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A B S T R A C T   

The role of socio-economic conditions has been largely implicit in mathematical epidemiological models. 
However, measures to address the current pandemic, specifically the relevant interventions proposing physical 
distancing, have highlighted how social determinants affect contagion and mortality dynamics of COVID-19. For 
the most part, these social determinants are not present in either policy discussions or in epidemiological models. 
We argue for the importance of incorporating social determinants of health into the modelling dynamics of 
COVID-19, and show how global variation of these conditions may be integrated into relevant models. In doing 
so, we also highlight a key political economy aspect of reproduction dynamics in epidemics.   

1. Introduction 

The extensive discussions around predictive modelling of SARS-CoV- 
2 (COVID-19) is commonly based on the use of mathematical epidemi
ological models. These largely originate in the work of Kermack and 
McKendrick (1927), and study the transition of individuals between 
different compartments that correspond to relevant health conditions. 
The simplest and most popular of these is the SIR model, which assumes 
that a given population is split between three compartments: Susceptible 
(S), Infected (I), and Recovered (R), where at every point in time some of 
the susceptible individuals become infected and some of the infected 
individuals recover. In the baseline version of the SIR model, immunity 
of the recovered is assumed, and as more people get infected the number 
of S diminishes, which eventually leads the contagion to die out. 

Models using this framework have been extended in different di
rections by dividing the population into additional compartments, 
adding stochasticity in the different transition probabilities and/or using 
an agent-based framework. For example, Prem et al. (2020) study the 
effects of physical distancing measures in Wuhan, China using an 
age-structured susceptible-exposed-infected-removed (SEIR) model that 
includes the addition of an “exposed” compartment and the division of 
the population into 16 age categories. Kucharski et al. (2020) use a 
stochastic SEIR model to study the contagion dynamics in Wuhan and 

the transmission potential outside Wuhan. Klôh et al. (2020) use an 
agent-based model to assess interventions in Rio de Janeiro, Brazil and 
Chang et al. (2021) introduce mobility networks to an SEIR model and 
analyse the contagion dynamics across social groups. In all cases of 
mathematical epidemiological models, the key focus remains the tran
sition probabilities between different compartments, which are then 
used to analyse the contagion dynamics of a particular epidemic. 

Compartmental models have been the basis of a large part of COVID- 
19-related epidemiological research. In general, these models attempt to 
capture the combined interaction of a given viral epidemiology, the 
effects of relevant non-pharmaceutical interventions (NPIs), and the 
compliance of the public with these measures. They have guided much 
of the international policy response to COVID-19 (see McBryde et al., 
2020 and Thomson, 2020) and have even garnered wider public media 
attention beyond epidemiological research circles. In this respect, the 
main NPIs under discussion have related to physical distancing between 
individuals. These types of policies aim to reduce the average number of 
contacts between individuals in close spatial proximity, which in turn, 
will lower on average the rate through which individuals get infected 
and hence the epidemic’s effective reproduction number (Paeng and 
Lee, 2017; Milner and Zhao, 2008; for example see Funk et al., 2010; 
Manfredi and D’Onofrio, 2013; Verelst et al., 2016; Weston et al., 2018; 
Hauck, 2018; Di Guilmi et al., 2020). 
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It is our contention, however, that standard compartmental epide
miological models do not adequately consider the various social de
terminants of health that have a direct impact on the inequalities of 
health outcomes and the ability of populations to effectively comply 
with NPIs (McCartney et al., 2019). Incorporating these social de
terminants into compartmental models can improve the predictive 
power and accuracy of modelling both with regards to contagion dy
namics and the severity of the relevant epidemic. Moreover, these can 
help us understand the impact of different social welfare regimes on the 
efficacy of a given set of NPIs. 

In what follows, we introduce a set of social determinants (SDs) that 
can be linked to relevant variables and used to assess the utility of 
various policy options. The focus of our discussion is on the global in
equalities between high income and low-medium income countries 
(LMICs) although, as we note in the conclusion, the argument could be 
extended to examine inequalities within a single country or community. 
It is important to examine the situation of LMICs, due to the significant 
obstacles these countries face in implementing standard containment 
and mitigation policies (Ahmed et al., 2020). 

Our argument builds upon the Social Determinants of Health (SDH) 
literature, which emphasises the necessity of viewing health outcomes 
as a social phenomenon that demand a broad range of intersectoral 
initiatives (Solar and Irwin 2010; Krieger 2017). Social determinants of 
health are understood as the wider conditions in which people are born, 
live, and age. They encompass a variety of factors such as socioeconomic 
conditions, access to education and employment, the quality of urban 
and physical environments, robustness of social support networks, and 
access to health care (Adler and Stewart 2010; Gottlieb et al., 2019). The 
insights of the SDH literature have had a demonstrable impact on the 
development of health policy at the global level. By and large, however, 
the various social determinants identified in this literature have not been 
incorporated into epidemiological modelling. This remains a significant 
gap in both understanding and addressing the differential vulnerabilities 
associated with pandemics such as COVID-19. 

In this paper we address this gap, proposing a framework within the 
broad field of social epidemiology (Berkman and Kawachi 2000). We 
analyse how three SDs - conditions of employment, conditions of 
housing, and access and quality of health infrastructures - might affect 
the different transition rates between the various compartments in 
compartmental epidemic models. Our starting point is a version of the 
Susceptible Infected Recovered Deceased (SIRD) model, which we 
extend to allow the aforementioned SDs to influence the transition 
probabilities from Susceptible to Infected and from Infected to Deceased 
respectively. We have chosen this model as it is the simplest framework 
which includes the relevant compartments for the three SDs mentioned. 
However, we should note that our analysis could be easily extended to 
models which include more compartments and other characteristics, for 
example, different age cohorts as in Prem et al. (2020). 

Our choice of SDs draws upon key factors that have been highlighted 
in the SDH literature (Rolfe et al., 2020; Braveman and Gottlieb 2014; 
Solar and Irwin 2010) but should be understood as merely illustrative of 
our broader argument. We recognise that a different range of SDs could 
be utilised, and also that social determinants of health are significantly 
co-constituted and mutually-reinforce one another (see the discussion of 
Solar and Irwin 2010, pp. 20–42). As our focus is on the social aspects 
that can be included in a mathematical epidemiological model, our 
starting point is the simplest possible model where we can add the social 
variables. We should note however, that the same intuition can hold 
even if complexity is added through the inclusion of more compart
ments, age cohorts and/or stochastic dynamics. Our contribution is 
twofold. By directly relating compartmental transition rates to quanti
fiable SDs, we are able to improve the estimations of contagion dy
namics of COVID-19. Second, we provide the basic structure of a 
framework that can be used to analyse the effects of SDs on epidemio
logical modelling for other infectious diseases. 

2. An SIRD model 

For completeness we first present an SIRD model which will be 
extended in the next section. Assume a population of N individuals who 
at any point in time t, are split between: Susceptible (St ), Infected (It ), 
Recovered (Rt), and Deceased (Dt) with 

St + It + Rt + Dt = N.

Here we assume that all infected individuals are also infectious 
during the time that they are infected. While infected can be split into 
exposed but not infectious, on one hand, and infectious, on the other 
(this extension corresponds to the SEIRD model), this would not provide 
any additional insights with regards to our argument. This is because 
SDs would only influence the transition from susceptible to exposed and 
not affect the transition from exposed to infectious. 

The key dynamics of the model follow the idea that as individuals get 
infected the number of susceptible people decreases, and also that the 
more that people are infected at any point in time the easier it will be for 
the average susceptible individual to get infected. We also allow for a 
fraction ε of the recovered individuals to become susceptible per time 
step. This is captured by the following equation: 

St+1 = St + ε Rt − β(St + ε Rt)It /N, (1)  

where β captures the average number of contacts per individual at each 
time step, times the probability of getting infected if meeting an infected 
individual and is known as the infection rate. Note that 0 ≤ ε ≤ 1such 
that if ε = 0 it is equivalent to assuming that all recovered individuals 
become immune, which means that (1) would become 

St+1 = St − βSt It /N.

While the latter special case follows the assumption of the recent 
models for COVID-19 (for example see Prem et al., 2020 or Kucharski 
et al., 2020), it is known that immunity may last for only a short period 
(Iwasaki, 2020). Furthermore, while our motivation is the current 
pandemic, our contribution aims to be more general. For these two 
reasons we use a more general form of the standard SIRD model. 

The simple framework that we use as our starting point here, as
sumes random mixing between the individuals within the population. 
This means that the probability of getting infected if susceptible (β(St +

ε Rt)It) is the product of β with the number of susceptible and infected 
individuals and is the same across susceptible individuals. Physical 
distancing measures will have an effect of reducing the contact between 
susceptible and infected individuals hence reducing β. 

Equation (2) shows that the number of infected individuals in a given 
period is equal to the number that were infected the previous period plus 
the newly infected, minus a fraction of infected who have either 
recovered or become deceased: 

It+1 = It + β(St + ε Rt)It /N − γIt, (2)  

where γ captures the fraction of infected individuals who, per time step 
change compartment and move to recovered or deceased, hence γ can be 
understood as the inverse infection period. Put differently, 1/γcaptures 
the average period that individuals stay infected for some time before 
“moving” to the next compartment, thus, higher γ corresponds to a 
shorter infection period. The initial severity of the spread of the disease 
is given by R0 =

β
γ also known as the basic reproduction number. The 

basic reproduction number refers to the time before any measures are 
imposed; and gives the information of how many individuals are ex
pected to be infected by a single infected person. After measures have 
been imposed, we refer to the effective reproduction number which we 
denote by Re. 

Let δ capture the case fatality ratio or CFR (the share of infected 
individuals which become deceased) and 1 − δthe share that recover 
after being infected, such that the evolution of the number of recovered 
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and deceased individuals is given by the following equations: 

Rt+1 =(1 − ε)Rt + γ(1 − δ)It , (3)  

Dt+1 =Dt + γδ It. (4) 

Equation (3) states that in every period the number of recovered is 
increased by the number infected who recovered but is decreased by a 
fraction ε of recovered individuals who become susceptible again. 
Equation (4) captures the evolution of the number of deceased 
individuals. 

The system of equations (1)–(4) capture the dynamics of COVID for 
given values of β, γ, δ and ε. However, as we demonstrate in the next 
section, both the speed of contagion of COVID-19 and its mortality rate 
will be significantly influenced by SDs. This means that β and δ can be 
understood as functions of different SDs that can be quantified and 
explicitly included in future analysis. While we acknowledge that the 
same could be true for γ, which, as we have mentioned, in this frame
work captures the inverse of the period being infected and infectious, we 
treat it here as in the standard epidemiological modelling literature. 

3. Social determinants 

As noted, a large number of social determinants have been identified 
and explored in the literature as important factors in shaping health 
outcomes. It has further been observed that these factors are directly 
influenced by patterns of social stratification and social hierarchy, 
including class, income status, gender, and race/ethnicity (Solar and 
Irwin 2010; Braveman and Gottlieb 2014). Nonetheless, while there 
exists a wide range of possible SDH that could be incorporated into 
epidemiological modelling, we have selected three of the most 
commonly discussed with a clear and explicit bearing on the infection 
rate and on the CFR. We briefly discuss these SDs, their global vari
ability, and their potential impact on the pandemic. 

SD1: Conditions of employment. Unemployment and levels of precar
ious, low-paid and temporary work are widely recognised in the SDH 
literature as an important determinant of health outcomes (Stringhini 
et al., 2010; Bartley et al., 2005), and public debates around how best to 
respond to COVID-19 have illustrated the mutually-reinforcing rela
tionship between effective NPIs and conditions of employment. Calls for 
people to self-isolate when symptomatic – or the enforcement of longer 
periods of mandatory lockdowns – are economically challenging for 
those who cannot easily shift their work online, service sector employees 
who work in zero-hour contracts, or those engaged in other kinds of 
short-term employment contracts. Availability of sick pay, childcare, 
and other forms of employment support also impact the ability of people 
to comply with NPIs (Chin et al., 2020). As a result, conditions of 
employment bear directly on the degree of social contact between 
people (hence affecting the infection rate β) as well as the CFR. Recog
nising the fundamental consequences of these work patterns for public 
health, many European governments have announced far reaching 
financial packages to support those made unemployed or forced to stay 
at home during this crisis (HM Government 2020). 

However, in contrast to high income countries, most states around 
the world do not have the capacity to provide similar levels of financial 
support. According to the OECD (2019), around 70% of all employment 
in developing and emerging countries takes place in the informal sector, 
where labour is unregulated, intermittent, and poorly remunerated. 
There is substantial variation in informality across regions, ranging from 
86% in Africa to around 68% in the Middle East, Asia and the Pacific, 
and 40% in the Americas (OECD, 2019). In these conditions, it is very 
difficult to implement effective physical distancing through longer pe
riods of lockdown and social isolation because the majority of the 
population depends upon immediate daily wages for survival and lacks 
any savings. Indeed, as part of their COVID-19 strategy for developing 
countries, the International Labour Organization (ILO) has acknowl
edged that ‘physical distancing measures’ are an ‘impossible choice for 

informal economy workers’ (ILO, 2020). These problems are com
pounded by the fact that there will almost certainly be very large in
creases in the numbers of ‘working poor’ as a direct result of the 
pandemic – creating a mutually-reinforcing feedback cycle between the 
pandemic and deleterious conditions of employment (Dimarco et al., 
2020). All of these features of LMIC labour markets have an impact on β 
and δ and, as we demonstrate below, can be incorporated into epide
miological modelling of the virus. 

SD2: Conditions of Housing. Conditions of housing encompass issues 
such as overcrowding and sub-standard buildings, lack of access to safe 
drinking water and other utilities, ineffective waste disposal, poor 
quality sanitation infrastructure and inadequate provision of affordable 
and quality housing stock. The SDH literature has illustrated a clear 
relationship between housing and deleterious social health outcomes 
(Krieger and Higgens 2002; Rolfe et al., 2020; Kang et al., 2020). This is 
a global issue, but it is one that particularly impacts the estimated 1–1.6 
billion people who live in slums and informal housing, a figure that 
represents around one-quarter of the world’s urban population (Habitat 
for Humanity 2020). Indeed, for some cities in the developing world, the 
number of people living in slums can reach up to 80% of the total 
population (WHO 2020). 

Moreover, as with conditions of employment, poor housing condi
tions present severe obstacles for populations attempting to physically 
distance or undertake quarantine or self-isolation (UN Habitat, 2020). 
Overcrowded and informal housing typically consists of multiple fam
ilies sharing single dwellings, and intergenerational family units that 
can bring vulnerable populations into close contact with potential 
sources of infection. Shared and substandard infrastructures including 
water, sewage and sanitation, present further potential vectors of 
infection, a potential that is exacerbated due to high population density 
and the poor quality of this infrastructure. As a result, conditions of 
housing can directly impact both the infection rate (β) and the CFR (δ). 

SD3: Access to and quality of health infrastructure One of the key 
concerns raised in the global response to COVID-19 has been access to 
and overall quality of public health systems, including the availability of 
hospital beds, adequately trained nurses and doctors, equipment (such 
as ventilators and oxygen), and the ability of hospitals to scale up critical 
care capacity. The question of critical care capacity has been particularly 
prominent in the case of COVID-19, due to the rapid and very large surge 
in serious and critical cases that typically require hospital admission as a 
result of the virus. Addressing these capacity issues in order to alleviate 
potential pressure on hospital infrastructure has been a central facet of 
strategies to ‘flatten the curve’ (Ferguson et al., 2020). 

Discussions around these issues have largely concentrated on the 
health systems of high-income countries. It is essential to note, however, 
that health systems in much of the rest of the world have significantly 
less capacity than developed countries (Murthy et al., 2015; Martine
z-Alvarez et al., 2020; Sousa et al., 2020). These intra-country in
equalities in health systems directly bear on the ability of states to 
provide effective treatment support for hospitalised COVID-19 patients 
(for example, through adequate access to drugs or ICU capacity). The 
pressures on health systems in LMICs are further compounded by the 
significant disease burden related to other ‘comorbidities of poverty’ in 
many of the world’s poorest countries (IPN, 2004; Hansen and Paintsil 
2016; Yang et al., 2020; Shiau et al., 2020). Moreover, in situations 
where hospital and primary care settings lack effective PPE or the 
financial and administrative capacity to implement adequate physical 
distancing measures, health systems can also become important sites for 
increased exposure and thus infection. Taken together, these factors 
indicate how access and quality of health infrastructure can significantly 
determine both the infection rate and the CFR. 

In summary, the three SDs discussed here all have a direct bearing on 
the CRF and infection rate variables. They are also significantly con
nected to patterns of social hierarchy and degrees of social margin
alisation and exclusion observed across different parts of the world. In 
this sense, incorporating these (and potentially other) SDs into 
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epidemiological modelling can help elucidate the interaction between 
health outcomes and other forms of social policy, including the health 
implications of various social welfare regimes. 

4. A baseline socio-economic compartmental model 

Integrating employment conditions into a compartmental epidemi
ological model can show that higher levels of employment insecurity, 
informality, and poverty will directly impact the efficacy of physical 
distancing measures. Below, we formally express the effects of each of 
the SDs to β and δ through assumptions A1- A6. Then we assume func
tional forms for the infection rate β and the CFR δ which satisfy the 
relevant assumptions from A1-A6. Using the specific functional forms, 
we are able to incorporate the SDs into the SIRD model of section 3. 

4.1. Integration of social determinants 

Let the variable c1 capture SD1, such that higher values of c1 
correspond to higher levels of informal work, poverty, inequality etc., c2 
capture SD2, such that higher values of c2 correspond to worse condi
tions of housing and c3 capture SD3 such that higher values of c3mean 
better access to health and better quality of health infrastructure. Then 
based on the analysis of the previous section both the infection rate β is 
and the CFR δ are functions of c1, c2 and c3, with 

∂β
∂ci

> 0 and
∂δ
∂ci

> 0, for i = 1, 2 

and 

∂β
∂c3

< 0 and
∂δ
∂c3

< 0.

The conditions state that that the higher the value for c1 and c2 the 
higher the infection rate and CFR. The opposite is true for c3, which has a 
negative effect on both the infection rate and CFR. 

4.2. Total effects 

The previous assumptions capture the key elements of the relation
ship between SDs and the probabilities of moving between different 
compartments within the SIRD framework presented in the previous 
section. While the specific functional form of the two parameters with 
respect to c1, c2and c3would be different across countries and is an 
empirical question outside the scope of this study, we can assume for 
simplicity a linear form which satisfies the previous assumptions: 

β= β0 + a1 c1 + a2c2 − a3c3, (5) 

and 

δ= δ0 + b1c1 + b2c2 − b3c3, (6)  

where a1 , a2 , a3, b1, b2, b3 > 0 capture the relative importance of 
SD1, SD2 and SD3 on β and δ respectively; and could be empirically 
estimated for different countries using different indicators (e.g.labour 
force engaged in informal work fir SD1, proportion of the population 
living in slums or informal dwellings and/or average housing density for 
SD2 and ICU beds per capita for SD3) The parameters β0 and δ0 capture 
the rest of the factors which influence the two rates and are not (directly) 
influenced by SDs. While for δ0 it is natural to assume that it depends 
mainly on the epidemiological characteristics of the disease, β0 also 
depends on the NPIs in place. 

We should highlight at this point that the linear form of equations (5) 
and (6) is a reasonable assumption given the focus of the paper on in
equalities across countries. However, if the focus would have been 
within country inequalities, it would have been important to also allow 
for network effects related to heterogeneity in transmission (for example 
see Chang et al., 2021; Hébert-Dufresne et al., 2021) which may also 

make superspreading events more likely in particular communities. 
Equations (1)–(6) define a baseline (simple) version of what we can 

call a socio-economic compartmental (SEC) model. 
Given equation (5) the first implication of our baseline SEC model is 

that the basic reproduction number will be 

R0 =
β0 + a1 c1 + a2c2 − a3c3

γ
. (7) 

This shows the effect of two of the SDs to the main variable related to 
the transmissibility of the virus. Equation (7) also shows that improving 
SDs will require ceteris paribus lower levels of NPIs to reduce the effective 
reproduction number Re , such that Re < 1. This means that improving 
SDs will not only have a direct effect on people’s wellbeing but will also 
have an overall positive effect through leading to a lower R0 and Re. 
Furthermore, given the high economic costs of NPIs, an improvement of 
SIs will also have economic benefits. Again here, there might also be 
indirect network effects which may or may not influence the repro
duction number (Hébert-Dufresne et al., 2021). 

5. Conclusion 

We have shown how three SDs potentially impact the transmission 
dynamics and severity of COVID-19 across different countries and 
indicated how these conditions could be integrated into standard SIR- 
type modelling of the disease. 

The approach presented here, can be extended in at least five broad 
directions. 

First, using available data regarding relevant SDs and also the data 
regarding the contagion dynamics of COVID-19 across countries, it is 
possible to more closely quantify the effects of the various SDs. This 
would contribute towards: (i) having a better understanding of the 
importance of SDs with regards to infections and deaths (ii) estimating 
the economic benefits of improving relevant SDs and (iii) running policy 
simulations using the SEC model to analyse the health effects of different 
policies. 

Second, our particular selection of SDs should not be understood as 
the only possible relevant factors that could be included in compart
mental models. Even though our preceding analysis has been largely 
focused on differences in socio-economic conditions between poorer and 
richer countries; the same approach could also be used to model the 
impact of social differentiation within individual countries. Issues such 
as gender and racial inequalities, educational disparities, levels of gov
ernment expenditure on social services, etc. all bear directly on β and δ; 
and could also be incorporated into a social compartmental model. 
Furthermore, as heterogeneity in transmission as a result of SD may also 
make superspreading events more likely in particular communities, the 
study of social inequalities while incorporating network effects across 
social groups along the lines of Chang et al. (2021) and Hébert-Dufresne 
et al. (2021) is a particularly interesting research avenue within this 
theme. 

Third, in line with the SDH literature, our argument can help model 
the potential effect of different social welfare regimes on the progress 
and consequences of pandemics such as COVID-19. At a policy level, we 
can better understand the effect of various efforts to tackle inequality 
and social exclusion across the world, including, for example, policies 
aimed at reducing employment precarity (SD1), better provision of 
public housing (SD2), and improving access to public health (SD3). 

Fourth, a key contribution here has been to highlight the social 
components of the models typically used to analyse the epidemic, as well 
as introduce the basic structure of what we have classified as a global 
social compartmental model. Given the focus of this paper, we have used 
one of the most basic compartmental models, namely the SIRD, as the 
basis of our analysis. Our approach can be extended into other 
compartmental models that include more compartments and/or other 
structures like age cohorts (Prem et al., 2020) and/or social groups (Albi 
et al., 2020a, b) in order to take into account other relevant 
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characteristics of an epidemic and be able to also analyse in detail within 
country and other intra-group inequalities. 

Finally, in this baseline framework, we have assumed that the 
duration of the period when individuals are infected and infectious is not 
influenced by SDs. However, we understand that this may not always be 
the case, hence another research direction can be to investigate the ef
fects of SDs both with regards to the infection period of individuals and 
the period that they are infectious. 
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