mosaic virus (BMV) Bromoviridae [7]

Golgi dilated Golgi tomato spotted wilt virus (TSWV) Tospoviridae [8]

peroxisomes multi-vesicular body tomato bushy stunt virus (TBSV),
cucumber necrosis virus (CNV) Tombusviridae [9,10]

mitochondria multi-vesicular body melon necrotic spot virus (MNSV),
Carnation Italian ringspot virus (CIRV) Tombusviridae [11,12]

chloroplast single membrane vesicle/spherule barley stripe mosaic virus (BSMV) Virgaviridae [13]

tonoplast single membrane vesicle/spherule
cucumber mosaic virus (CMV) Bromoviridae [14]

tobacco Necrosis Virus-Serotype
A (TNV-A) Tombusviridae [14]

an
im

al
vi

ru
se

s

endoplasmic
reticulum (ER)

convoluted membrane dengue virus (DENV), West Nil virus
(WNV), Zika virus (ZIKV), tick-borne

encephalitis virus (TBEV)

Flaviviridae [15–18]

vesicle/spherule

single
membrane

tubule-like
structure tick-borne encephalitis virus (TBEV) Flaviviridae [19]

double membrane vesicle hepatitis C virus (HCV) Flaviviridae [20–22]

zippered ER

severe acute respiratory syndrome
coronavirus (SARS-CoV), middle east

respiratory syndrome coronavirus
(MERS-CoV), SARS-CoV2, infectious

bronchitis virus (IBV)

Coronaviridae [23–26]

Zika virus (ZIKV) Flaviviridae [17]

Golgi single and double
membrane vesicle polio virus (PV) Picornaviridae [27,28]

mitochondria single membrane vesicle/spherule flock house virus (FHV) Nodaviridae [29,30]

lysosome cytopathic vacuole, single
membrane vesicle/spherule rubella virus (RUBV) Matonaviridae [31]

plasma
membrane

evagination, single membrane
vesicle/spherule sindbis virus (SINV) Togaviridae [32,33]

2. Structure and Origin of Plant Positive-Strand RNA Virus Replication Organelles

The ROs of positive-strand RNA viruses in plants are derived from different mem-
branous organelles of the host including the ER, Golgi, peroxisomes, chloroplasts, and
tonoplasts [34,35] (Figure 2).



Cells 2021, 10, 2407 4 of 16

Figure 2. Structure and origin of plant positive-strand RNA virus replication organelles. (A) 3D architecture of TuMV-
induced complex membrane structures. Overview of a single slice of a tomogram of a TuMV-infected vascular parenchymal
cell. (upper right) The 3D model shows a SMV with fibrillar material inside and with an adjacent intermediate tubular
structure. (lower right) 3D model of a DMV with a core of electron-dense materials. Yellow, SMVs; light red, electron-dense
materials; green, intermediate tubular structures; light blue, outer membranes of DMVs; dark blue, inner membranes
of DMVs; dark red, the electron-dense materials inside DMVs [4]. (B) Dilated ER of BBSV-infected cells with SMVs
(left) and 3D surface reconstruction of the tomogram corresponding to the intact spherules (right) depicting the outer ER
membrane (yellow), BBSV-induced spherules (gray), and fibrillar materials inside the spherules (green). Scale bars 100
nm [3]. (C) Electron microscopy of MVB structures in PCV-infected BY-2 protoplasts. White arrows indicate clusters of
vesicles. Single arrowheads correspond to MVB; MVB containing disordered membranous vesicles are indicated by black
arrowheads, whereas those containing one row of vesicles that are surrounded by a single membrane are indicated by white
arrowheads. White asterisks correspond to electron-dense material without detectable vesicles [5]. (D) TEM analysis and
3D reconstruction of MNSV-induced altered mitochondria. (left) TEM image of altered mitochondria. Numerous vesicles
were observed on the external surface as well as internal large invaginations and internal dilations (star), or both. Yellow
arrowheads indicate the pores connecting the lumen of the dilation to the surrounding cytoplasm. (right) 3D model of
MNSV-induced altered mitochondria (blue, yellow, red, and purple) with large dilations inside and close interactions with
lipid droplets (grey) and chloroplasts (green) [11]. (E) BSMV-induced chloroplast membrane rearrangement and 3D model
of altered chloroplast membranes. (left) Tomogram slices of altered chloroplast membranes from leaves of BSMV-infected N.
benthamiana. The arrowheads indicate the same spherules in different slices. (right) 3D model of remodeled chloroplast
membranes induced by BSMV indicating the outer chloroplast membrane (cyan), inner chloroplast membrane (gray), and
spherules derived from the outer membrane (yellow) [13]. (F) 3D visualization of remodeled tonoplasts in CMV-infected
cells. (upper left) Tomogram slice of a CMV-infected N. benthamiana leaf cell. CMV-induced spherules are observed on a
vacuolar membrane and in a MVB (arrowheads). The cell wall (CW), cytosol (Cy), and vacuole (Va) are indicated. Scale
bar 500 nm. (lower left) 3D model depicting the vacuolar membrane (dark blue), MVBs (light blue), spherules on the
vacuolar membrane and in the MVBs (yellow), and a membrane compartment (purple) with virus particles (red). (upper
left) 3D model of the MVB with spherules open to the cytosol. (lower left) 3D model of the membrane compartment
with virus particles. Scale bars 200 nm [14]. (G) 3D reconstruction of TBSV ROs in wild-type yeast cells characterized
by peroxisome-peripheral MVBs depicting the MVB membranes (yellow), vesicle-like spherules (blue) located close to a
mitochondrion (red) [9]. (H) Electron micrographs of the mesophyll cells of WYMV-infected wheat. The presence of
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membranous inclusion body structures in the cytoplasm. The ER, membranous inclusion (MI), mitochondria (Mt), pinwheel
inclusion (PW), and virus particles (VP) are labelled [6]. (I) A series of 2–7 appressed layers of double-membrane ER in yeast
cells expressing both 2a pol and 1a of BMV, double-membrane ER layers are separated by regular, 50–60-nm spaces, the
nucleus (Nuc) and cytoplasm (Cyto) are indicated. Scale bars 100 nm [7] Copyright (2004) National Academy of Sciences,
U.S.A. The different parts were reproduced with permission.

2.1. The Secretory Pathway Represents a Major Source for Membranes of Replication Organelles

The secretory pathway of plant cells is frequently targeted by viruses as a source
of membranes [34]. Like its mammalian counterpart, it is composed of a complex mem-
brane network including the ER, the Golgi apparatus, the trans-Golgi network (TGN),
and endosomes. This pathway is involved in the synthesis, modification, and transport
of proteins, lipids, and polysaccharides [35]. Among those organelles, the ER is most
frequently targeted by viruses for their productive replication. The ER is an extensive
membrane network with specialized subdomains that occupies large parts of the cell and
is the prime spot for lipid and protein synthesis. Increased protein (and lipid) synthesis
occurs during infection with diverse viral species and can trigger ER stress responses.

During infection with positive-strand RNA viruses, the ER structure is often dramati-
cally changed due to the interaction between viral and host membrane proteins to form
the ROs. Some viruses, such as brome mosaic virus (BMV), tobacco mosaic virus (TMV),
and red clover necrotic mosaic virus (RCNMV), induce massive ER proliferation forming
ER aggregates either in the perinuclear region or randomly dispersed in the cytoplasm
that are called convoluted membranes or membranous web [36–39]. Other viruses such as
beet black scorch virus (BBSV) or tobacco necrosis virus (TNV-W) induce ER membrane
dilations and invaginations that are rounded structures of up to 400 nm within the ER
cisternae [3,40]. Along with the rearrangement of ER membranes, viruses also form higher
order membrane structures called vesicle packets (VPs) containing small vesicle structures
which are 50–100 nm in diameter [3]. Most of them are spherules composed of single or
double membranes, called single or double membrane vesicles, SMVs or DMVs, respec-
tively. Those vesicular structures are the areas where viruses replicate their genome [3].
The spherule structures in BBSV-infected cells are arranged along the VP membranes and
are SMVs. Each spherule vesicle has a narrow neck (5–10 nm in diameter) linked to the
VP membrane and thus connecting the spherule interior to the cytoplasm, suggesting that
they are formed by invagination of ER membranes [3] (Figure 2B). Those VPs containing
spherules with opened necks to the cytoplasm are also reported in other positive-strand
RNA viruses that infect animal cells such as viruses in the Flaviviridae family [17,41].

In contrast to BBSV, the ROs of peanut clump virus (PCV) in tobacco protoplasts
form VPs containing multiple SMVs which are called multivesicular bodies (MVBs). These
MVBs contain multiple disordered membranous vesicles of 80–200 nm in diameter often in
one row of vesicles and surrounded by a single membrane [5] (Figure 2C). Interestingly,
Turnip mosaic viruses (TuMV), do not only induce formation of SMVs but also of DMV–like
structures that are found in the perinuclear cytoplasmic region [4] (Figure 2A). The DMVs
formed during TuMV infection occur during the late stage of infection concomitantly with
massive membrane arrangements leading to altered endomembrane structures such as
dilated ER and membranous inclusion bodies [4]. Cytoplasmic or membranous inclusion
bodies (MIBs) were observed not only in TuMV infection but also in cells infected with
different viruses such as wheat yellow mosaic virus (WYMV). WYMV forms MIBs in
infected wheat plants that are large, amorphous, crystalline lattice-like inclusion bodies in
the cytoplasm. The periphery of these MIBs appears to be connected to the rough ER [6]
(Figure 2H), but high-resolution structural information is not available yet.

However, other membranous structures beside spherular invaginations and vesicles
can support RNA virus genome replication. For example, BMV in yeast cells can replicate
the RNA at multilayer stacks of appressed double membranes [7] (Figure 2I). In infected
cells, the relative expression levels and interactions between viral 1a and 2a-pol proteins
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can change the structure of perinuclear membrane rearrangements associated with RNA
replication from small spherular invaginations to large stacks of 2–7 appressed layers
of double-membrane ER. Intriguingly, these membrane stacks are highly ordered with
50–60 nm spaces, which is exactly the same width as the diameter of the spherules. These
karmellae-like, multilayer structures are composed of stacks of ER that arise around the
nucleus by folding over continuous sheets of ramified, double-membrane ER with its
enclosed lumen. The double-membrane layers contain 1a and 2a-pol proteins and support
BMV RNA replication but were not observed in yeast cells when only 1a or only 2a-pol
proteins were expressed. Individual expression of BMV 1a induces only perinuclear
spherules while 2a-pol alone does not cause any membrane alterations [7].

2.2. Peroxisomes and Mitochondria as Membrane Origins

The plant peroxisome is a single membrane-bound organelle that is solely responsible
for beta-oxidation of fatty acids and the glyoxylate cycle, reactive oxygen species and
reactive nitrogen species metabolism, and is involved pathogen defense. It is also one of
the main target organelles for viruses as a membrane source to form ROs, especially for
viruses in the Tombusviridae family such as tomato bushy stunt virus (TBSV) or cucumber
necrosis virus (CNV) [9,10]. TBSV replicates in peroxisome-derived MVBs both in plant and
yeast cells that are often found in close proximity to mitochondria (Figure 2G) [9]. Those
MVBs are interconnected through membranes and might be nascent peroxisomes whose
maturation and detachment from the ER is blocked by viral factors. In N. tabacum cell
lines, TBSV p33 protein targets to peroxisomes and induces clustering and the formation
of peroxisomal ghosts, but not MVBs, when expressed on its own [42]. CNV infection
induces peroxisome biogenesis to form ROs [10]. Following infection, the peroxisomal
boundary membranes are highly vesiculated, leading to the formation of doughnut- or
C-shaped MVBs with the central region containing cytoplasmic material. The interiors
of these doughnut-shaped MVBs contain many single-membrane vesicle-like structures
with 80–150 nm in diameter. These vesicles appear to be connected to the MVB boundary
membrane through a neck, and they provide the sites for CNV genome replication [10].
If peroxules that form in response to oxidative stress, which often occurs during virus
infection, are hijacked by viruses as well, is currently unknown.

Interestingly, members of Tombusviridae not only target the ER or peroxisomes but
also the mitochondria to form ROs to support viral replication as exemplified by melon
necrotic spot virus (MNSV) and Carnation Italian ringspot virus (CIRV) [11,12]. In MNSV-
infected cells, the mitochondrial structure is dramatically altered, and these abnormal
organelles are frequently found close-by lipid droplets and ER membranes [11] (Figure 2D).
Ultrastructural changes include dilated cristae and a vesiculated outer membrane. This
vesiculated membrane forms multiple single-membrane vesicles with 45–50 nm in diameter
which surround the large dilations inside the mitochondria. These vesicles appear to be
connected to the cytoplasm or to the internal lumen of the large dilations through neck-
like structures. Immuno-EM suggests that MNSV RNA and capsid proteins reside in the
large dilations of abnormal mitochondria, suggesting that MNSV performs its genome
replication as well as packaging in mitochondria and possibly within the interior of the
vesicles [11].

2.3. The Chloroplast and Tonoplast Are Plant-Specific Membrane Sources

One organelle unique in plant cells that is also a target structure for many viruses
is the chloroplast. Chloroplasts are membrane-rich organelles that conduct photosynthe-
sis [43]. Barley stripe mosaic virus (BSMV) is a member of family Virgaviridae that alters
chloroplast morphology during infection. In BSMV-infected plant cells, the membranes of
the chloroplasts change dramatically with clusters of outer membrane-derived invaginated
spherules (diameter ~50 nm with a neck of 11 nm) within inner membrane-derived packets
(average diameter 112 nm) [13] (Figure 2E). The small spherules are linked via neck-like
structures to the cytosol and immune-EM analysis revealed the presence of the viral RNA
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and replication proteins, suggesting that these spherules are the site of BSMV genome
replication. In addition, big cytoplasmic invaginations surrounded by double membranes
that contained virions were observed inside the chloroplasts [13]. This suggests that in
addition to RNA replication, viral assembly takes place within the chloroplast.

The semipermeable membrane surrounding the vacuole is the tonoplast, an organelle
that plays an important role in osmotic regulation of turgor pressure and that is targeted
by viral infection. Already in the 1980s, cucumber mosaic virus (CMV)-infected leaf cells
were shown to harbor tonoplast-associated vesicular structures [44]. The latest findings
revealed that vacuole membranes are remodeled and invaginated in cells infected with
CMV or tobacco necrosis virus A Chinese isolate (TNV-AC) [14]. Membrane invaginations
form spherules at the periphery of the vacuole that are 50–70 nm in diameter (Figure 2F).
These spherules contain neck-like structures that connect their interior with the cytosol. In-
terestingly, in CMV-infected cells, besides the spherules located at the tonoplast membrane,
peripheral spherule-containing MVBs were also observed. The spherules inside the MVBs
are also open towards the cytoplasm with a neck-like structure and the interior of the MVB
seems to be connected to the vacuole. In addition to spherule-containing MVBs, membrane
compartments harboring viral particles are found in close proximity to the vacuole and the
ROs [14].

3. Structure and Origin of Animal Positive-Strand RNA Virus Replication Organelles

Similar to plant viruses, genome replication of all positive-strand RNA viruses that
infect animal cells is intimately associated with membranes. The viral ROs supporting the
replication of the viral genomes are generated from different host cellular membranous
organelles including the endoplasmic reticulum (ER), the Golgi apparatus, mitochondria,
lysosomes, and the plasma membrane [1] (Figure 3).

Figure 3. Structure and origin of animal positive-strand RNA virus replication organelles. (A) TEM images of HeLa
cells transfected with the TBEV DNA replicon. White arrowheads show dilated ER areas; black arrowheads denote
replication-vesicle-like structures inside the dilated ER areas. Insets show magnifications of the indicated areas. Scale bars
1µm [41]. (B,C) DENV-infected Huh7 cells. (left) Tomogram slice shows DENV-induced convoluted membranes (CM),
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vesicles (Ve), and tubes (T) that form a network of interconnected membranes in continuity with ER membranes. (right)
3D surface model of the membranes in the boxed area. The outer (cytosolic) face of the continuous membrane network is
depicted in yellow; the ER lumen is dark [15]. (left) Stacked virus particles are in ER cisternae that are directly connected to
virus-induced vesicles (white arrow). (right) 3D surface model of the virus-induced structures in the boxed area showing
the continuity of virus-and vesicle-containing ER cisternae. ER membranes are depicted in yellow, inner vesicle membranes
in light brown, and virus particles in red [15]. (D) Proliferation of the ER in human neuronal cells infected with TBEV.
TBEV particles and TBEV-induced vesicles are located inside the proliferated and reorganized cisternae of the rough ER. 3D
reconstruction of lamellar whorls, which are surrounded by cisternae arising from the rough ER (blue) and accommodate
tubule-like structures (green). Detailed image shows the connection between the envelope (yellow) of a TBEV particle with
nucleocapsid (red) and a tubule-like structure (indicated with an arrow) inside the rough ER. Scale bars 50 nm [19]. (E) 3D
model of the HCV replication organelles surrounding lipid droplets. Electron tomography suggests that DMVs arise from
ER membranes that are tightly wrapped around lipid droplets. (Left) Single tomographic slice of an HCV-infected cell with
lipid droplets that are tightly wrapped by ER membranes and that stain positive for E2 and NS5A as revealed by fluorescence
microscopy (not shown). (right) 3D reconstruction of the membranes surrounding the lipid droplet. ER membranes and
DMVs are shown in yellow; the phospholipid monolayer of the lipid droplet monolayer membrane is shown in cyan. Insets
illustrate that the DMVs originate from the wrapping ER membrane. Scale bars 100 nm [45]. (F) High-resolution analysis of
ER-DMV interconnectivity in SARS-CoV-2-infected Calu-3 cells. Tomogram slices depict a membrane connector or zippered
ER (light green) in contact with a DMV (red). (right) Superposition of rendered DMV and ER. Scale bars 200 nm [25].
(G) Tomogram slices and 3D reconstructions of mitochondria in FHV-infected Drosophila cells. (Left) Tomogram slices
showing FHV-induced spherule rearrangements of a mitochondrion. Labels denote outer mitochondrial membrane (OM)
and inner mitochondrial membrane (IM). White arrowheads indicate the necks that connect spherules to the OM. Asterisks
mark two spherules that connect via necks to the OM. A red arrow marks the ∼10 nm channel connecting the spherule
interior to the cytoplasm. (upper right) 3D tomogram image with blue indicates OM, white indicates FHV spherules. (lower
right) A close-up view of the connections between the OM and the spherules and 90◦ rotation of spherules showing the
channels that connect the spherule interiors to the cytoplasm [29]. (H) (upper left) Tomogram slice of FHV spherules in a
mitochondrion. Mitochondrial outer membrane (red), spherule membrane (blue), interior spherule filaments (black), and
spherule openings (white) are indicated with arrowheads. Scale bar 100 nm. (lower left) 3D reconstruction of the spherule
outlined in upper panel. Scale bars 50 nm. (right) Filaments are associated with FHV spherule pores. Tomographic slices
with arrowheads pointing to the mitochondrial outer membrane (red), the spherule membrane (blue), the spherule opening
(white), and the extruding filaments that likely represent viral RNA) (black). Scale bars 100 nm [30]. (I) 3D ET volumes of
RUBV replication complex in BHK-21 cell. Tomogram slice (left) and the corresponding 3D model (right) of a CPV (yellow)
surrounded by the rough ER (light green) and containing a number of vacuoles, vesicles, and a rigid straight sheet (brown)
that is connected with the periphery of the CPV; mitochondria (red), vesicles and vacuoles (white) and cytoplasm (grey).
Scale bars 200 nm [31]. (J) Poliovirus ROs in HeLa cells. (left) Viral replication structures are strongly associated with
staining for a Golgi antigen, GM130. Scale bar 500 nm. (right) 3D reconstructions of poliovirus ROs at the early, intermediate,
and late stages, 3, 4, and 7 hours post infection, respectively, each depicting central slices in tomographic volumes, central
slices with segmented overlays, and segmented volumes, with blue indicating SMVs and yellow and green indicating inner
and outer membranes of DMVs, respectively. Scale bars 100 nm [27]. (K) Plasma membrane invaginations and vacuole
formation in SINV-infected BHK-21 cells. Scale bar 200 nm [32]. The different parts were reproduced with permission.

3.1. The ER Is the Main Hub for Animal Virus RO Fomation

Among the different membrane-bounded organelles, the ER represents the main mem-
brane source for many positive-strand RNA virus ROs in animal cells [46]. The Flaviviridae
family is one positive-strand RNA virus family that is well-known for ER-based RO forma-
tion [16,46,47]. In cells infected with dengue virus (DENV) tick-borne encephalitis virus
(TBEV), West Nile virus (WNV), or Zika virus (ZIKV), the ER structure is dramatically
altered owing to viral genome translation and replication. These viruses induce the forma-
tion of different membranous structures in the cytoplasm: vesicle packets (VPs) inside the
ER, convoluted membranes (CMs) (Figure 3B), which are peculiar membranous aggregates
with unknown function [18,47,48], and, in some cases, dilated ER, which are enlarged
rough ER cisternae filled with granular material e.g. in TBEV infected cells [41,49]. In
Hela cells transfected with a TBEV DNA replicon, the dilated ER cisterna grow to big
cytoplasmic vacuoles containing small spherule-like structures 80–100 nm in diameter,
which have open necks towards the cytoplasm (Figure 3A) [41]. The most prominent mem-
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branous structures derived from the ER in flavivirus-infected cells are the VPs that are the
sites of viral genome replication and thus represent the ROs [17,41,50]. Early immuno-EM
studies in DENV-infected insect cells indicated that VPs (or smooth membrane structures,
SMS) are the site of DENV RNA replication [50]. These VPs are ER-derived membranous
structures that are dilated ER cisterna containing single-membrane vesicles (SMVs) with
a diameter of 80–150 nm [15] (Figure 3C). These SMVs originate from the invagination
of the ER membrane into the ER lumen, have a spherule structure with small, 10–15 nm
diameter necks opening to the cytoplasm. Necks were also observed linking SMVs inside
the VPs in WNV-infected cells [16]. Densely packed viral particles are frequently within the
ER in close proximity to VPs [15] (Figure 3C). Interestingly, an electron tomography (ET)
study of TBEV-infected human neuronal cells investigated the proliferating ER in infected
cells and found additional tubule-like structures of different diameters (20–50 nm) inside
ER cisternae [19] (Figure 3D). In some instances, these tubule-like structures have direct
contacts with viral particles inside these proliferated ER cisterna [19]. The function of these
tubule-like structures is thus far unknown; they may represent membranous structures
involved in viral replication, abnormal cellular structures arising due to altered membrane
metabolism, or a feature of cellular process to limit the viral infection [51].

Among the members of Flaviviridae, hepatitis C virus (HCV) is somewhat unique
regarding the prototypical RO structures. In HCV-infected hepatocyte cells, ER membranes
are intensively rearranged to form the membranous web (MW). The MW contains vesicles
of different morphologies, mainly SMVs or DMVs, embedded in a matrix of membranes
which are sometimes close to or wrap tightly around lipid droplets [21,22]. HCV infection
as well as expression of single HCV proteins induce different types of membranous vesicles
in cells [20–22]. While NS3/4A and NS4B induces only SMVs, NS5A induces MMVs and in-
frequently DMVs [22]. However, expression of the complete replicase complex (NS3-NS5B)
is needed for formation of DMVs that are indistinguishable from the ones observed in
infection [22]. In HCV-infected cells there are vesicles in clusters containing SMVs of vari-
able sizes (100–200 nm in diameter), sometimes sticking together and harboring internal
invaginations, and SMVs of a homogeneous size (~100 nm in diameter) that are clustered
together and sometimes arrayed around lipid droplets. However, the most prominent
vesicular structure induced by HCV are DMVs, likely representing the ROs. The DMVs are
heterogeneous in size, with an average diameter of 200-400 nm, and are morphologically
similar to membrane alterations identified in cells infected with coronaviruses [23] or
picornaviruses [27]. These vesicles are characterized by two closely apposed membranes.
EM/ET analysis revealed that most of the DMVs are generated from the ER and some of
them are still connected to ER sheets via their outer membrane [22]. Although most of
DMVs are completely closed structures and it is still unknown why HCV would induce
these closed structures, a small percentage of them (8–10%) [22] has an opening neck
towards the cytosol. The opened and closed DMVs thus may reflect the different stages of
DMV “maturation”, early and late, respectively [22]. An immunolabeling study of purified
DMVs revealed an enrichment for viral proteins as well as dsRNA suggesting that DMVs
indeed play an important role for viral RNA replication [52]. Viral RNA amplification may
occur inside DMVs, which would allow the exit of newly synthetized viral genomes as long
as the DMV is open, but replication might also occur on the outer surface of DMVs [22,52].
A more recent study using correlative light and electron microscopy (CLEM) indicated that
DMVs emerge from ER membranes which are tightly wrapped around lipid droplets [45]
(Figure 3E). EM/ET analysis of HCV-infected cell revealed two types of lipid droplets:
lipid droplets that are tightly wrapped by the ER and that stain positive for the HCV
glycoprotein E2 and nonstructural protein NS5A by immunofluorescence microscopy as
well as lipid droplets that are not wrapped by ER and that do not stain positive for E2
and NS5A. These data suggest that HCV proteins trigger wrapping of ER membranes
around lipid droplets. This tightly closed contact between DMVs and ER-wrapped lipid
droplets may enable short-distance trafficking of viral RNA from replication vesicles to
assembly sites at lipid droplet–associated ER membranes [45]. Later during HCV infection,
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multi-membrane vesicles (MMVs) with an average diameter 350–400 nm are generated,
likely originating from DMVs through secondary enwrapping events [22].

DMVs are observed not only in HCV infection but also during infection with other
positive-strand RNA viruses, such as members of Nidovirales, including coronaviruses and
arteriviruses [1]. DMVs are well-known typical ROs of coronaviruses [23,24]. A new study
employing 3D reconstructions using FIB-SEM (focused ion beam milling combined with
scanning EM) to determine morphological alterations induced in severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2)-infected human lung epithelial cells revealed exten-
sive fragmentation of the Golgi apparatus, alteration of the mitochondrial network, and
recruitment of peroxisomes to viral ROs, which are clusters of DMVs [25]. In the SARS-
CoV-2-infected cells, the ER network was altered intensively to generate the ROs, which
consist predominantly of DMVs with an average diameter of 250–350 nm. Theses DMVs
were tightly connected with the ER network linking the outer membrane to ER-derived
structures such as ER connectors. Similar to DMVs in HCV-infected cells, the DMVs in
SARS-CoV-2-infected cells are mostly closed DMV structures. However, DMV-DMV con-
tacts were observed in SARS-CoV-2-infected cells, either through funnel-like junctions
between two DMVs or fused DMVs consisting of multiple vesicles sharing the same outer
membrane [25]. As described above, SARS-CoV-2 induces the formation ER connectors
between the DMVs and ER tubules [25] (Figure 3F). These membranous structures were
also described as zippered ER in gamma- or betacoronaviruses, such as infectious bronchi-
tis virus (IBV) or Middle East respiratory syndrome coronavirus (MERS-CoV) [24,26]. The
zippered ER or ER connectors lack luminal space, suggesting that they are formed through
zippering or collapsing of ER cisternae. However, in contrast to SARS-CoV-2, electron
tomograms showed that IBV-induced spherules are tethered to zippered ER and that there
is a small pore connecting the interior of the spherule with the cytoplasm [26]. Of note, in a
recent study of ZIKV, zippered ER structures were also observed in infected cells [17]. 3D
reconstruction of regions containing zippered ER in ZIKV-infected cells revealed that the
collapsed ER was connected to regions containing invaginated replication vesicles [17,47].

3.2. Further Down the Secretory Route, the Golgi Apparatus Supports RO Formation

Many viruses rely on the secretory route through the Golgi apparatus for maturation
and release of viral progeny. However, some viruses also employ Golgi membranes to
establish their ROs for viral RNA replication, e.g. poliovirus or coxsackieviruses, which are
members of Picornaviridae family. Membrane alterations in poliovirus-infected cells include
the formation of SMVs and DMVs [28]. A recent publication employing immuno-EM with
subsequent diaminobenzidine (DAB) labeling suggested that membrane rearrangements
in poliovirus-infected cells may occur in a sequential manner [27] (Figure 3J). In the early
stage of infection, small clusters of SMVs appear. Later in infection, they are replaced by
either round or irregularly shaped DMVs. Interestingly, the small clusters of SMVs of
100–200 nm in diameter strongly stained positive for a Golgi antigen, GM130, a cis-Golgi
marker, but not for calnexin, an ER marker. These data suggest that the ROs of polioviruses
may originate from the Golgi apparatus. However, it is too early to exclude a role of the
ER for biogenesis of these ROs as ER-proteins might be dislocated during RO formation.
dsRNA, i.e. viral RNA replication intermediates, as well as metabolically labeled viral RNA
were detected in both SMVs and DMVs of poliovirus ROs, suggesting that both structures
are relevant sites for poliovirus RNA synthesis [27].

3.3. Mitochondria, Lysosomes, and the Plasma Membrane Are Involved in RO Formation

Interestingly, the flock house virus (FHV), a member of the family Nodaviridae tar-
gets the mitochondria to form ROs supporting their RNA replication. In FHV-infected
Drosophila cells, the mitochondrial outer membrane is dramatically altered [29] (Figure 3G).
The virus induces the formation of invaginations at the outer mitochondrial membrane
into the spherule structures with an average diameter of 50 nm. All spherules are outer
mitochondrial membrane invaginations with their lumen connected to the cytoplasm
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through a small pore of 10 nm in diameter, which is sufficient for ribonucleotide import
and product RNA export [29]. A recent cryo-electron tomography study showed the
presence of electron-dense structures within the spherules, which likely corresponds to
the viral RNA as the volume correlated well with viral RNA length [30] (Figure 3H). This
study additionally revealed the structure and symmetry of the proteins that form the
pore complex. These pore complexes were frequently associated with long cytoplasmic
electron-dense trails, likely representing exported viral RNA [30].

The lysosome is another cellular organelle which is a favorite target for some positive-
strand RNA viruses such as rubella virus (RUBV) and members of Togaviridae, includ-
ing Semliki Forest virus (SFV) and sindbis virus (SINV) [53–55]. These viruses alter
lysosome and endosome structures to form cytopathic vacuoles (CPVs) that represent
the viral ROs [54]. In RUBV-infected cells, the rough ER, mitochondria, and the Golgi
are clustered around CPVs, which are linked to the cytosol and enclose vesicular struc-
tures [31] (Figure 3I). These organelles contain active ROs from which replicated RNA
is transported to virion assembly sites at Golgi membranes. These CPVs have a quite
variable diameter of 600–2000 nm. Electron tomography and 3D reconstruction revealed
that CPVs enclose a variety of different membrane structures such as stacked membranes,
rigid membrane sheets, small vesicles, and larger vacuoles that are connected through
membrane contacts with each other and functionally connected to the endocytic pathway.
CPVs have additional membrane contact sites to other cellular organelles such as the rough
ER and Golgi vesicles, but not to nearby mitochondria. Immunogold labeling confirmed
the presence of replicase complex proteins and dsRNA inside CPVs, suggesting that RNA
synthesis occurs on or in vesicles within the CPVs [31].

As mentioned above, alphaviruses, such as SFV, SINV and WEEV, are known to
induce formation of CPVs in infected cells, which are modified lysosomes and endosomes
and the sites of viral RNA replication. Interestingly, in SINV-infected cells spherules
containing dsRNA and nonstructural protein (nsP) are initially formed at the plasma
membrane [32,33]. Immunofluorescence microscopy and EM revealed that at early times
of infection, viral nsPs as well as dsRNA replication intermediates locate to spherules the
plasma membrane [33] (Figure 3K). These spherules form as evaginations at the plasma
membrane and the presence of plasma membrane-associated dsRNA and ns proteins
suggest that they represent ROs. Later in infection, these spherules are internalized by
endocytosis; trafficking and maturation to CPVs is dependent on phosphatidylinositol
3-kinase activity and the cytoskeleton [33], highlighting the often complex nature of viral
RO formation.

4. Recent Technical Developments and Challenges

For multiplication, viruses need to infect a suitable host cell to be able to replicate their
genome, to produce and release new infectious virions, and thus continue the next round of
the infectious cycle. The interactions of viruses with their hosts are highly dynamic, diverse
and complex, and occur on multiple levels. It is important to elucidate the molecular
mechanisms of these virus-host interactions in order to understand virus replication cycles
and how viruses affect and alter the cell biology of their host to support viral replication.
This knowledge is not only important for better understanding of the biology of viruses
but also to support control of viral infections, to predict their effect on ecology and human
health, and to design effective antiviral strategies against chronic and emerging viral
infectious diseases.

“Seeing is believing”, we clearly trust observations that we can visualize. Microscopy,
especially high-resolution light/fluorescence and electron microscopy (EM) are important
tools for visualizing structures of viral and host cell components and thus for the generation
of general concepts governing virus-host interactions. Indeed, EM and virus research
developments are deeply intertwined since the invention of EM [56,57]. EM is one of the
critical methods to elucidate how viruses replicate in the microstructure environments of
the infected cell in order to produce new virions [58]. In general, EM techniques encompass
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two main applications: transmission EM (TEM) and scanning EM (SEM), which each are
different microscopic techniques [59]. The resolution of SEM is lower than that of TEM. In
contrast, SEM provides a larger sample scanning ability or a bigger field of view for both
surface and volume. Therefore, TEM is the favorite method to study small structures in
detail, whereas SEM applications help to expand the sample scales.

The combination of EM with advanced light microscopy techniques termed correlative
light and electron microscopy (CLEM) provides even more detailed information as it
allows to analyze the dynamics and localization of viral and/or host protein-protein
interactions in the context of detailed structural aspects of the intracellular environment.
In this method proteins are visualized through fluorescent tags or antibodies using light
microscopy in order to find rare biological events or to identify specific structures prior
to characterizing the structures and their surroundings at high-resolution using EM. The
current full spectrum of state-of-the-art microscopic techniques covers an extensive range
of scales, resolutions, and information. Many of the methods mentioned together with the
viral RO structures in this review, such as electron (cryo)tomography, CLEM, volume SEM,
or 3D TEM have thrived and were further advanced within only two decades, especially
since cryo-EM was discovered and developed in the 1980s [60].

The newly advanced electron tomography (ET), including volume SEM and cryoto-
mography, has been a useful method in elucidating the 3D volume architecture of viral
ROs. Volume SEMs such as serial block face SEM and focused ion beam milling (FIB)-SEM
have been used to explore virus-host interaction with the nanometer resolution in wider
and thicker volume samples including tissues. Furthermore, advanced cryo-FIB-SEM
techniques are applied on cryo-stage specimens, which can help to avoid the artifacts
of conventional EM sample preparation due to chemical fixation and staining processes
and can also help to improve the stabilization of native structures in the specimen [61].
Although currently cryotomography of FIB-milled cryo-lamellae is the outstanding method
in ET, the area that can be investigated is restricted to a very small and thin cellular region
(the cryo-lamella) [62]. Difficulties in sample preparation combined with the need for
highly demanding technical skills and high equipment costs are further limitations that
are needed to be solved with technology developments in the future [62]. On the contrary
to volume SEM, cryotomography methods can yield magnificent structural details with
molecular-level resolution of the viral ROs in the cryo-native condition [63]. Cryotomogra-
phy is currently one of the most powerful methods for investigation and characterization
of the biological structures of viral ROs from the macro-structural morphology to the
nano-organization of detailed protein structures which were presented in many current
studies on viral ROs discussed in this review. Furthermore, current cryo-CLEM application,
which combines cryo-light microscopy and cryo-EM opens a new way in investigating
the molecular mechanisms of virus-host interactions more specifically and more accurate
under cryogenic conditions [63]. However, similar to cryo-FIB-SEM, only a small area
of the targeted cellular structure can be processed for investigation and the processing
of cryotomography requires highly developed technical skills, limiting the popularity of
3D-cryoEM. For cryo-CLEM, the limited resolution of cryo-light microscopy, mostly based
on wide-field light microscope also decreases the accuracy of this technique when it comes
to localization of specific structural protein or events [64].

Of course, one main obstacle when investigating virus-infected specimens is the
need for inactivation, especially for human pathogenic viruses. Thus, these samples
require strong fixation that may cause artifacts. Alternatively, all steps including the image
acquisition under cryo conditions have to be performed under biosafety containment,
which is difficult to implement. Thus, we may need to rely on non-pathogenic model
viruses for some of the advanced microscopy techniques.

5. Conclusions

Positive-stranded RNA viruses dramatically remodel intracellular membranes into
distinct RO structures that support the synthesis of viral RNA. ROs provide optimal
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micro-environments for viral genome replication and shield replication intermediates
such as double-stranded RNA (dsRNA) from detection by innate immune sensors. Many
questions about the biogenesis process viral ROs remain unanswered, i.e., for many viruses
we do not have detailed information on host factors such as proteins and specific lipids
that contribute to RO formation. Likewise, the dynamic nature of how and where and
when during infection viral proteins required for RO formation interact with host proteins
to remodel intracellular membranes into viral ROs and to stabilize the RO morphology
remains to be determined. For many viruses pores connecting the RO interieur with
the cytosol are observed but how viral proteins interact with host membrane proteins to
stabilize these pore structures are still poorly understood [65]. The crown-shaped molecular
complexes of some of the pores unveiled in recent studies of positive-stranded RNA viruses
have provided us an overview of the protein complex organization of these pores [30,66,67].
However, how flexible the pores are and how the pore proteins regulate the transit of
proteins and nucleotides/viral RNA from and to ROs and, possibly, coordinate it with
other processes in the viral replication cycle is still poorly investigated. For other viruses,
closed ROs have been observed frequently. If they are inactive/old ROs or just open up
intermittently is still unclear. Elucidating how the viral replication complexes work on a
molecular level and integrating biochemical knowledge with structural information gained
by EM analysis are challenging goals for the future.
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