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A B S T R A C T   

Organoids, miniature and simplified in vitro model systems that mimic the structure and function of organs, have 
attracted considerable interest due to their promising applications in disease modeling, drug screening, 
personalized medicine, and tissue engineering. Despite the substantial success in cultivating physiologically 
relevant organoids, challenges remain concerning the complexities of their assembly and the difficulties asso-
ciated with data analysis. The advent of AI-Enabled Organoids, which interfaces with artificial intelligence (AI), 
holds the potential to revolutionize the field by offering novel insights and methodologies that can expedite the 
development and clinical application of organoids. This review succinctly delineates the fundamental concepts 
and mechanisms underlying AI-Enabled Organoids, summarizing the prospective applications on rapid screening 
of construction strategies, cost-effective extraction of multiscale image features, streamlined analysis of multi- 
omics data, and precise preclinical evaluation and application. We also explore the challenges and limitations 
of interfacing organoids with AI, and discuss the future direction of the field. Taken together, the AI-Enabled 
Organoids hold significant promise for advancing our understanding of organ development and disease pro-
gression, ultimately laying the groundwork for clinical application.   

1. Introduction 

Organoids are three-dimensional structures that mimic the archi-
tecture and functions of various organs [1]. They are grown in vitro from 
stem cells or other precursor cells and have been used to study the 
development and behavior of different organs, as well as for drug 
screening and disease modeling [2,3]. Organoids are highly valued for 
their ability to recapitulate the complex microenvironments and func-
tions of different organs, making them valuable tools for studying the 
mechanisms of disease and for testing potential treatments [4,5]. 
However, organoids research is still in its infancy, with preliminary 
exploration of construction strategies, assessment, and application 
methods, and shortcomings and deficiencies such as insufficient active 
properties of the construction matrix material, significant differences in 

cell composition and ratio compared to natural tissue, and lack of spatial 
characteristics [6]. 

Organoids research mainly includes three key aspects: construction 
strategies [7], data analysis [8], and efficacy verification [9]. Among 
them, construction strategies are crucial for the success of organoids 
construction. Construction strategies cover three aspects: the selection 
of matrix material s [10] (elastic modulus, porosity, degradability, etc.), 
the exploration of cellular culture conditions [1] (temperature, humid-
ity, etc.), and the screening of various growth factors [11] (WNTs, BMPs, 
etc.). As can be seen, the construction of organoids involves multiple 
materials, external stimuli, factors, and their interactions. At present, 
conventional construction techniques are based on literature specula-
tion (e.g., the selection of growth factors) and continuous in vitro ex-
periments (e.g., the synthesis of matrix materials) to explore the best 
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strategies, which are not only costly and time-consuming but also have a 
low success rate [12]. Multiple immunofluorescence imaging and 
multi-omics data analysis (genomics, metabolomics, single-cell omics, 
etc.) are important evaluation methods for organoids and can effectively 
assess the functionality of organoids in vitro [13]. However, image data 
analysis is often limited by the multifocal and heterogeneity of orga-
noids, making it difficult to quickly and accurately determine the spatial 
characteristics of organoids, while multi-omics data have diverse 
non-structured, semi-structured, and heterogeneous architecture char-
acteristics, making the data volume extremely large and posing great 
challenges to traditional analysis methods. Therefore, there is an urgent 
need for new technical means to break the traditional research para-
digm, quickly and efficiently optimize the construction strategies and 
data analysis methods of organoids, and achieve precise and efficient 
repair efficacy verification for organoids research. 

Artificial Intelligence (AI) is a field of computer science that aims to 
develop computer systems that can perform tasks that typically require 
human intelligence, such as visual perception, speech recognition, 
decision-making, and language translation [14]. AI systems can be 
trained on large data sets to make predictions, classify objects, and 
perform other complex tasks. Machine learning, a cutting-edge tech-
nology derived from the development of artificial intelligence, is a 
multidisciplinary field that combines computer science, mathematics, 
philosophy, control theory, determinism, and other disciplines [15,16]. 
Machine learning studies the simulation or implementation of human 
learning activities through computers and is one of the most intelligent 
and cutting-edge research fields in artificial intelligence. For example, in 
the field of material preparation, it has been reported a method and 
strategy based on machine learning for the bottom-up self-assembly of 
colloidal and nanoparticle soft materials [17]. In the field of data 
analysis, Takahashi et al. employed unsupervised machine learning to 
accurately estimate survival probabilities in non-small cell lung cancer, 
identifying novel survival-linked subtypes through analysis of six 
multi-omics datasets from the Cancer Genome Atlas [18]. In the field of 
clinical applications, Google published a paper in 2016 describing the 
application of machine learning in diabetic retinopathy screening, 
which was rated as one of the most influential papers of the past decade 
[19]. The machine learning algorithm proposed can explain the signals 
of diabetic retinopathy in retinal photos, helping doctors screen more 
patients in resource-limited situations. Another example is the estab-
lishment of a machine learning model to label abnormal X-ray images, 
distinguishing between normal and abnormal chest films, and demon-
strating good generalization ability for unseen lung diseases (such as 
COVID-19) [20]. 

One area of research that is of particular interest is the intersection of 
organoids and AI. For example, AI algorithms can be used to analyze large 
amounts of data generated by organoids experiments [21], allowing for a 
more comprehensive and efficient analysis of the data. Additionally, AI 
algorithms can be trained on images of organoids [22], allowing for the 
rapid and accurate analysis of organoid structure and function. This can 
provide valuable insights into the mechanisms of disease and the devel-
opment of new treatments. Another important aspect of interfacing 
organoids with AI is the potential for the development of new and 
improved organoid technologies. For example, AI algorithms can be used 
to optimize the growth conditions of organoids [23], leading to the cre-
ation of more functional and physiologically relevant organoids. 
Furthermore, AI algorithms can be adopted to predict the differentiation 
of stem cells into specific cell types, leading to the creation of more 
complex and sophisticated organoids [24–26]. One of the studies vali-
dates that, a convolutional neural networks (CNN) model-DenseNet121 
could accurately predict kidney organoid differentiation derived from 
human induced pluripotent stem cells based on the analysis of simple 

bright-field images of kidney organoids. This noninvasive and nonde-
structive prediction method may accelerate the transition of kidney 
organoid technology “from the bench to the bedside [25]. 

Although AI has been used in the field of organoids research, to the 
best of our knowledge, there has been no systematic review summari-
zing the integration of AI and organoids. With this in mind, the second 
section will provide a brief introduction to the development history of 
organoids, along with their application scenarios and challenges faced. 
The third section will delve into the history of AI, its classification, and 
its application scenarios in medicine. The fourth section will focus on the 
detailed application of AI in organoid research, encapsulating the 
essence of AI-Enabled Organoids. This section will elaborate on four 
aspects: rapid screening of construction strategies, cost-effective 
extraction of multiscale image features, streamlined analysis of multi- 
omics data, and precise preclinical evaluation and application. Lastly, 
we will briefly discuss the advantages and limitations of AI-Enabled 
Organoids. Throughout the review, we will provide a comprehensive 
overview of the field of interfacing organoids with AI and to encourage 
further research in this area. 

2. Overview of organoids 

2.1. Definition and brief history 

The term “organoids” combines “organic” and the suffix “-oid”, 
signifying natural, self-organizing structures resembling native organs 
[27]. Originating from stem cells, these 3D constructs mimic organ 
properties yet are not true human organs [28]. Proposed in 1907, the 
term gained traction in 2009 [29] when Hans and his team cultured the 
first intestinal organoids [30]. Since then, the field has rapidly advanced 
(Fig. 1). 

Over the last decade, significant milestones have been achieved 
[31–33]. In 2011, gut and retinal organoids were first cultivated from 
stem cells [34,35]. The following year saw the development of retinal 
organoids from human pluripotent stem cells [36]. In 2013, brain, liver, 
kidney, and pancreas organoids were successfully grown [37]. Prostate 
and lung organoids followed in 2014 [38,39], and mammary gland, 
fallopian tube, and hippocampus organoids in 2015 [40–42]. In 2020, 
snake venom gland organoids were successfully cultivated [43]. 

In 2022, Tokyo Medical and Dental University initiated the world’s 
first clinical trial transplanting stem cell-derived organoids into humans 
for treating ulcerative colitis [44]. This pioneering work in regenerative 
medicine is under safety validation and positions organoid technology as 
a Nobel Prize contender. 

2.2. Applications of organoids 

Due to the highly accurate mimicry of real organs in structure and 
function, organoids have great potential for understanding the complex 
functions of human tissues and organs and for preclinical disease 
treatment [45–47]. Their utility extends from high-throughput drug 
screening to intricate disease modeling, and some have even reached the 
stage of clinical translation (Fig. 2). Specifically, organoids have been 
employed to simulate complex tumor microenvironments by 
co-culturing with immune cells, thereby advancing our understanding of 
cancer biology [48,49]. They also serve as platforms for drug discovery, 
enabling researchers to assess the efficacy and toxicity of new thera-
peutic agents. For example, liver organoids can be used to study the 
metabolism of drugs, and to identify new targets for drug development 
[50]. In the realm of regenerative medicine, organoids offer the poten-
tial for creating functional tissues suitable for transplantation and other 
therapeutic applications [51–53]. 
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Furthermore, they are instrumental in studying human develop-
mental biology, providing invaluable insights into the mechanisms un-
derlying various diseases, including genetic disorders and infectious 
diseases. For example, brain organoids can be used to study the devel-
opment of the human brain and the underlying mechanisms of neuro-
logical disorders [54,55]. The continual refinement of organoid 
technology is expected to yield groundbreaking advances in these fields, 

thereby deepening our understanding of human biology and paving the 
way for innovative treatments. 

2.3. Challenges and limitations 

Organoid technology, a significant advancement in biomedical 
research, faces multifaceted challenges, particularly in the areas of 

Fig. 1. A brief history of organoids.  

Fig. 2. Applications of organoids.  
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construction, data analysis, and applications. In the construction phase, 
the selection of matrix materials is paramount. Currently, the field 
largely depends on Matrigel, an animal-derived extracellular matrix, 
which is fraught with issues such as poor reproducibility, variability, 
and potential immunogenicity [56]. The emergence of synthetic/hybrid 
hydrogel matrices offers a promising avenue, boasting advantages like 
cost-effectiveness and a closer resemblance to the native structures of 
human organs. However, the intricate nature of synthesizing these 
hydrogels, given their varying chemical compositions and cross-linking 
mechanisms, adds a layer of complexity, requiring iterative optimization 
processes. 

In the realm of data analysis, the field is plagued by a lack of stan-
dardized protocols and real-time monitoring techniques [57,58]. This 
absence of standardization introduces significant variability into the 
system, which is further exacerbated by manual handling and subjective 
interpretation of data. The lack of automation in the culture process and 
data analysis contributes to inconsistencies that hinder the organoids’ 
translational potential. 

Lastly, the application of organoids faces its own set of challenges, 
including ethical considerations and economic constraints. As organoids 
become increasingly complex, ethical concerns surrounding their po-
tential to mimic human consciousness or perceive pain, particularly in 
cerebral organoids, become more pressing [59]. Additionally, the high 
costs associated with specialized culture media, growth factors, and 
labor-intensive procedures make scaling up and clinical translation a 
resource-heavy endeavor [60]. 

In summary, while organoids offer unprecedented opportunities for 
advancing our understanding of human biology and disease, they are 
encumbered by a range of challenges from their construction and data 

analysis to their ethical and economic implications. These challenges 
must be systematically addressed to unlock the full potential of organoid 
technology. 

3. Overview of AI 

3.1. Definition and brief history 

AI, originating in computer science, aims to emulate human-like 
cognitive functions such as visual perception and decision-making 
[61]. It is an interdisciplinary domain, integrating computer science, 
mathematics, and psychology among others [62]. Its relevance has 
surged in diverse sectors like medicine and finance [63]. The history of 
AI can be traced back to the 1950s [64] (Fig. 3), when John McCarthy 
coined the term “AI” in 1956 at Dartmouth College [65]. Early AI 
research was rule-based, exemplified by the Logic Theorist developed by 
Newell and Simon in 1955 [66]. The focus shifted to machine learning in 
the 1970s, introducing algorithms like neural networks [67]. The 1990s 
marked advancements in natural language processing, facilitated by the 
burgeoning World Wide Web [68]. 

Recent milestones include AlphaGo [69], AlphaFold [70], and 
ChatGPT [71]. Additionally, the rise of big data has made it possible to 
train AI algorithms on large amounts of data, leading to improved per-
formance in various tasks. Today, AI is being applied in a wide range of 
fields, and its potential for future applications is limited only by our 
imagination. Further research in AI will likely lead to even greater ad-
vances in the field, and it will be exciting to see what the future holds for 
this rapidly growing field. 

Fig. 3. A brief history of AI development.  
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3.2. Types of machine learning 

AI aims to emulate human cognitive functions for tasks requiring 
intelligence, such as natural language understanding and decision- 
making [72]. Machine learning, a subset of AI, employs algorithms to 
iteratively learn from data, thereby automating decision-making and 
prediction [73]. It serves as the foundation for most AI applications 
today. There are several types of machine learning, each of which can be 
used to solve different problems (Fig. 4a). The main types of machine 
learning include: 

Supervised learning: Utilizes labeled data to train algorithms for 
predictive tasks. Common algorithms include linear and logistic 
regression, as well as decision trees [74]. 

Unsupervised learning: Operates on unlabeled data to discover 
inherent patterns. It is often used for clustering and dimensionality 
reduction, with algorithms like k-means and principal component 
analysis [75]. 

Reinforcement learning: Involves algorithms learning through 
environmental interaction, aiming to maximize rewards over time. It is 
commonly applied in robotics and control systems [76]. 

Fig. 4. A brief introduction of machine learning. (a) The main types of machine learning. (b) Common machine learning models.  
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In summary, machine learning provides the tools and methodologies 
that allow AI systems to learn from experience, adapt to new situations, 
handle vast amounts of data, improve performance over time, and 
accomplish complex tasks that were previously out of reach. It is the 
engine that powers the current AI revolution and will likely continue to 
play a pivotal role in the future developments of the field. 

3.3. Common machine learning models 

There are several common machine learning models, each with its 
own strengths and areas of application. Here are a few (Fig. 4b): 

Random Forests: An ensemble method using multiple decision trees 
on data subsets; outputs are averaged for regression or voted for clas-
sification [77]. Random Forests are often used for disease classification 
and risk prediction. For instance, a study proposes a cloud-random forest 
(C-RF) model for assessing the risk of coronary heart disease (CHD), 
demonstrating superior classification performance over traditional 
models like CART, SVM, CNN, and RF, with an accuracy of 85% and an 
AUC value of 0.85 based on the Framingham dataset [78]. 

Support Vector Machines (SVM): Models for both regression and 
classification, excelling in high-dimensional data handling [79]. SVMs 
are commonly used in medical imaging, particularly in the classification 
of images for diseases like cancer [80]. They are also used in genomics 
for gene expression classification [81]. 

Logistic Regression: A statistical model for binary classification, 
employing the logistic function to model probabilities [82]. Logistic 
regression is widely used to identify risk factors for diseases [83]. It is 
also used in predictive modeling for patient outcomes [84]. 

Neural Networks: Versatile models adept at high-dimensional, 
structured data like images and text [85]. Deep learning models, a 
subset of neural networks, are increasingly used in diagnostic applica-
tions, including the interpretation of medical images such as X-rays and 
MRIs [86]. 

Recurrent Neural Networks (RNNs): Designed for sequence data, 
these networks contain loops for information persistence [87]. RNNs are 
used in natural language processing tasks in healthcare, such as medical 
report generation and predictive text functionalities in electronic health 
records [88]. 

CNNs: Specialized for image tasks, they learn spatial feature hier-
archies [89]. CNNs are predominantly used in medical image analysis, 
including the detection and diagnosis of various diseases like cancer 
through histopathological images [90]. 

Graph Neural Networks (GNNs): Operate on graph data, capturing 
node dependencies for tasks like node and graph classification [91]. 
GNNs are used in drug discovery for predicting molecular interactions 
and in the analysis of biological networks [92]. 

Transformers: Rely on self-attention, excel in sequential data tasks, 
and are highly parallelizable [93]. Transformers are used in medical 
language understanding tasks, such as automated medical coding and 
extraction of medical entities from unstructured text [94]. 

3.4. Advantages and limitations 

In the biomedical fields, AI serves as a double-edged sword, offering 
groundbreaking advancements while posing significant challenges. On 
one hand, AI revolutionizes personalized medicine by leveraging vast 
datasets to identify optimal treatments based on individual genetic 
makeup [95]. It also accelerates drug discovery by predicting molecular 
interactions, thereby reducing both time and financial costs [96]. 
Furthermore, AI enhances healthcare accessibility in underserved re-
gions and streamlines administrative processes, improving overall sys-
tem efficiency [97,98]. It also acts as a decision-support tool for 
clinicians, particularly in image-based specialties like radiology [99, 
100]. On the other hand, the technology’s effectiveness is heavily 
dependent on the quality and availability of training data [101]. Biased 
or incomplete datasets can result in flawed predictions. The “black box” 

nature of AI algorithms, especially deep learning models, hampers 
transparency and trust among healthcare professionals [102]. Addi-
tionally, AI systems often lack generalizability, performing inconsis-
tently when applied to diverse populations with varying genetics and 
healthcare practices [103]. Ethical and regulatory challenges, such as 
accountability for AI errors and ensuring equitable healthcare outcomes, 
add another layer of complexity [104]. In summary, while AI holds the 
promise of revolutionizing biomedicine, its successful implementation 
requires overcoming data, ethical, and regulatory hurdles. A balanced 
approach that addresses these challenges is crucial for unlocking its full 
potential in this domain. 

4. AI-enabled organoids 

4.1. Overview of AI-enabled organoids 

With the preceding discussion as foundation, interfacing organoids 
with AI is an emerging field in the organoids research. By interfacing 
these organoids with AI, researchers aim to create more sophisticated 
and accurate models of human organ function and disease. This can 
provide a powerful tool for drug discovery, disease diagnosis, and 
treatment development. Herein, we aim to expound upon the paramount 
importance of AI for the advancement and augmentation of AI-Enabled 
organoids. Our focus is guided by five pivotal dimensions: rapid 
screening of construction strategies, cost-effective extraction of multi-
scale image features, streamlined analysis of multi-omics data, and 
precise preclinical evaluation and application (Fig. 5). The discourse 
within these domains furnishes us with an all-encompassing framework 
to probe deeper into the potential of AI, thereby facilitating an expedited 
and optimized development of AI-Enabled Organoids. 

In the first instance, rapid screening of construction strategies serves 
as an effective tool for pinpointing optimal experimental designs and 
implementation strategies. Secondly, cost-effective extraction of multi-
scale image features empowers us to dissect and comprehend the 
structure and function of organoids from a myriad of viewpoints and 
hierarchical levels. Thirdly, streamlined analysis of multi-omics data is 
instrumental in grasping the intricacies of organoids across numerous 
facets such as gene expression, proteomics, and metabolomics. In the 
penultimate place, precise preclinical evaluation and application offer 
critical insights to forecast the performance and impact of AI in real- 
world clinical settings. Lastly, we will explore strategies to put these 
theories into practice more effectively, thereby harnessing the full po-
tential of AI in the evolution of AI-Enabled organoids. 

4.2. Rapid screening of construction strategies in AI-enabled organoids 

In the context of organoid research, construction strategies refer to 
the methodologies and techniques used to create these miniaturized and 
simplified versions of organoids. AI can play a crucial role in this process 
by helping to optimize these strategies. Machine learning algorithms can 
analyze large amounts of data to identify the most effective methods for 
synthesizing matrix gel, discerning the spatial structure of matrix gel, 
fine-tuning cell culture conditions, identifying active inducing factors, 
and assessing external stimuli. This can lead to more efficient and higher 
quality organoid construction. 

As depicted in Fig. 6a, historically, the field of matrix gel research has 
evolved through three major scientific paradigms. Empiricism: Tradi-
tional methods focus on iterative adjustments of parameters like mono-
mer selection and cross-linking methods. While effective, this approach is 
resource-intensive. Theory: The second paradigm shift involved structure- 
performance models that apply principles of kinetics and thermody-
namics to understand matrix gel formation. However, these models are 
not universally applicable. Computation: The advent of computational 
methods like density-functional theory (DFT) and classical molecular 
dynamics (MD) simulations marked the third paradigm, providing 
atomic-level insights but requiring substantial computational resources. 
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As an auxiliary approach, the implementation of AI and machine 
learning methodologies is instigating the fourth paradigm shift (data- 
driven science) in matrix gel research, presenting new perspectives and 
feasible solutions for accelerating innovation in matrix gel design and 
development. By utilizing existing datasets with data-driven models, 
machine learning can automatically discern implicit patterns and extract 
valuable information, accounting for the inherent complexity of matrix 
gel mixtures and their properties. Therefore, machine learning is being 
utilized as a potent instrument to elucidate process-structure-property- 
performance relationships, identify matrix gel formation and degrada-
tion mechanisms, and support matrix gel material design and discovery, 
in conjunction with high-throughput experimentation and computation. 
The application of machine learning in matrix gel science has been 
explored for various types of gels, including hydrogels, aerogels, and 
xerogels. As machine learning models become increasingly user- 
friendly, it is anticipated that the applications of machine learning 
will continue to broaden within the matrix gel domain to facilitate data 
analysis and stimulate scientific discovery. 

The advent of the fourth paradigm in scientific research, character-
ized by data-intensive scientific discovery, has ushered in unprece-
dented opportunities for the field of biomaterials. While we 
acknowledge that the data processed by AI algorithms are fundamen-
tally derived from experimental studies, it is imperative to recognize 
that AI serves a role beyond mere data processing. AI is not merely a 
backend tool for automating data analysis; it is an enabler for a new 
paradigm in material design. Traditional experimental approaches often 
fall short in capturing the multi-dimensional interactions between var-
iables such as chemical composition, mechanical properties, and bio-
logical responses. AI algorithms, conversely, excel in modeling these 
complex relationships, thereby providing a robust framework for pre-
dictive analytics and hypothesis generation. Moreover, AI algorithms 
can predict optimal material compositions and structures, which can 
subsequently be validated through experimental protocols. This creates 
a dynamic feedback loop, where AI continually refines and directs 

experimental design based on newly acquired data and insights. In 
summary, AI’s role in biomaterials research extends beyond automation 
engineering and backend data processing. It acts as a catalyst for both 
theoretical advancements and practical applications, thereby substan-
tiating its position as a cornerstone in the fourth paradigm of biomedical 
research. 

Machine learning-guided personalized customization of matrix 
gel: In the construction strategy of organoids, the selection of matrix 
materials is the first and most critical step [105]. Current organoid 
construction is divided into scaffold-free self-organization methods and 
co-culture with active biomaterials. The scaffold-free self-organization 
method is limited by insufficient nutrient and oxygen supply, and the 
volume cannot exceed 500 μm, which is not suitable for widespread 
clinical application [106,107]. Therefore, the construction of organoids 
requires bioactive matrix hydrogels as support to achieve controllable 
tissue morphology and break through larger volume limitations. The 
construction of organoids generally relies on Matrigel, an 
animal-derived extracellular matrix, which poses several issues such as 
poor reproducibility, variability, and potential immunogenicity 
[108–116]. Synthetic/hybrid hydrogel matrices have emerged as a 
promising alternative owing to their relatively low cost, good mechan-
ical properties, ease of purification, and handling [117–120]. These 
synthetic matrices more closely resemble the native structural and 
functional properties of human organs, thereby improving the quality 
and potential applications of the organoids [121] (Table 1). Neverthe-
less, the synthesis of these hydrogels can be complex due to their 
different chemical compositions, cross-linking mechanisms, and phys-
ical structures, requiring multiple attempts to optimize parameters for 
individual experiments. 

Machine learning offers a powerful solution to the complex chal-
lenges inherent in designing hydrogels as biomaterials for specific ap-
plications, including organoid research. The performance of these 
polymers is influenced by a multitude of factors such as chemistry, 
structure, and biomechanical properties. Machine learning algorithms 

Fig. 5. Definition and content of AI-Enabled organoids.  
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Fig. 6. Machine learning-guided rapid screening of construction strategies. (a) Four paradigms of matrix gel synesthesia: empirical, theoretical, computational, 
and data-driven. (b) Illustration of an integrated data-driven experimental pipeline for soft granular matrices. Copyright 2023, Cell Press. (c) Application of machine 
learning to reaction prediction. Copyright 2018, American Association for the Advancement of Science. (d) Comparison of manual and AI enabled strategies for 
screening of cell culture conditions. 
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Table 1 
Summary of hydrogel types used for organoids engineering [121].  

Hydrogels types Major properties Cell source Organoid types Applications 

Natural 
Matrigel •Biodegradability 

•Derived from mouse sarcoma 
•Promoting cell growth and self- 
organization  
• Undefined compositions  
• Not conducive to controlled 

modifications  
• Risks of immunogen and pathogen 

transfer  
• Poor mechanical properties 

hPSCs (hiPSCs [108–116] 
and hESCs [108–110,112, 
113] 
mASC 
mASC/hASC 
epithelial progenitors cell 
hESC [122]/mESC [123] 

Cerebral organoids 
Lung bud 
Gastric 
Colonic 
Kidney 
Liver bud 
Alveolar 
Intestinal 
Liver/pancreas 
Prostate 
Retinal optic cup  

• Studying development of brain-region specific 
organoids [114]  

• Modeling interactions between brain regions 
[108]  

• Probing mechanisms of microcephaly from 
patient-derived cerebral organoid [115]  

• Modeling Zika virus infection and drug 
screening [114]  

• Studying syncytial virus infection [124]  
• Modeling intractable pulmonary fibrosis from 

patient derived lung bud organoids [124]  
• Studying gastric development process [110]  
• Modeling Helicobacter pylori infection [110]  
• Exploring colorectal cancer using patient- 

derived organoids with APC mutation [125]  
• Testing responses of patient-derived organoids 

to XAV939 and rapamycin [125]  
• Modeling renal disease using proband-derived 

iPSCs with IFT140 mutations [126]  
• Generating vascularized and functional liver 

from an iPSC-derived organ bud transplant 
[127]  

• Generating efficiently and long-term expansion 
of alveolar organoids [128]  

• Building crypt–villus structures [129]  
• Establishing adult liver and pancreas [130]  
• Generating prostate organoids [131] 
• Testing patient-derived tumor organoids re-

sponses to Akt inhibitor and mTOR inhibitor 
[131]  

• Dissecting retinal morphogenesis [132] and 
optic-cup morphogenesis [133] 

Collagen  • Exhibiting structural and mechanical 
proper- ties reminiscent of native 
tissues  

• Enzymatically degraded  
• Containing cell adhesive domains  
• Facilitating cell growth and 

differentiation 

hPSCs [133,134] 
hASCs [135] 

Kidney 
Ventricle-like cardiac 
Mammary gland  

• Modeling PKD cystogenesis [136]  
• Modeling pumping human heart chamber in 

vitro [137]  
• Pharmaceutical testing [137]  
• Generating branched structures resembling 

terminal ductal-lobular units (tdlus) [135] 

Alginate  • Immediate gelation at mild conditions  
• Conducive to controlled modifications  
• Degradable  
• Finely adjustable architectures  
• No inherent cell instructive properties 

hiPSCs [136,138] 
hPSCs 

Brain 
Intestinal  

• Modeling brain development [136,138]  
• Probing fetal alcohol spectrum disorder in iPSC- 

derived organoids [136,138]  
• Modeling HIO development resembling fetal 

intestinal compared with Matrigel [139] 
Fibroin  • Biocompatible  

• Degradable  
• Possibility of carrier other factors 

hiPSCs/kidney progenitors Kidney  • Acting as scaffolds to develop kidney organoids 
with epithelial characteristics [109]  

• Engrafting in vivo [109] 
Synthetic 
Amikagel  • Defined compositions  

• Functionalization with chemical 
modification  

• Tunable physiochemical properties  
• Nonadhesive  
• High mechanical stiffness 

hESC Islet  • Forming homogenous islet [117] 
• Generating self-organized multicellular pancre-

atic organoids [117] 

PEG  • Cell-repellent  
• Promoting cell-to-cell and cell-to-ECM 

interactions  
• Tunable mechanical properties  
• Bearing adhesive peptide sites 

hiPSCs Cardiac  • PEG-based patterning forming confinement for 
organoids self-organization [118]  

• Studying embryonic spatial patterning early 
cardiac development [118] 

Testing drug-induced developmental toxicity 
[118] 

Eight-arm PEG  • Defined compositions  
• Enabling chemical modification  
• Tunable physical properties  
• Existing adhesive peptide sites 

hASC/mASC 
hESC 
Pancreas progenitors 

Intestinal 
Neural tube 
Pancreas  

• Supporting intestinal and other organoids 
generation [119]  

• Regulating stiffness for intestinal stem cell 
maintained and intestinal organoids generation 
[119]  

• Studying the discrete action of extrinsic factors 
Pancreas progenitors in organogenesis  

• Modeling neural tube development [140]  
• Deconstructing pancreas development under 

artificial niche [141] 
PEG-DA  • Defined compositions  

• Functioned with ECM protein 
hiPSCs 
ASC (SGSCs) 

Liver 
Salivary glands  

• An inverted colloidal crystal PEG scaffold for 
bioengineered liver organoids generation [111]  

• Modeling infection in liver organoids [111] 

(continued on next page) 
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can sift through large datasets to identify correlations between these 
variables and the observed performance, thereby providing valuable 
insights for design optimization. In the context of organoids, the matrix 
gel is a foundational hydrogel whose properties significantly affect stem 
cell activity and organoid functionality. Machine learning can be 
instrumental in guiding the synthesis of these matrix gels by analyzing 
how different polymer compositions influence stem cell behavior and 
organoid formation. The integration of machine learning into this design 
process can accelerate the development of tailored matrix gels, improve 
the efficiency of organoid research, and open new avenues for person-
alized medicine. Indeed, machine learning has been explored to inves-
tigate the formation ability of peptide hydrogels, the cell adhesion and 
protein adsorption profiles on polymer surfaces, the foreign body 
response to polymers, and the preparation of gene delivery vehicles 
[148]. Table 2 shows examples of applications of machine learning in 
synthetic hydrogels. Overall, machine learning stands as a pivotal tool in 
advancing the field of organoid research by optimizing the design of 
critical biomaterials like matrix gels. 

A recent study introduces a new approach to designing soft granular 
matrices with predictable structures and properties for use in biomedical 
applications, using a modular machine learning method [149]. The 
authors report the assembly of hydrogel bioblocks and their application 
in granular matrices with emergent non-linear rheological behavior and 
functional extrudability (Fig. 6b). They also demonstrate the use of their 
modular machine learning approach to derive data-driven predictive 
models and design rules, making it generalizable and applicable for 
data-driven advancement of any complex material system. 

A clear illustration of machine learning’s application in hydrogel 
production is found in a research project that utilized a machine learning 
model trained on data derived from the photodegradation process of 
more than 900 distinct hydrogel pads [150]. This model served as an 
automated tool for decision-making in the creation of functional 
hydrogels. Significant advancements in the response properties of the 
hydrogels were realized through repeated model enhancements guided 
by Bayesian Optimization. This development not only broadened the 
range of material properties achievable within the chemical domain of 
hydrogels but also facilitated an efficient and cost-effective optimization 
of these properties. These research endeavors underscore the consider-
able potential of machine learning in the realm of hydrogel synthesis, 
emphasizing the advantage of merging high-throughput experimental 
approaches with intelligent optimization algorithms for the effective 
optimization of materials. 

In addition to the synthesis process of matrix gels, another key aspect 
that holds immense importance is the prediction of their reactions. The 
ability to anticipate the performance of a synthetic reaction in a multi-
dimensional chemical space can lead to significant advancements in the 
field [151]. Particularly, this can be a game-changer in scenarios where 
traditional experimental methods prove to be time-consuming and 
resource-intensive. As an illustration of this, an enlightening study took 
machine learning applications in material science a step further [152]. 
The authors utilized machine learning to predict the outcome of a spe-
cific reaction in organic chemistry (Fig. 6c). In the presented study, code 
was formulated to calculate and derive atomic, molecular, and vibra-
tional characteristics for the constituents involved in a palladium- 

Table 1 (continued ) 

Hydrogels types Major properties Cell source Organoid types Applications  

• Tunable mechanical properties (varied 
mechanical stiffness)  

• Scalable structure  

• Transplanting liver organoids in vivo to form 
vascularized tissue [111]]  

• Generating organoids with salivary gland 
marker and displayedαα-amylase secretion 
[142]  

• Engrafting organoids into nonobese diabetic/ 
severe combined immunodeficient (NOD/SCID) 
mice [142] 

PEG-4MAL  • Defined compositions  
• High cytocompatibility  
• Well-defined structure  
• Incorporation of biofunction groups  
• In situ gelation 

hPSCs Intestinal  • Supporting generation of intestinal organoids 
[115]  

• Serving as an injection vehicle in HIO 
engraftment [115]  

• Improving colonic wound repair [115] 
PLGA  • Defined compositions 

Biodegradability  
• Chemically defined copolymer  
• Defined architectures  
• Microporous  
• Improving cellular survival and 

function 

hPSCs [122,124,143] Cerebral 
Lung  

• Promoting elongated cerebral organoids 
generation [143]  

• Modeling guided cortical development [143]  
• Provided a niche for host transplantation [122]  
• Promoting HLO maturation in vivo [122] 

PAm  • Defined compositions  
• Enabling chemical modification  
• Tunable mechanical properties  

Kidney • Acting as a CAM-like substrate in kidney orga-
noids transplanting in chick [124]  

• Engrafting in vivo [124] 
Hybrid 
HA-Na/chitosan  • Defined compositions  

• Considerable tunability  
• Controlled physical and chemical 

properties 

hiPSCs Cerebral  • Generating rapidly induction of cerebral 
organoids [144]  

• Modeling adrenoleuko dystrophy disease from 
patient-derived organoids [144] 

Fibrin/laminin  • Enzymatical degradability  
• Defined composites  
• Suitable physical support  
• Occurring RGD adhesion domains  
• Chemical functionalization 

mASC/hASC Epithelial (liver 
intestinal, and 
pancreas)  

• Generating epithelial organoids [120]  
• Acting as a defined equivalent to ECM [120] 

Matrigel/collagen I  • Similar to natural ECM  
• Promoting cell differentiation 

hPSCs Human blood vessel  • Generating blood vessel organoids formation 
[145]  

• Modeling diabetic vasculopathy [145] 
Laminin/ 

fibronectin/HA/ 
collagen I  

• Defined composites  
• Similar to natural ECM 

ASC Mammary gland  • Studying effects of Cadmium on patient-derived 
breast stem cell proliferation and differentiation 
[146] 

PEG-NHS/collagen 
I/PAm  

• Tunable mechanical stiffness mESC Cardiovascular • Forming matrix rigidity-modulated cardiovas-
cular [147]  
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catalyzed Buchwald-Hartwig cross-coupling of aryl halides with 4-meth-
ylaniline. This procedure took place in the presence of an array of po-
tential inhibitory additives. A random forest machine learning model 
was then used to predict the performance of the reaction and infer un-
derlying reactivity. The significance of this work lies not only in its 
immediate findings but also in the broader implications for the field of 
organic chemistry, which has traditionally relied heavily on laborious 
trial-and-error experimentation. 

Machine learning-guided spatial structure discerning of matrix 
gel: In the realm of organoids construction, discerning the spatial 
structure of the matrix gel is another critical aspect. This involves un-
derstanding the three-dimensional arrangement of the matrix gel, which 
is crucial for the successful growth and development of organoids. The 
spatial structure of the matrix gel can influence the behavior of cells, 
including their proliferation, differentiation, and migration. Therefore, 
accurately discerning the spatial structure of the matrix gel is essential 
for the optimization of organoids construction strategies. 

In the context of matrix gel spatial structure discerning, machine 
learning can be used to analyze imaging data of the matrix gel, identify 
patterns in the spatial arrangement of the gel, and predict how changes 
in this arrangement might affect the behavior of cells within the orga-
noids. For instance, CNNs, a type of machine learning algorithm that 
excels in image analysis, can be used to analyze three-dimensional im-
aging data of the matrix gel. The CNN can be trained to recognize 
different spatial arrangements of the gel and predict how these ar-
rangements might influence cell behavior. This could help researchers 
optimize the spatial structure of the matrix gel to promote the growth 
and development of organoids. Moreover, machine learning can also be 
used to automate the process of spatial structure discerning. This could 
significantly speed up the process, allowing researchers to quickly 
optimize the spatial structure of the matrix gel and improve the effi-
ciency of organoids construction. In brief, machine learning-guided 
spatial structure discerning of matrix gel could revolutionize the field 
of organoid research, providing a powerful tool for the optimization of 
organoids construction strategies. By harnessing the power of machine 
learning, researchers can gain a deeper understanding of the spatial 
structure of the matrix gel and how it influences the behavior of cells 
within organoids, paving the way for the development of more sophis-
ticated and accurate models of human organ function and disease. 

Machine learning-guided fine-tuning of cell culture conditions: 
Fine-tuning of cell culture conditions can significantly influence the 
success of organoids development. These conditions include factors such 

as temperature, oxygen concentration, pH, nutrient availability, and the 
presence of growth factors, among others. Each of these factors can have 
a profound impact on cell behavior, including their proliferation, dif-
ferentiation, and survival. Therefore, optimizing these conditions is 
crucial for the successful construction of organoids. However, the 
traditional approach for optimizing of cell culture conditions has several 
limitations. The process of developing and optimizing cell culture pro-
tocols is a labor-intensive, error-prone process that involves a significant 
degree of trial and error. It is subject to variability and inconsistency, 
largely due to environmental factors, equipment and technology limi-
tations, and human factors. This variability can result in differences in 
cell behavior and phenotype, which can subsequently influence exper-
imental outcomes and the effectiveness of cell-based therapies. These 
issues are amplified in the context of organoids, where the production of 
specific cell types in large quantities is required. Variability and incon-
sistency in cell culture protocols can potentially affect the safety and 
efficacy of these cell-based treatments, making it essential to establish 
reliable, standardized cell culture processes. 

The implementation of AI in cell culture offers a solution to these 
challenges. By automating the cell culture process, it is possible to 
reduce variability and minimize errors, leading to more consistent, 
repeatable results. Additionally, automation enables higher throughput, 
allowing for the simultaneous optimization of multiple culture condi-
tions and the production of larger quantities of cells. The study by Kanda 
et al. exemplifies how this can be achieved. In their study, the in-
vestigators leveraged an integrated system of robotics and AI to fine- 
tune cell culture protocols and consistently generate particular cell 
types [153]. The AI system could characterize the cultured cells and 
formulating an ideal cell culture protocol based on the accumulated 
data, thereby eliminating the necessity for human involvement in these 
stages. This approach represents a significant advancement in the field. 
It not only improves the efficiency and accuracy of cell culture protocols 
but also greatly enhances their reproducibility. Such improvements 
could have profound implications for regenerative medicine and other 
biomedical applications, enabling the development of more effective, 
reliable cell-based treatments. The incorporation of AI in cell culture 
thus marks a pivotal step toward the reproducible manufacturing of 
organoids and organoids-derived products for regenerative treatments. 

Machine learning-guided identification of active inducing fac-
tors: In the context of organoid construction, the selection and combi-
nation of various growth and inducing factors play a critical role in the 
growth and differentiation of organoids [154]. These factors, which 

Table 2 
Examples of application of machine learning in synthetic hydrogels [148].  

Input parameters Input property Output target 
property 

Output assay No. of experiments Key results obtained 

Peptides prepared via Ugi 
reaction of 31 monomers 

Chemistry Formation ability of 
peptide hydrogels 

Hydrogel 
formation 

2304  • Peptide hydrogels  
• Identify top 20 descriptors that 

determine formation of peptide 
hydrogels 

Polyacrylate from 22 acylate 
monomers 

Secondary-ion mass ToF- 
SIMS spectra or 23 
molecular descriptors 

Cell adhesion 
behaviors 

Colony-formation 
frequency 

496  • Adhesion behaviors of human 
embryoid body 

•Identify the effects of structure 
units on cell adhesion behaviors 

Self-assembled monolayers 
(SAMs) 

10 structure descriptors Protein adsorption Fibrinogen 
adsorption 

Two datasets: 72 from single 
lab and 133 from multilab  

• Fibrinogen adsorption behaviors 
on polymers  

• Identify the effects of terminal 
groups on cell adhesion 
behaviors 

Fibroin Molecular descriptors Foreign body 
response 

A composite 
dependent 
variable 

144 homopolymer for 
screening and 400 
copolymers for ML  

• Foreign body response to 
polymers  

• Identify the effects of structure 
units on foreign body response 

Polymerization of different 
acrylates with different 
amines 

Chemistry Gene delivery to 
cells 

Cell transfection 
experiments 

12 000  • Optimized nanoparticles  
• Identify properties that lead to 

high transfection  

L. Bai et al.                                                                                                                                                                                                                                       



Bioactive Materials 31 (2024) 525–548

536

include proteins like WNTs, VEGF, and TGF-β, can significantly influ-
ence cell behavior, including their proliferation, differentiation, and 
survival. Therefore, identifying the optimal set of active inducing factors 
is crucial for the successful construction of organoids. However, the 
current process of identifying these factors is often inefficient and 
time-consuming. It typically involves extensive literature research and a 
series of orthogonal experiments to test different combinations of fac-
tors. This approach not only requires a significant amount of time and 
resources but also has a low success rate due to the complexity and 
variability of biological systems. 

In the context of active inducing factors, machine learning can be 
used to analyze data from previous experiments, identify the most 
effective factors for promoting cell growth and organoids development, 
and predict how different combinations of these factors might affect the 
behavior of cells within the organoids. A recent study describes a novel 
approach to predict the fate of neural stem cells using deep learning 
[155]. The authors propose that deep neural network models can extract 
small features from large-scale datasets to reliably identify the differ-
entiation of neural stem cells, even in the early stages of culture. This 
article describes the process of selecting key factors that influence neural 
stem cell differentiation. The authors used a combination of literature 
review and experimental validation to identify a set of candidate factors 
that were then screened using statistical analysis. The results showed 
that several factors, including Wnt3a and BMP4, were significantly 
associated with neural stem cell differentiation. In brief, the study 
highlights the importance of identifying key factors that influence 
neural stem cell differentiation and demonstrates how machine learning 
can be used to develop predictive models based on these factors. This 
method has the potential to be applied to other types of stem cells and 
could lead to significant advances in organoids. 

Machine learning-guided assessment of external stimuli：In the 
field of organoid research, the role of external stimuli such as mechan-
ical, optical, and electrical stimuli is increasingly recognized as crucial 
for the growth and differentiation of organoids. These stimuli can 
significantly influence cell behavior, including their proliferation, dif-
ferentiation, and survival. Therefore, identifying the optimal type, in-
tensity, and duration of these stimuli is a critical aspect of organoids 
construction. Similarly, the current process of identifying and opti-
mizing these stimuli is often inefficient and time-consuming. It typically 
involves extensive literature research and a series of orthogonal exper-
iments to test different types and combinations of stimuli. This approach 
not only requires a significant amount of time and resources but also has 
a low success rate due to the complexity and variability of biological 
systems. 

In the context of external stimuli, machine learning can be used to 
analyze data from previous experiments, identify the most effective 
types and combinations of stimuli for promoting cell growth and orga-
noid development, and predict how changes in these stimuli might affect 
the behavior of cells within the organoids. For instance, a study in-
troduces an epidermal piezoresistive structure that utilizes deep 
learning-assisted data translation to accurately evaluate and assess 
various external stimuli [156]. The customized regression and classifi-
cation model can predict the magnitude of the external force, epidermal 
hardness, and object shape with high accuracy. The integration of silicon 
piezoresistors and deep learning data processing improves the accuracy 
of the sensor, making it a promising tool for physiological parameter 
monitoring in medical and health monitoring fields. The study empha-
sizes the use of machine learning techniques to predict external stimuli 
accurately. By integrating deep learning algorithms into the sensor 
design, the researchers were able to develop a customized regression 
and classification model that can predict various parameters with high 
accuracy. This approach has significant implications for physiological 
parameter monitoring, as it provides a more accurate and convenient 
way to identify and optimize these stimuli in organoids research. 

4.3. Cost-effective extraction of multiscale image features in AI-enabled 
organoids 

The construction of organoids begins with the synthesis of matrix 
hydrogels. The morphological features of these hydrogels have a sig-
nificant impact on stem cell activity within the organoids, making rapid 
and efficient analysis of hydrogel morphology crucial. Following this, 
the differentiation of stem cells is key to organoid construction, and 
analysis at the single-cell scale can provide predictive insights into 
organoid functionality. Once the organoid is formed, morphological 
analysis during its dynamic development becomes essential. Finally, for 
in vivo applications of organoids, extensive tissue slice analysis is 
required. 

To date, the cost-effective extraction of multiscale image features 
from high-throughput imaging data remains a significant challenge in 
the field of biomedicine. Herein, image analysis of organoids is partic-
ularly difficult, as the collection of images for organoids is usually at a 
single focal plane, and there are significant differences in size and shape 
between organoids of the same tissue type and culture samples. 
Although cells can be genetically modified to express fluorescent pro-
teins that facilitate image segmentation and tracking, this process un-
doubtedly increases experimental time and complexity and may alter 
the cell dynamics of the original sample. Automating this process can 
improve the precision and efficiency of feature extraction, which is 
crucial in organoids research. Machine learning can be used to automate 
the process of extracting features from images at various scales. There-
fore, there is an urgent need to develop an automated image analysis 
tool using machine learning that can dynamically assess the character-
istic changes during the growth and development of organoids without 
the need for fluorescence or transgenic labeling. 

Machine learning-guided image analysis of in morphology 
scale: As aforementioned, the involvement of matrix gel materials is 
necessary in the construction of organoids, and the morphological 
analysis of these materials is crucial for their biological performance 
[157]. The morphology of the matrix gel can significantly influence the 
growth and development of the organoids. Traditional means often 
require manual identification and processing, which can be error-prone, 
inefficient, and subjective. Therefore, the introduction of artificial in-
telligence is needed. 

Machine learning algorithms can be trained on large datasets of 
images of matrix gel materials, learning to recognize and quantify 
various morphological features such as porosity, fiber alignment, and 
fiber diameter. These algorithms can then be used to analyze new im-
ages of matrix gel materials, providing rapid and accurate morpholog-
ical analysis. Moreover, machine learning algorithms can be integrated 
into a feedback loop, where the results of the morphological analysis are 
used to guide the synthesis of new matrix gel materials. This approach 
can lead to the development of optimized matrix gel materials for 
organoids construction, improving the quality and reproducibility of the 
organoids. In addition to improving the efficiency and accuracy of 
morphological analysis, machine learning can also reduce the subjec-
tivity associated with manual analysis. By using objective, quantitative 
measures of morphology, machine learning can provide more consistent 
and reliable results, reducing the potential for bias and error. A recent 
study discusses a new method for analyzing the morphologies of nano-
particles using machine learning-based electron microscopy image 
analysis [158]. The authors explain that precise characterization of the 
morphological properties of nanomaterials is essential for understand-
ing their physical and chemical properties, such as optical, electronic, 
and catalytic aspects. However, analyzing nanoparticles quantitatively 
in a statistical manner is challenging. The proposed method aims to 
address this challenge by using a genetic algorithm to identify the most 
relevant features of nanoparticle morphology and then using machine 
learning techniques to classify them accurately (Fig. 7a). The signifi-
cance of this research lies in its potential to expand nanoparticle-related 
research into the statistical domain for use in big data analysis. This 
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method could become a powerful tool for researchers studying nano-
materials and their properties. Another study explores the mechanism 
and performance relevance of nanomorphogenesis in polyamide films 
(Fig. 7b). The authors use advanced techniques such as electron to-
mography, reaction-diffusion theory, machine learning, and 
liquid-phase atomic force microscopy to study the three-dimensional 
crumpling of polyamide membranes [159]. The goal is to inspire new 
strategies for diversifying material structure and functionality by 
exploring biological morphogenesis concepts. The authors hope that 
their findings will lead to the development of soft nanomaterials with 
improved properties and potential applications in various fields. 

Machine learning-guided image analysis in cell scale: In the 
process of organoids functional assessment, many cell experiments are 
involved, generating a vast amount of image data based on optical mi-
croscopy. Cellular features such as cell count, cell morphology, and cell 

behavior can provide valuable insights into the functionality of the 
organoids. For example, changes in cell morphology can indicate 
cellular differentiation, while changes in cell behavior can suggest 
cellular response to environmental stimuli. Therefore, accurate and 
efficient analysis of cellular images is essential for the functional 
assessment of organoids. Traditional analysis methods have significant 
drawbacks, including time-consuming manual counting, subjective bias, 
and the inability to accurately quantify complex cellular features. The 
introduction of AI, specifically machine learning, can address these 
issues. 

Machine learning algorithms can be trained on large datasets of 
cellular images, learning to recognize and quantify various cellular 
features. These algorithms can then be used to analyze new cellular 
images, providing rapid and accurate cellular analysis. This can signif-
icantly improve the efficiency of organoid assessment, reducing the time 

Fig. 7. Machine learning-guided image analysis of in morphology and cell scale. (a) A method for mass-throughput analysis of the morphologies of nano-
particles by applying a genetic algorithm to an image analysis technique. Copyright 2020, American Chemical Society. (b) Machine learning-based nanomorphology 
grouping of crumples. Copyright 2022, American Association for the Advancement of Science. (c) Deep learning-based platform for neural stem cells differentiation 
identification. Copyright 2021, Nature Publishing Group. (d) Overview of conventional versus deep learning workflows in image cytometry. Copyright 2019, In-
ternational Society for Advancement of Cytometry. 
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and effort required for manual analysis. A recent study describes the use 
of deep learning to predict the fate of neural stem cells (NSCs) during 
differentiation [155]. The authors note that while NSC differentiation is 
critical for potential cell-based therapies for central nervous system 
diseases, it is complex and not yet clearly established, especially at the 
early stages. They hypothesize that deep learning could extract impor-
tant information from large-scale datasets to create a reliable model for 
identifying NSC fate. The study found that their deep neural network 
model was able to accurately predict NSC differentiation outcomes, even 
at early stages of culture (Fig. 7c). The significance of this research lies in 
its potential to improve our understanding of NSCs differentiation and 
pave the way for more effective cell-based therapies for CNS diseases. 
Another review summarizes the application of conventional versus deep 
learning workflows to analysis of microscopy image data of cell samples 
[160]. The conventional workflow for image cytometry requires human 
input at each step, such as parameter tuning and feature engineering 
using annotated data. These steps require a significant amount of human 
effort and time, and may be subject to subjective factors. In contrast, the 
deep learning workflow only requires annotated data to automatically 

optimize features (Fig. 7d). Deep learning methods can automatically 
extract features from images without the need for manual feature design 
and selection. Therefore, compared to traditional methods, deep 
learning methods can process image cytometry data more quickly and 
accurately while reducing the impact of human intervention. 

Machine learning-guided image analysis in organoids scale: 
Organoids features such as size, shape, internal structure, and the 
presence of specific organoid markers can provide valuable insights into 
the functionality and maturity of the organoids. For example, the size 
and shape of an organoid can indicate its growth and development, 
while the internal structure can suggest the organization and differen-
tiation of cells within the organoid. Therefore, accurate and efficient 
analysis of organoid-scale images is essential for the functional assess-
ment of organoids. This process often involves the generation of a large 
amount of image data, typically acquired through techniques such as 3D 
imaging or confocal microscopy. Traditional analysis methods, which 
often involve manual identification and quantification of organoid fea-
tures, are time-consuming, prone to subjective bias, and may not fully 
capture the complexity of organoid structures. The current problems 

Fig. 8. Machine learning-guided image analysis of in organoids scale. (a) Workflow of MOrgAna, a Python based software that implements machine learning to 
segment images, quantify and visualize morphological and fluorescence information of organoids. Copyright 2021, The Company of Biologists Ltd. (b) Overview and 
validation of the image analysis algorithms called Phindr3D. Copyright 2021, Public Library of Science. (c) Pipeline for multiscale hyperdimensional analysis of 
organoids via SCOUT. Copyright 2020, Nature Publishing Group. 
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facing organoid image analysis are: How can the intricate structures 
within organoids be quantitatively described? Is it possible to conduct a 
large-scale analysis without compromising on the quality of phenotypic 
measurements? How can quantitative analysis be standardized to make 
organoid studies more relevant for translational medicine? 

The introduction of AI, specifically machine learning, offers a 
promising solution to these challenges. Machine learning algorithms can 
be trained on large datasets of organoid-scale images, learning to 
recognize and quantify various organoid features. These algorithms can 
then be used to analyze multiple organoid-scale images, providing rapid 
and accurate organoid analysis. MOrgAna, a Python-based software that 
utilizes machine learning to analyze and segment images of organoids is 
reported recently [161]. The need for such a tool arises from the 
increasing use of organoids in biomedical research, which generates 
large volumes of image data that require rapid and automated analysis 
(Fig. 8a). MOrgAna addresses these queries by automating the analysis, 
thereby reducing human error and increasing the throughput; Providing 
a set of reliable, quantitative metrics that help in understanding orga-
noid morphology and function; Enabling comparability across different 
imaging platforms, which is crucial for integrating data from multiple 
studies or clinical trials. Moreover, MOrgAna addresses this demand by 
providing an easy-to-use interface for users with little to no program-
ming experience, while also offering customization options for advanced 
users. The software’s versatility is demonstrated through its successful 
application to various in vitro systems imaged with different micro-
scopes. Overall, MOrgAna represents a significant advancement in the 
field of organoid analysis, enabling researchers to efficiently interpret 
complex image data and accelerate their studies. A recent study presents 
a novel approach to analyzing cellular phenotypes using data-driven 
machine learning called Phindr3D (Fig. 8b). The researchers tackle the 
difficulties of determining a biologically relevant number of clusters for 
data set analysis and pinpointing individual organoid volumes within 
extensive image stacks [162]. The importance of this method is found in 
its quick and precise capability to scrutinize intricate biological culture 
systems, such as neuronal cultures and organoids, eliminating the 
requirement for cell segmentation. This method has the potential to 
greatly improve our understanding of cellular phenotypes and their role 
in various biological processes. Overall, this study provides valuable 
insights into the development of new techniques for analyzing complex 
biological data sets. 

A significant impediment to implementing organoid-based screening 
studies has been the absence of stereotypic development and a shared 
coordinate system in organoids. To overcome this hurdle, one study 
introduces a state-of-the-art technology platform for 3D phenotyping of 
human cerebral organoids at multiple scales, which opens up unique 
possibilities to study human brain development and dysfunction [163]. 
The pipeline for single-cell and cytoarchitecture analysis of organoids 
using impartial techniques (SCOUT) is an early effort at comprehensive 
cerebral organoid characterization, facilitating a thorough 3D exami-
nation of entire organoids (Fig. 8c). Specifically, a U-Net model was 
trained using Keras to identify ventricles in the nuclear dye images of 
cerebral organoids. The revised U-Net model was trained using a mixed 
loss that included a weighted binary cross-entropy (WBCE) term and a 
Dice coefficient loss term. The automated ventricle segmentation ach-
ieved a Dice coefficient of 97.2% on the reserve test set. Utilizing 
SCOUT, the authors identified significant variances among experimental 
groups with consistent patterns among duplicates. This impartial 
high-throughput examination of antibody-labeled organoids represents 
a critical advancement in biological research, as data analysis continues 
to be a major obstacle to achieving organoid-based screening studies. 
Overall, this study enhances our understanding of human brain devel-
opment and diseases by offering a fresh method to study the intricate 
cytoarchitectures of cerebral organoids and their potential uses in 
neuroscience research. 

While there have been instances of software tools created for auto-
mated organoid image analysis, these platforms primarily employ 

conventional image processing methods, such as adaptive thresholding, 
to recognize organoid structures in sequences of microscope images. 
Despite their merits, these techniques necessitate manual adjustments 
for each image or are confined to bounding box detection, falling short 
in capturing potentially beneficial morphological information. Alter-
ations in organoid structures, like peaks or protrusions, can unveil 
critical responses of organoids to external stimuli, which are likely 
overlooked by bounding box measurements. Based on this, there is an 
urgent need to develop new machine learning algorithms that can not 
only parse contours to label individual organoids but also accurately 
segment and track various cell morphologies, including osteoblasts, 
osteoclasts, endothelial cells, and macrophages. This will enable a more 
comprehensive understanding of organoid behavior, response to stimuli, 
and the various cell types involved in the organoid’s growth and 
development, ultimately improving the efficiency and effectiveness of 
organoids research. 

Machine learning-guided image analysis in tissue scale: The 
evaluation of tissue-level characteristics is a critical step in the realm of 
organoids research and development. This process often involves the 
generation of a large amount of image data, typically acquired through 
techniques such as histology or confocal microscopy. Tissue features 
such as cell organization, tissue architecture, and the presence of specific 
tissue markers can provide valuable insights into the functionality and 
maturity of the organoids. For example, the organization of cells into 
specific tissue structures can indicate organoids maturation, while the 
presence of specific tissue markers can suggest the successful differen-
tiation of cells into specific tissue types. Therefore, accurate and efficient 
analysis of tissue-scale images is essential for the functional assessment 
of organoids. Traditional analysis methods, which often involve manual 
identification and quantification of tissue features, are time-consuming, 
prone to subjective bias, and may not fully capture the complexity of 
tissue structures. The introduction of machine learning, offers a prom-
ising solution to these challenges. 

Machine learning algorithms can be trained on large datasets of 
tissue-scale images, learning to recognize and quantify various tissue 
features. These algorithms can then be used to analyze numerous tissue- 
scale images, providing rapid and accurate tissue analysis. This can 
significantly improve the efficiency of organoid assessment, reducing 
the time and effort required for manual analysis. Based on that, is pro-
pelled by the understanding that histological anomalies in cryosectioned 
tissue can obstruct quick diagnostic evaluations during surgical pro-
cedures. Although formalin-fixed and paraffin-embedded (FFPE) tissue 
yields superior slide quality, the method to acquire them is tedious and 
hence not practical for use during surgery. In response, the researchers 
designed a deep-learning model capable of swiftly converting the style 
of cryosectioned whole-slide images into that of FFPE tissue, thereby 
enhancing image quality (Fig. 9a). The paper elaborates on this deep- 
learning model and its efficacy [164]. The model is built on a genera-
tive adversarial network, which includes an attention mechanism to 
correct cryosection artifacts. Additionally, it employs a self-regulation 
constraint between the cryosectioned and FFPE images to retain clini-
cally pertinent features. The relevance of this paper is the potential of 
this deep-learning model to transform quick diagnostic evaluations 
during surgery and elevate image quality. It could potentially aid doc-
tors in diagnosing patients more accurately and creating a more 
informed basis for treatment plans. 

Another study describes the development of an interpretable deep 
learning pipeline called im4MEC, which is designed to predict the four 
molecular classes in endometrial cancer using whole-slide images 
(Fig. 9b). The pipeline employes leverages self-supervised learning to 
isolate morphological attributes specific to endometrial cancer, and in-
corporates an attention-focused classification model for making pre-
dictions at the whole-slide-image level [165]. The goal of this pipeline is 
not only to accurately predict the molecular classification of endome-
trial cancer but also to identify morpho-molecular correlates and refine 
prognostication. In other words, im4MEC aims to provide a more 
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comprehensive understanding of the relationship between morphology 
and molecular classification in endometrial cancer, which can help 
improve clinical risk stratification and patient outcomes. The use of deep 
learning techniques in this study represents a significant advancement in 
the field of pathology and has important implications for personalized 
medicine. 

4.4. Streamlined analysis of multi-omics data in AI-enabled organoids 

Another challenge in organoids research is the analysis of high- 
throughput multi-omics data during the evaluation process. The anal-
ysis of multi-omics data, which includes genomics, transcriptomics, 
epigenomics, proteomics, and single-cell omics, is a complex task due to 

Fig. 9. Machine learning-guided image analysis in tissue scale. (a) Diagram summarizing how AI-formalin-fixed and paraffin-embedded (FFPE) method fits into 
the routine preparation of surgically excised specimens for histopathological evaluation. Copyright 2022, Nature Publishing Group. (b) An interpretable deep 
learning pipeline for whole-slide-image-based prediction of the four molecular classes in endometrial cancer (im4MEC), to identify morpho-molecular correlates, and 
to refine prognostication. Copyright 2022, The Lancet. 
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the sheer volume and complexity of the data (Fig. 10a). Omics analysis 
has expanded to include statistical analysis and computational modeling 
of data from different biomolecular levels. In addition, data types have 
shifted from traditional structured data to unstructured, semi- 

structured, and heterogeneous architectures with diverse features. The 
relationships between omics data are more complex, involving both 
linear and nonlinear relationships. Traditional analytical methods 
exhibit distinct limitations when applied to both structured and 

Fig. 10. Machine learning enabled analysis of multi-omics data. (a) Illustration of multi-omics data involved in organoids research. (b) Multi-task learning of 
multi-modality biological data by UnitedNet. Copyright 2023, Nature Publishing Group. (c) Overview of devCellPy, which is a multilayered machine learning al-
gorithm for the hierarchical annotation of single-cell RNA-seq data. Copyright 2022, Nature Publishing Group. 
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unstructured data. For structured data, these methods grapple with is-
sues of scalability [166], high dimensionality [167], and data integrity 
[168], often necessitating computationally expensive operations or 
pre-processing steps that may introduce bias. Conversely, the analysis of 
unstructured data poses challenges due to its inherent lack of organi-
zation [169], necessitating specialized tools and expertise for effective 
utilization. Furthermore, the integration of structured and unstructured 
data remains a significant hurdle, as conventional business intelligence 
tools are predominantly designed for structured data [170]. These 
challenges underscore the imperative for advanced analytical frame-
works capable of accommodating the complexities inherent in both data 
types. 

The growth and development of organoids often involve multidi-
mensional functional interactions among various cell types. Therefore, 
the analysis and processing of massive multi-omics sequencing data 
present significant challenges to traditional analysis methods in orga-
noids research. AI can simplify this process by using machine learning to 
handle these complex datasets and extract meaningful biological in-
sights [171]. In recent years, the rapid development of machine learning 
has provided a unique means for multi-omics data analysis to explore 
complex relationships between different omics and phenotypic targets. 
A team introduced UnitedNet, an interpretable multi-task deep neural 
network, designed to merge various tasks for the evaluation of 
single-cell multi-modality data (Fig. 10b). Comparative studies show 
that UnitedNet matches or outperforms contemporary techniques in 
terms of multi-modal amalgamation and inter-modal prediction [172]. 
Additionally, the use of interpretable machine learning techniques to 
analyze the trained UnitedNet enables the direct measurement of the 
correlation between gene expression and other modalities specific to cell 
types. As a result, UnitedNet offers a broader understanding of 
multi-modal data and could potentially reveal biological insights, 
including cell-specific, inter-modal feature correlations from 
multi-modal biological data. This could enhance our capacity to map 
and foresee cell states by employing multi-modal information in diverse 
biological systems. 

A different recent research paper introduces devCellPy, a machine 
learning-empowered workflow for automated labeling of intricate, 
multilayered single-cell transcriptomic data [173]. The authors intro-
duce an exceptionally precise and accurate instrument that facilitates 
automated identification of cell types across intricate annotation hier-
archies (Fig. 10c). They highlight the efficacy of devCellPy by creating a 
mouse cardiac developmental atlas and training the tool to formulate a 
cardiac prediction algorithm. The authors also assert that devCellPy is 
ideally suited for datasets annotated in a hierarchical manner and is 
extraordinarily adaptable and applicable to any scRNA-seq dataset. As 
large-scale developmental cell atlases continue to expand, devCellPy 
will serve as a resource to aid in the recognition of cell types across 
different platforms and species, especially in well-labeled reference 
datasets that display complex multilayered annotation structures. 

Accordingly, machine learning can achieve cross-scale and multi- 
modal data analysis and mining, improving the delay signal-to-noise 
ratio, thus obtaining organoids data with higher spatial and temporal 
resolution. High-content imaging combined with machine learning has 
been used for data mining at multicellular and organoids scales. Addi-
tionally, through neural network-based image analysis, multi-scale and 
multi-modal analysis and comparison can be conducted for molecular, 
cellular, spatial structure, and organ-level characteristics of organoids. 
Furthermore, during the evaluation of organoids, massive information is 
embedded in different modalities and scales. Machine learning can 
organically integrate these data, significantly reducing redundancy and 
achieving unexpected results. 

Although machine learning and multi-omics data have been widely 
combined and produced many novel research results, there are still 
significant challenges for machine learning in multi-omics research. 
Current machine learning algorithms often struggle to provide biologi-
cally interpretable explanations for a given model’s output, limiting the 

model’s effectiveness in understanding underlying biological mecha-
nisms and clinical applications. Interpreting model features requires 
more advanced machine learning methods (e.g., deep neural networks). 
Therefore, there is an urgent need to develop new machine learning 
algorithms that can transform existing “black boxes” into “white boxes” 
with biologically specific interpretability. This will allow researchers to 
gain more comprehensive insights into the complex molecular mecha-
nisms underlying organoids growth and development, ultimately 
improving the efficiency and effectiveness of organoids research. 

4.5. Precise preclinical evaluation and application in AI-enabled 
organoids 

AI can also be used in the preclinical evaluation and application 
phase of organoids research. Predictive models and optimization algo-
rithms can be used to evaluate the mechanisms involved in organoid 
intervention development, screen potential pharmaceutical agents, and 
construct in vitro disease models. This can improve the efficiency and 
effectiveness of this phase, which is crucial in bridging the gap between 
fundamental research and clinical application. 

Developmental Biology: AI can analyze the complex processes 
involved in organoids growth and development. This can provide insights 
into human development and disease, and potentially guide the creation 
of tissues for regenerative medicine. For example, a recent research paper 
details the creation of a machine learning system known as brain and 
organoids manifold alignment (BOMA), which is designed for compara-
tive analysis of gene expression between brains and organoids [174]. The 
framework uses manifold alignment to compare gene expression in 
organoids with developing brains, allowing for the identification of 
conserved and specific cell trajectories and genes across different species 
(Fig. 11a). The authors showcase the ability of BOMA to be scaled up by 
assessing it on both bulk tissue and single-cell datasets, and they also 
make a web tool available for widespread use in the scientific community. 
The significance of this work lies in its potential to improve our under-
standing of genomic regulations during brain development, as well as its 
broader applications in comparative analysis of gene expression between 
different types of samples. The development of BOMA and its successful 
application in comparing gene expression in developing brains and 
organoids highlights the importance of using AI to gain a deeper under-
standing of genomic regulations during development. 

Biobanks Utilization: AI holds promise for the optimization of 
biobank utilization, wherein organoids from diverse individuals and 
conditions are stored. Biobanks, encompassing bioinformatics data-
bases, specimen databases, and image databases, to name a few, are 
interconnected. The traditional analysis and extraction of data from 
these complex interrelations and large-scale repositories often pose 
significant challenges. However, AI can analyze this vast amount of data 
to discern patterns and correlations, potentially leading to innovative 
discoveries. Machine learning can play a pivotal role in automating the 
management and analysis of the voluminous and complex datasets 
generated during clinical trials, thereby streamlining the process and 
mitigating the risk of human error. The massive, multifaceted datasets 
produced by clinical trials can be onerous for human analysts to manage 
and analyze effectively. By automating tasks such as data entry, quality 
control, and statistical analysis, AI enables researchers to focus on 
higher-order tasks and decision-making. Furthermore, machine learning 
algorithms can detect patterns and trends in the data that may elude 
human analysts, potentially yielding novel insights and discoveries. By 
enhancing data management and analysis, AI holds substantial potential 
for augmenting the overall efficiency and effectiveness of clinical trials 
involving organoids. 

Drug Screening: In the field of drug discovery, researchers are using 
AI-organoid interfaces to predict drug response in a more sophisticated 
and accurate manner. This involves the use of AI algorithms to analyze 
organoid data and identify new therapeutic targets and biomarkers. AI 
can analyze the complex data generated from organoids to predict drug 
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responses. This can lead to more precise drug screening processes and 
the development of personalized treatments based on an individual’s 
unique organoid responses. A study presents a new machine-learning 
framework for predicting anti-cancer drug efficacy in patients using 
organoid models [175]. The authors emphasize that the classification of 
cancer patients through predictive biomarkers for responses to 
anti-cancer drugs is crucial for enhancing treatment results. Neverthe-
less, present machine-learning-aided predictions for drug response 
frequently struggle to discover reliable translational biomarkers from 
pre-clinical models. To tackle this challenge, the authors have designed 
a network-oriented method that utilizes pharmacogenomic data ob-
tained from three-dimensional organoid culture models to pinpoint 
reliable drug biomarkers (Fig. 11b). The results show that this approach 
accurately predicts drug responses in colorectal and bladder cancer 
patients and confirms them using external trans. The significance of this 
work lies in its potential to improve cancer treatment outcomes by 
identifying more accurate predictive biomarkers for anti-cancer drugs. 

Additionality, a study is reported on the heterogeneity of vascular 
permeability in tumor vasculatures and its impact on nanoparticle de-
livery to tumors [176]. The authors introduce an innovative approach 
for measuring vascular permeability by employing protein-based 
nanoprobes and image-segmentation-oriented machine learning 
(Fig. 11c). Their findings question the conventional understanding that 
the delivery of nanoparticles to tumors necessitates increased vascular 
leakiness, uncovering a broad spectrum of permeability levels across 
various tumors. The study has important implications for the develop-
ment of more effective and targeted cancer treatments, as it suggests that 
personalized delivery strategies may be necessary to overcome the 
heterogeneity of vascular permeability in different tumors. 

Disease Modeling: AI can help in creating more accurate disease 
models using organoids. By analyzing the organoid’s response to various 
conditions, AI can help researchers understand the progression of dis-
eases and evaluate potential treatments. Moreover, AI can help identify 
patient-specific organoid models and predict treatment response, 

Fig. 11. Machine learning enabled precise preclinical evaluation and application of organoids. (a) Illustration of BOMA, a computational framework for 
comparative analyses of developmental gene expression data between brains and organoids. Copyright 2023, Cell Press. (b) Identification of biomarkers associated 
with drug response using a network-based machine-learning approach. Copyright 2020, Nature Publishing Group. (c) Machine learning-based single-vessel analysis 
method. Copyright 2023, Springer Nature. (d) Machine learning for diagnosis, prognosis, and treatment of disease models. Copyright 2023, Cell Press. (e) Contrasting 
the previous non-unified multimodal diagnosis paradigm with IRENE. Copyright 2023, Springer Nature. 
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enabling the development of personalized treatment strategies. By uti-
lizing patient-derived cells to generate organoids, researchers can model 
individual patients’ diseases more accurately. AI algorithms can analyze 
these organoid models and determine which treatments are most likely 
to be effective for each patient, considering their unique genetic 
makeup, disease characteristics, and response patterns. This approach 
enables the development of targeted therapies and improves the overall 
efficiency of the treatment process, reducing side effects and increasing 
the likelihood of success. One example of machine learning’s application 
in organoid disease modeling is its use in predicting neurotoxicity in 
human midbrain organoids [177]. In this instance, brain organoids, 
which are highly effective for researching neurodegenerative disorders 
such as Parkinson’s disease (PD), were utilized. The research formulated 
an analytical approach based on machine learning, which facilitated 
comprehensive image-based cellular profiling and the prediction of 
toxicity in brain organoids exposed to the neurotoxic substance 
6-hydroxydopamine. The machine learning algorithm was capable of 
measuring attributes like the count of dopaminergic neurons and 
neuronal complexity. It was also employed to improve data processing 
strategies and distinguish between various treatment conditions. The 
effectiveness of this method was confirmed using high-content imaging 
data derived from midbrain organoids of PD patients. 

Despite these advances, the application of machine learning in 
organoids disease modeling is not yet widespread. This is largely due to 
the challenges associated with developing and managing organoids and 
the complexity of the diseases being modeled. While the use of machine 
learning in organoid disease modeling is still in the early stages, its 
widespread use and documented effectiveness in diagnosing, predicting, 
and treating various ailments lay a strong groundwork for progress in 
organoid disease modeling [178]. A recently published review offers a 
summary of the latest progress in the application of machine learning in 
the field of clinical oncology (Fig. 11d). The authors concentrate on 
machine learning technologies that are fairly advanced and either 
currently in use or nearing deployment in clinical environments [179]. 
They evaluate the application of these methods to medical imaging and 
molecular data gathered from liquid and solid tumor biopsies for cancer 
detection, prognosis, and treatment planning. They also deliberate on 
the significant factors when creating machine learning solutions tailored 
to the unique challenges presented by imaging and molecular data. In 
addition to discussing the current state of machine learning in clinical 
oncology, the authors examine the potential future applications of ma-
chine learning in disease modeling. Specifically, they explore how 
combining machine learning with organ-on-a-chip technology could 
lead to more accurate disease models that better reflect human physi-
ology. This could have significant implications for drug discovery and 
personalized medicine. 

A recent study presents a transformer-based representation-learning 
model, IRENE, which is a unified AI-based medical diagnostic model 
designed to make decisions by jointly learning holistic representations of 
medical images, unstructured chief complaint and structured clinical 
information for clinical diagnostics (Fig. 11e). The authors address the 
need for an advanced model capable of processing multimodal input in a 
unified manner, which includes radiographs, clinical history, and 
structured clinical information. By leveraging embedding layers, the 
model converts images and text into visual and text tokens, enabling a 
holistic understanding of the data [180]. The study holds significant 
implications for the field of clinical diagnostics, particularly in the 
identification of pulmonary diseases and the prediction of adverse 
clinical outcomes in COVID patients. The performance of the model 
surpasses that of image-only and non-unified multimodal diagnosis 
models, highlighting its effectiveness in accurately diagnosing and 
predicting clinical outcomes. In brief, as technology continues to 
advance and our understanding of organoids and disease processes im-
proves, it is expected that machine learning will play an increasingly 
important role in disease modeling and the development of new 
treatments. 

5. Conclusion and future perspectives 

AI-Enabled organoids have the potential to provide even greater 
insights into complex biological systems of various organoids. The suc-
cessful construction and stable cultivation of organoids are pivotal. AI 
technologies, particularly machine learning algorithms, offer promising 
avenues for optimizing organoid construction. Specifically, AI can 
optimize matrix gel design with desired physicochemical performance, 
automate quality control through image analysis, and dynamically 
monitor culture conditions. It can also analyze high-throughput omics 
data to feedback on various functionality information and construction 
parameters. This enables more efficient and higher-quality organoid 
construction, thereby accelerating the transition from laboratory 
research to clinical applications. Despite its many benefits, there are also 
significant challenges and limitations that must be overcome in order to 
fully realize the potential of this approach. 

Data collection and standardization 

Organoids are diverse and complex, making it difficult to collect 
consistent, high-quality data for AI analysis. Additionally, organoid 
cultures can vary in their structure and function, depending on the 
protocols and conditions used during their development. 

Interdisciplinary collaboration 

Combining AI and organoids requires collaboration between experts 
in computer science, biology, and other relevant fields. Effective 
communication and shared understanding can be challenging, as each 
field has its own terminology, methodologies, and theoretical 
frameworks. 

Computational resource requirements 

AI techniques, especially deep learning, can be computationally 
intensive. Analyzing large datasets from organoid research may require 
significant computational resources and specialized hardware, which 
can be costly and limit the accessibility of these techniques. 

Model interpretability 

AI models can be complex and difficult to interpret, making it 
challenging to understand the underlying biological processes driving 
their predictions. This is especially true for deep learning models, which 
are often described as “black boxes." 

Ethical considerations 

Combining AI and organoids raises ethical questions regarding the 
use of human-derived tissues, data privacy, and the potential for unin-
tended consequences. Researchers must consider these issues and 
develop guidelines to ensure responsible research practices. 

Validation and reproducibility 

To ensure the reliability of AI predictions in the context of organoids, 
it is essential to validate the models using independent datasets. How-
ever, due to the variability in organoid cultures, reproducibility can be 
challenging. 

Integration with existing knowledge: Integrating AI-generated in-
sights with existing knowledge in biology, medicine, and other related 
fields can be challenging, especially given the rapid pace of research in 
these areas. 
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Regulatory and legal issues 

As AI becomes more integrated into organoid research, there may be 
questions about the regulatory and legal implications, such as the 
ownership of intellectual property, liability for AI-generated insights, 
and the proper oversight of AI-driven research. 

Despite these challenges, the future of AI-Enabled Organoids holds 
great promise. By development of AI-Enabled Organoids, researchers 
can gain a deeper understanding of human organ function and disease. 
One of the primary methods used to achieve AI-Enabled Organoids is the 
integration of high-throughput imaging and analysis techniques. By 
automating the process of capturing and analyzing large amounts of 
data, researchers can quickly and accurately identify changes in the 
morphology, gene expression, and metabolic activity of organoids over 
time. This information can then be used to train machine learning al-
gorithms, which can then be used to make predictions about future 
developments. Another approach is the use of microfluidics and other 
lab-on-a-chip technologies to interface organoids with AI. These systems 
allow for precise control of the environment surrounding the organoids, 
enabling researchers to study complex biological processes and make 
accurate predictions about the behavior of individual cells or groups of 
cells. In addition, these systems can be used to perform high-throughput 
screens to identify new drugs or other treatments that can help to 
mitigate or cure disease. This can provide a powerful tool for drug dis-
covery, disease diagnosis, and treatment development. With continued 
advancements in both fields, it is likely that we will see significant 
progress in the development of new treatments for various diseases and 
an improved understanding of complex biological processes. The AI- 
Enabled Organoids has the potential to greatly improve the way we 
approach medicine and biomedical engineering, and it is an exciting 
area of research that deserves continued attention and investment. 

Ethics approval and consent to participate 

The current review does not involve any experimental work on 
human subjects or animals, and thus does not require approval from an 
ethics committee. As this work solely involves the synthesis and analysis 
of pre-existing literature, it doesn’t necessitate any form of direct 
involvement or consent from patients or healthy volunteers. 

Declaration of competing interest 

We declare that we have no financial and personal relationships with 
other people or organizations that can inappropriately influence our 
work, there is no professional or other personal interest of any nature or 
kind in any product, service, and/or company that could be construed as 
influencing the position presented in, or the review of, the manuscript 
entitled, “AI-Enabled Organoids: Construction, Analysis, and 
Application”. 

Acknowledgements 

L. Bai, Y. Wu, and G. F. Li contributed equally to this work. This work 
was financially supported by National Natural Science Foundation of 
China (82230071, 82172098), Shanghai Committee of Science and 
Technology (23141900600, Laboratory Animal Research Project). 

References 

[1] G. Rossi, A. Manfrin, M.P. Lutolf, Progress and potential in organoid research, 
Nat. Rev. Genet. 19 (2018) 671–687. 

[2] D. Dutta, I. Heo, H. Clevers, Disease modeling in stem cell-derived 3D organoid 
systems, Trends Mol. Med. 23 (2017) 393–410. 

[3] T. Tong, Y. Qi, D. Rollins, L.D. Bussiere, D. Dhar, C.L. Miller, C. Yu, Q. Wang, 
Rational design of oral drugs targeting mucosa delivery with gut organoid 
platforms, Bioact. Mater. 30 (2023) 116–128. 

[4] M.A. Lancaster, J.A. Knoblich, Organogenesis in a dish: modeling development 
and disease using organoid technologies, Science 345 (2014), 1247125. 

[5] S. Chen, X. Chen, Z. Geng, J. Su, The horizon of bone organoid: a perspective on 
construction and application, Bioact. Mater. 18 (2022) 15–25. 

[6] E. Garreta, R.D. Kamm, S.M. Chuva de Sousa Lopes, M.A. Lancaster, R. Weiss, 
X. Trepat, I. Hyun, N. Montserrat, Rethinking organoid technology through 
bioengineering, Nat. Mater. 20 (2021) 145–155. 

[7] X. Gao, Y. Wu, L. Liao, W. Tian, Oral organoids: progress and challenges, J. Dent. 
Res. 100 (2021) 454–463. 

[8] N. Sachs, J. de Ligt, O. Kopper, E. Gogola, G. Bounova, F. Weeber, A.V. Balgobind, 
K. Wind, A. Gracanin, H. Begthel, J. Korving, R. van Boxtel, A.A. Duarte, 
D. Lelieveld, A. van Hoeck, R.F. Ernst, F. Blokzijl, I.J. Nijman, M. Hoogstraat, 
M. van de Ven, D.A. Egan, V. Zinzalla, J. Moll, S.F. Boj, E.E. Voest, L. Wessels, P. 
J. van Diest, S. Rottenberg, R.G.J. Vries, E. Cuppen, H. Clevers, A living biobank 
of breast cancer organoids captures disease heterogeneity, Cell 172 (2018) 
373–386 e310. 

[9] H. Xu, D. Jiao, A. Liu, K. Wu, Tumor organoids: applications in cancer modeling 
and potentials in precision medicine, J. Hematol. Oncol. 15 (2022) 58. 

[10] Z.X. Zhao, X.Y. Chen, A.M. Dowbaj, A. Sljukic, K. Bratlie, L.D. Lin, E.L. Fong, G. 
M. Balachander, Z.W. Chen, A. Soragni, M. Huch, Y.A. Zeng, Q. Wang, H. Yu, 
Organoids, Nat. Rev. Method Prime 2 (2022). 

[11] H. Clevers, Modeling development and disease with organoids, Cell 165 (2016) 
1586–1597. 

[12] J. Qu, F.S. Kalyani, L. Liu, T. Cheng, L. Chen, Tumor organoids: synergistic 
applications, current challenges, and future prospects in cancer therapy, Cancer 
Commun. 41 (2021) 1331–1353. 

[13] S. Kanton, M.J. Boyle, Z. He, M. Santel, A. Weigert, F. Sanchis-Calleja, P. Guijarro, 
L. Sidow, J.S. Fleck, D. Han, Z. Qian, M. Heide, W.B. Huttner, P. Khaitovich, 
S. Paabo, B. Treutlein, J.G. Camp, Organoid single-cell genomic atlas uncovers 
human-specific features of brain development, Nature 574 (2019) 418–422. 

[14] P. Hamet, J. Tremblay, Artificial intelligence in medicine, Metabolism 69S (2017) 
S36–S40. 

[15] J.G. Greener, S.M. Kandathil, L. Moffat, D.T. Jones, A guide to machine learning 
for biologists, Nat. Rev. Mol. Cell Biol. 23 (2022) 40–55. 

[16] H. Hao, Y. Xue, Y. Wu, C. Wang, Y. Chen, X. Wang, P. Zhang, J. Ji, A paradigm for 
high-throughput screening of cell-selective surfaces coupling orthogonal 
gradients and machine learning-based cell recognition, Bioact. Mater. 28 (2023) 
1–11. 

[17] A.A. Moud, Recent advances in utility of artificial intelligence towards multiscale 
colloidal based materials design, Colloid Interface Sci. 47 (2022). 

[18] S. Takahashi, K. Asada, K. Takasawa, R. Shimoyama, A. Sakai, A. Bolatkan, 
N. Shinkai, K. Kobayashi, M. Komatsu, S. Kaneko, J. Sese, R. Hamamoto, 
Predicting deep learning based multi-omics parallel integration survival subtypes 
in lung cancer using reverse phase protein array data, Biomolecules 10 (2020). 

[19] V. Gulshan, L. Peng, M. Coram, M.C. Stumpe, D. Wu, A. Narayanaswamy, 
S. Venugopalan, K. Widner, T. Madams, J. Cuadros, R. Kim, R. Raman, P. 
C. Nelson, J.L. Mega, R. Webster, Development and validation of a deep learning 
algorithm for detection of diabetic retinopathy in retinal fundus photographs, 
J. Am. Med. Assoc. 316 (2016) 2402–2410. 

[20] Z. Nabulsi, A. Sellergren, S. Jamshy, C. Lau, E. Santos, A.P. Kiraly, W. Ye, J. Yang, 
R. Pilgrim, S. Kazemzadeh, J. Yu, S.R. Kalidindi, M. Etemadi, F. Garcia-Vicente, 
D. Melnick, G.S. Corrado, L. Peng, K. Eswaran, D. Tse, N. Beladia, Y. Liu, P. 
C. Chen, S. Shetty, Deep learning for distinguishing normal versus abnormal chest 
radiographs and generalization to two unseen diseases tuberculosis and COVID- 
19, Sci. Rep. 11 (2021), 15523. 

[21] H. Renner, H.R. Scholer, J.M. Bruder, Combining automated organoid workflows 
with artificial intelligence-based analyses: opportunities to build a new 
generation of interdisciplinary high-throughput screens for Parkinson’s disease 
and beyond, Mov. Disord. 36 (2021) 2745–2762. 

[22] X. Bian, G. Li, C. Wang, W. Liu, X. Lin, Z. Chen, M. Cheung, X. Luo, A deep 
learning model for detection and tracking in high-throughput images of organoid, 
Comput. Biol. Med. 134 (2021), 104490. 

[23] J. Badai, Q. Bu, L. Zhang, Review of artificial intelligence applications and 
algorithms for brain organoid research, Interdiscip. Sci. 12 (2020) 383–394. 

[24] K. Park, J.Y. Lee, S.Y. Lee, I. Jeong, S.Y. Park, J.W. Kim, S.A. Nam, H.W. Kim, Y. 
K. Kim, S.C. Lee, Deep learning predicts the differentiation of kidney organoids 
derived from human induced pluripotent stem cells, Kidney Res. Clin. Pract. 42 
(2023) 75–85. 

[25] E. Kegeles, A. Naumov, E.A. Karpulevich, P. Volchkov, P. Baranov, Convolutional 
neural networks can predict retinal differentiation in retinal organoids, Front. 
Cell. Neurosci. 14 (2020). 

[26] A.B. Cunha, J. Hou, C. Schuelke, Machine learning for stem cell differentiation 
and proliferation classification on electrical impedance spectroscopy, J. Electr. 
Bioimpedance 10 (2019) 124. 

[27] M.E. Sakalem, M.T. De Sibio, F.A.D. da Costa, M. de Oliveira, Historical evolution 
of spheroids and organoids, and possibilities of use in life sciences and medicine, 
Biotechnol. J. 16 (2021). 

[28] G. Kaushik, M.P. Ponnusamy, S.K. Batra, Concise review: current status of three- 
dimensional organoids as preclinical models, Stem Cell. 36 (2018) 1329–1340. 

[29] H.V. Wilson, A new method by which sponges may be artificially reared, Science 
25 (1907) 912–915. 

[30] T. Sato, R.G. Vries, H.J. Snippert, M. van de Wetering, N. Barker, D.E. Stange, J. 
H. van Es, A. Abo, P. Kujala, P.J. Peters, H. Clevers, Single Lgr5 stem cells build 
crypt-villus structures in vitro without a mesenchymal niche, Nature 459 (2009) 
262–265. 

[31] J. Chen, S. Ma, H. Yang, X. Liang, H. Yao, B. Guo, D. Chen, J. Jiang, D. Shi, J. Xin, 
K. Ren, X. Zhou, Y. Li, L. Geng, J. Li, Generation and metabolomic 

L. Bai et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S2452-199X(23)00276-1/sref1
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref1
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref2
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref2
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref3
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref3
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref3
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref4
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref4
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref5
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref5
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref6
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref6
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref6
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref7
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref7
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref8
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref8
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref8
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref8
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref8
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref8
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref8
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref9
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref9
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref10
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref10
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref10
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref11
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref11
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref12
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref12
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref12
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref13
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref13
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref13
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref13
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref14
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref14
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref15
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref15
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref16
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref16
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref16
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref16
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref17
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref17
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref18
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref18
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref18
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref18
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref19
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref19
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref19
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref19
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref19
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref20
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref20
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref20
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref20
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref20
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref20
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref21
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref21
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref21
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref21
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref22
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref22
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref22
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref23
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref23
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref24
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref24
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref24
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref24
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref25
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref25
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref25
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref26
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref26
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref26
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref27
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref27
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref27
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref28
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref28
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref29
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref29
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref30
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref30
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref30
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref30
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref31
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref31


Bioactive Materials 31 (2024) 525–548

546

characterization of functional ductal organoids with biliary tree networks in 
decellularized liver scaffolds, Bioact. Mater. 26 (2023) 452–464. 

[32] W. Kim, Y. Gwon, S. Park, H. Kim, J. Kim, Therapeutic strategies of three- 
dimensional stem cell spheroids and organoids for tissue repair and regeneration, 
Bioact. Mater. 19 (2023) 50–74. 

[33] N.J. Treacy, S. Clerkin, J.L. Davis, C. Kennedy, A.F. Miller, A. Saiani, J. 
K. Wychowaniec, D.F. Brougham, J. Crean, Growth and differentiation of human 
induced pluripotent stem cell (hiPSC)-derived kidney organoids using fully 
synthetic peptide hydrogels, Bioact. Mater. 21 (2023) 142–156. 

[34] J.R. Spence, C.N. Mayhew, S.A. Rankin, M.F. Kuhar, J.E. Vallance, K. Tolle, E. 
E. Hoskins, V.V. Kalinichenko, S.I. Wells, A.M. Zorn, N.F. Shroyer, J.M. Wells, 
Directed differentiation of human pluripotent stem cells into intestinal tissue in 
vitro, Nature 470 (2011) 105–109. 

[35] M. Eiraku, N. Takata, H. Ishibashi, M. Kawada, E. Sakakura, S. Okuda, 
K. Sekiguchi, T. Adachi, Y. Sasai, Self-organizing optic-cup morphogenesis in 
three-dimensional culture, Nature 472 (2011) 51–56. 

[36] T. Nakano, S. Ando, N. Takata, M. Kawada, K. Muguruma, K. Sekiguchi, K. Saito, 
S. Yonemura, M. Eiraku, Y. Sasai, Self-formation of optic cups and storable 
stratified neural retina from human ESCs, Cell Stem Cell 10 (2012) 771–785. 

[37] M.A. Lancaster, M. Renner, C.A. Martin, D. Wenzel, L.S. Bicknell, M.E. Hurles, 
T. Homfray, J.M. Penninger, A.P. Jackson, J.A. Knoblich, Cerebral organoids 
model human brain development and microcephaly, Nature 501 (2013) 373–379. 

[38] W.R. Karthaus, P.J. Iaquinta, J. Drost, A. Gracanin, R. van Boxtel, J. Wongvipat, 
C.M. Dowling, D. Gao, H. Begthel, N. Sachs, R.G.J. Vries, E. Cuppen, Y. Chen, C. 
L. Sawyers, H.C. Clevers, Identification of multipotent luminal progenitor cells in 
human prostate organoid cultures, Cell 159 (2014) 163–175. 

[39] J.H. Lee, D.H. Bhang, A. Beede, T.L. Huang, B.R. Stripp, K.D. Bloch, A.J. Wagers, 
Y.H. Tseng, S. Ryeom, C.F. Kim, Lung stem cell differentiation in mice directed by 
endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis, Cell 156 (2014) 
440–455. 

[40] P.R. Jamieson, J.F. Dekkers, A.C. Rios, N.Y. Fu, G.J. Lindeman, J.E. Visvader, 
Derivation of a robust mouse mammary organoid system for studying tissue 
dynamics, Development 144 (2017) 1065–1071. 

[41] M. Kessler, K. Hoffmann, V. Brinkmann, O. Thieck, S. Jackisch, B. Toelle, 
H. Berger, H.J. Mollenkopf, M. Mangler, J. Sehouli, C. Fotopoulou, T.F. Meyer, 
The Notch and Wnt pathways regulate stemness and differentiation in human 
fallopian tube organoids, Nat. Commun. 6 (2015) 8989. 

[42] H. Sakaguchi, T. Kadoshima, M. Soen, N. Narii, Y. Ishida, M. Ohgushi, 
J. Takahashi, M. Eiraku, Y. Sasai, Generation of functional hippocampal neurons 
from self-organizing human embryonic stem cell-derived dorsomedial 
telencephalic tissue, Nat. Commun. 6 (2015) 8896. 

[43] Y. Post, J. Puschhof, J. Beumer, H.M. Kerkkamp, M.A.G. de Bakker, J. Slagboom, 
B. de Barbanson, N.R. Wevers, X.M. Spijkers, T. Olivier, T.D. Kazandjian, 
S. Ainsworth, C.L. Iglesias, W.J. van de Wetering, M.C. Heinz, R.L. van Ineveld, 
R. van Kleef, H. Begthel, J. Korving, Y.E. Bar-Ephraim, W. Getreuer, A.C. Rios, R. 
H.S. Westerink, H.J.G. Snippert, A. van Oudenaarden, P.J. Peters, F.J. Vonk, 
J. Kool, M.K. Richardson, N.R. Casewell, H. Clevers, Snake venom gland 
organoids, Cell 180 (2020) 233–247.e221. 

[44] S. Watanabe, S. Kobayashi, N. Ogasawara, R. Okamoto, T. Nakamura, 
M. Watanabe, K.B. Jensen, S. Yui, Transplantation of intestinal organoids into a 
mouse model of colitis, Nat. Protoc. 17 (2022) 649–671. 

[45] Z. Heydari, F. Moeinvaziri, T. Agarwal, P. Pooyan, A. Shpichka, T.K. Maiti, 
P. Timashev, H. Baharvand, M. Vosough, Organoids: a novel modality in disease 
modeling, Bio-Des. Manuf. 4 (2021) 689–716. 

[46] Y. Hu, H. Zhang, S. Wang, L. Cao, F. Zhou, Y. Jing, J. Su, Bone/cartilage organoid 
on-chip: construction strategy and application, Bioact. Mater. 25 (2023) 29–41. 

[47] Z. Yang, B. Wang, W. Liu, X. Li, K. Liang, Z. Fan, J.J. Li, Y. Niu, Z. He, H. Li, 
D. Wang, J. Lin, Y. Du, J. Lin, D. Xing, In situ self-assembled organoid for 
osteochondral tissue regeneration with dual functional units, Bioact. Mater. 27 
(2023) 200–215. 

[48] J. Drost, H. Clevers, Organoids in cancer research, Nat. Rev. Cancer 18 (2018) 
407–418. 

[49] J. Yuan, X.Y. Li, S.J. Yu, Cancer organoid co-culture model system: novel 
approach to guide precision medicine, Front. Immunol. 13 (2023). 

[50] S.J. Mun, J.S. Ryu, M.O. Lee, Y.S. Son, S.J. Oh, H.S. Cho, M.Y. Son, D.S. Kim, S. 
J. Kim, H.J. Yoo, H.J. Lee, J. Kim, C.R. Jung, K.S. Chung, M.J. Son, Generation of 
expandable human pluripotent stem cell-derived hepatocyte-like liver organoids, 
J. Hepatol. 71 (2019) 970–985. 

[51] S. Bartfeld, H. Clevers, Stem cell-derived organoids and their application for 
medical research and patient treatment, J. Mol. Med. 95 (2017) 729–738. 

[52] C. Olgasi, A. Cucci, A. Follenzi, iPSC-derived liver organoids: a journey from drug 
screening, to disease modeling, arriving to regenerative medicine, Int. J. Mol. Sci. 
21 (2020). 

[53] A. Skardal, T. Shupe, A. Atala, Organoid-on-a-chip and body-on-a-chip systems 
for drug screening and disease modeling, Drug Discov. Today 21 (2016) 
1399–1411. 

[54] H. Wang, Modeling neurological diseases with human brain organoids, Front. 
Synaptic Neurosci. 10 (2018). 

[55] N. Sun, X.Q. Meng, Y.X. Liu, D. Song, C.L. Jiang, J.Q. Cai, Applications of brain 
organoids in neurodevelopment and neurological diseases, J. Biomed. Sci. 28 
(2021). 

[56] D. Blondel, M.P. Lutolf, Bioinspired hydrogels for 3D organoid culture, Chimia 73 
(2019) 81–85. 

[57] W.J. Peng, P. Datta, Y. Wu, M. Dey, B. Ayan, A. Dababneh, I.T. Ozbolat, 
Challenges in bio-fabrication of organoid cultures, Adv. Exp. Med. Biol. 1107 
(2018) 53–71. 

[58] I. Lukonin, M. Zinner, P. Liberali, Organoids in image-based phenotypic chemical 
screens, Exp. Mol. Med. 53 (2021) 1495–1502. 

[59] A. Yadav, B. Seth, R.K. Chaturvedi, Brain organoids: tiny mirrors of human 
neurodevelopment and neurological disorders, Neuroscientist 27 (2021) 
388–426. 

[60] M.T. Kozlowski, C.J. Crook, H.T. Ku, Towards organoid culture without Matrigel, 
Commun. Biol. 4 (2021). 

[61] L. Deng, Artificial intelligence in the rising wave of deep learning the historical 
path and future outlook, IEEE Signal Process. Mag. 35 (2018) 180. -+. 

[62] R. Nunez, M. Allen, R. Gao, C.M. Rigoli, J. Relaford-Doyle, A. Semenuks, What 
happened to cognitive science? Nat. Human Behav. 3 (2019) 782–791. 

[63] Y.K. Dwivedi, L. Hughes, E. Ismagilova, G. Aarts, C. Coombs, T. Crick, Y. Duan, 
R. Dwivedi, J. Edwards, A. Eirug, V. Galanos, P.V. Ilavarasan, M. Janssen, 
P. Jones, A.K. Kar, H. Kizgin, B. Kronemann, B. Lal, B. Lucini, R. Medaglia, K. Le 
Meunier-FitzHugh, L.C. Le Meunier-FitzHugh, S. Misra, E. Mogaji, S.K. Sharma, J. 
B. Singh, V. Raghavan, R. Raman, N.P. Rana, S. Samothrakis, J. Spencer, 
K. Tamilmani, A. Tubadji, P. Walton, M.D. Williams, Artificial Intelligence (AI): 
multidisciplinary perspectives on emerging challenges, opportunities, and agenda 
for research, practice and policy, Int. J. Inf. Manag. 57 (2021). 

[64] M. Haenlein, A. Kaplan, A brief history of artificial intelligence: on the past, 
present, and future of artificial intelligence, Calif. Manag. Rev. 61 (2019) 5–14. 

[65] G.A. Miller, The cognitive revolution: a historical perspective, Trends Cognit. Sci. 
7 (2003) 141–144. 

[66] N. Bard, J.N. Foerster, S. Chandar, N. Burch, M. Lanctot, H.F. Song, E. Parisotto, 
V. Dumoulin, S. Moitra, E. Hughes, I. Dunning, S. Mourad, H. Larochelle, M. 
G. Bellemare, M. Bowling, The Hanabi challenge: a new frontier for AI research, 
Artif. Intell. (2020) 280. 

[67] V.L. Patel, E.H. Shortliffe, M. Stefanelli, P. Szolovits, M.R. Berthold, R. Bellazzi, 
A. Abu-Hanna, The coming of age of artificial intelligence in medicine, Artif. 
Intell. Med. 46 (2009) 5–17. 

[68] J. Hirschberg, C.D. Manning, Advances in natural language processing, Science 
349 (2015) 261–266. 

[69] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, 
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van 
den Driessche, T. Graepel, D. Hassabis, Mastering the game of Go without human 
knowledge, Nature 550 (2017) 354–+. 

[70] A. Mullard, What does AlphaFold mean for drug discovery? Nat. Rev. Drug 
Discov. 20 (2021) 725–727. 

[71] J.G. Kovoor, A.K. Gupta, S. Bacchi, ChatGPT: effective writing is succinct, BMJ 
(Clinical research ed.) 381 (2023), 1125-1125. 

[72] I. Ahmed, G. Jeon, F. Piccialli, From artificial intelligence to explainable artificial 
intelligence in industry 4.0: a survey on what, how, and where, IEEE Trans. Ind. 
Inf. 18 (2022) 5031–5042. 

[73] I. Antonopoulos, V. Robu, B. Couraud, D. Kirli, S. Norbu, A. Kiprakis, D. Flynn, 
S. Elizondo-Gonzalez, S. Wattam, Artificial intelligence and machine learning 
approaches to energy demand-side response: a systematic review, Renewable 
Sustainable Energy Rev. 130 (2020). 

[74] J. Zou, M. Huss, A. Abid, P. Mohammadi, A. Torkamani, A. Telenti, A primer on 
deep learning in genomics, Nat. Genet. 51 (2019) 12–18. 

[75] M. Alkhayrat, M. Aljnidi, K. Aljoumaa, A comparative dimensionality reduction 
study in telecom customer segmentation using deep learning and PCA, J. Big Data 
7 (2020). 

[76] P.R. Wurman, S. Barrett, K. Kawamoto, J. MacGlashan, K. Subramanian, T. 
J. Walsh, R. Capobianco, A. Devlic, F. Eckert, F. Fuchs, L. Gilpin, P. Khandelwal, 
V. Kompella, H. Lin, P. MacAlpine, D. Oller, T. Seno, C. Sherstan, M.D. Thomure, 
H. Aghabozorgi, L. Barrett, R. Douglas, D. Whitehead, P. Duerr, P. Stone, 
M. Spranger, H. Kitano, Outracing champion Gran Turismo drivers with deep 
reinforcement learning, Nature 602 (2022) 223–+. 

[77] J.J. Rodriguez, L.I. Kuncheva, Rotation forest: a new classifier ensemble method, 
IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006) 1619–1630. 

[78] J. Wang, C.J. Rao, M. Goh, X.P. Xiao, Risk assessment of coronary heart disease 
based on cloud-random forest, Artif. Intell. Rev. 56 (2023) 203–232. 

[79] S.F. Hussain, A novel robust kernel for classifying high-dimensional data using 
Support Vector Machines, Expert Syst. Appl. 131 (2019) 116–131. 

[80] Y. Artan, M.A. Haider, D.L. Langer, T.H. van der Kwast, A.J. Evans, Y.Y. Yang, M. 
N. Wernick, J. Trachtenberg, I.S. Yetik, Prostate cancer localization with 
multispectral MRI using cost-sensitive support vector machines and conditional 
random fields, IEEE Trans. Image Process. 19 (2010) 2444–2455. 

[81] M.P.S. Brown, W.N. Grundy, D. Lin, N. Cristianini, C.W. Sugnet, T.S. Furey, 
M. Ares, D. Haussler, Knowledge-based analysis of microarray gene expression 
data by using support vector machines, Proc. Natl. Acad. Sci. USA 97 (2000) 
262–267. 

[82] S. Dreiseitl, L. Ohno-Machado, Logistic regression and artificial neural network 
classification models: a methodology review, J. Biomed. Inf. 35 (2002) 352–359. 

[83] M. Toruner, E.V. Loftus, W.S. Harmsen, A.R. Zinsmeister, R. Orenstein, W. 
J. Sandborn, J.F. Colombel, L.J. Egan, Risk factors for opportunistic infections in 
patients with inflammatory bowel disease, Gastroenterology 134 (2008) 
929–936. 

[84] N. Terrin, C.H. Schmid, J.L. Griffith, R.B. D’Agostino, H.P. Selker, External 
validity of predictive models: a comparison of logistic regression, classification 
trees, and neural networks, J. Clin. Epidemiol. 56 (2003) 721–729. 

[85] H. Li, C. Xu, L. Ma, H. Bo, D. Zhang, MODENN: a shallow broad neural network 
model based on multi-order descartes expansion, IEEE Trans. Pattern Anal. Mach. 
Intell. 44 (2022) 9417–9433. 

L. Bai et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S2452-199X(23)00276-1/sref31
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref31
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref32
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref32
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref32
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref33
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref33
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref33
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref33
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref34
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref34
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref34
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref34
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref35
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref35
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref35
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref36
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref36
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref36
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref37
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref37
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref37
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref38
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref38
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref38
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref38
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref39
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref39
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref39
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref39
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref40
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref40
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref40
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref41
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref41
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref41
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref41
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref42
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref42
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref42
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref42
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref43
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref43
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref43
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref43
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref43
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref43
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref43
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref44
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref44
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref44
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref45
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref45
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref45
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref46
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref46
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref47
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref47
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref47
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref47
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref48
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref48
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref49
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref49
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref50
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref50
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref50
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref50
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref51
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref51
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref52
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref52
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref52
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref53
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref53
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref53
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref54
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref54
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref55
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref55
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref55
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref56
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref56
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref57
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref57
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref57
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref58
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref58
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref59
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref59
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref59
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref60
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref60
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref61
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref61
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref62
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref62
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref63
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref63
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref63
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref63
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref63
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref63
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref63
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref63
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref64
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref64
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref65
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref65
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref66
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref66
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref66
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref66
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref67
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref67
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref67
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref68
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref68
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref69
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref69
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref69
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref69
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref70
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref70
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref71
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref71
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref72
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref72
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref72
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref73
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref73
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref73
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref73
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref74
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref74
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref75
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref75
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref75
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref76
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref76
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref76
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref76
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref76
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref76
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref77
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref77
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref78
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref78
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref79
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref79
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref80
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref80
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref80
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref80
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref81
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref81
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref81
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref81
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref82
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref82
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref83
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref83
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref83
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref83
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref84
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref84
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref84
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref85
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref85
http://refhub.elsevier.com/S2452-199X(23)00276-1/sref85


Bioactive Materials 31 (2024) 525–548

547

[86] S.C. Huang, A. Pareek, S. Seyyedi, I. Banerjee, M.P. Lungren, Fusion of medical 
imaging and electronic health records using deep learning: a systematic review 
and implementation guidelines, npj Digit. Med. 3 (2020). 

[87] W. Ren, J. Zhang, J. Pan, S. Liu, J.S. Ren, J. Du, X. Cao, M.-H. Yang, Deblurring 
dynamic scenes via spatially varying recurrent neural networks, IEEE Trans. 
Pattern Anal. Mach. Intell. 44 (2022) 3974–3987. 

[88] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, 
G. Corrado, S. Thrun, J. Dean, A guide to deep learning in healthcare, Nat. Med. 
25 (2019) 24–29. 

[89] J. Wang, X. Hu, Convolutional neural networks with gated recurrent connections, 
IEEE Trans. Pattern Anal. Mach. Intell. 44 (2022) 3421–3435. 

[90] H. Alghodhaifi, A. Alghodhaifi, M. Alghodhaifi, Predicting invasive ductal 
carcinoma in breast histology images using convolutional neural network, in: 
Proceedings of the 2019 Ieee National Aerospace and Electronics Conference 
(Naecon), 2019, pp. 374–378. 

[91] A. Bessadok, M.A. Mahjoub, I. Rekik, Graph neural networks in network 
neuroscience, IEEE Trans. Pattern Anal. Mach. Intell. 45 (2023) 5833–5848. 

[92] J.C. Xiong, Z.P. Xiong, K.X. Chen, H.L. Jiang, M.Y. Zheng, Graph neural networks 
for automated de novo drug design, Drug Discov. Today 26 (2021) 1382–1393. 

[93] J. Selva, A.S. Johansen, S. Escalera, K. Nasrollahi, T.B. Moeslund, A. Clapes, 
Video Transformers: A Survey, IEEE Trans. Pattern Anal. Mach. Intell. (2023). 

[94] I. Li, J. Pan, J. Goldwasser, N. Verma, W.P. Wong, M.Y. Nuzumlali, B. Rosand, Y. 
X. Li, M. Zhang, D. Chang, R.A. Taylor, H.M. Krumholz, D. Radev, Neural Natural 
Language Processing for unstructured data in electronic health records: a review, 
Comput. Sci. Rev. 46 (2022). 

[95] H. Haick, N. Tang, Artificial intelligence in medical sensors for clinical decisions, 
ACS Nano 15 (2021) 3557–3567. 

[96] H.C.S. Chan, H. Shan, T. Dahoun, H. Vogel, S. Yuan, Advancing drug discovery 
via artificial intelligence (vol 40, pg 592, 2019), Trends Pharmacol. Sci. 40 
(2019), 801-801. 

[97] S.M.H. Luk, E.C. Ford, M.H. Phillips, A.M. Kalet, Improving the quality of care in 
radiation oncology using artificial intelligence, Clin. Oncol. 34 (2022) 89–98. 

[98] S.M. Erickson, B. Rockwern, M. Koltov, R.M. McLean, P. Amer Coll, Putting 
patients first by reducing administrative tasks in health care: a position paper of 
the American College of physicians, Ann. Intern. Med. 166 (2017) 659. -+. 

[99] C. Garcia-Vidal, G. Sanjuan, P. Puerta-Alcalde, E. Moreno-Garcia, A. Soriano, 
Artificial intelligence to support clinical decision-making processes, 
EBioMedicine 46 (2019) 27–29. 

[100] L. Seyyed-Kalantari, H. Zhang, M.B.A. McDermott, I.Y. Chen, M. Ghassemi, 
Underdiagnosis bias of artificial intelligence algorithms applied to chest 
radiographs in under-served patient populations, Nat. Med. 27 (2021) 2176. -+. 

[101] P.A. Karplus, K. Diederichs, Linking crystallographic model and data quality, 
Science 336 (2012) 1030–1033. 

[102] G. Papagni, J. de Pagter, S. Zafari, M. Filzmoser, S.T. Koeszegi, Artificial Agents’ 
Explainability to Support Trust: Considerations on Timing and Context, Ai & 
Society, 2022. 

[103] E.M. Cahan, T. Hernandez-Boussard, S. Thadaney-Israni, D.L. Rubin, Putting the 
data before the algorithm in big data addressing personalized healthcare, Npj 
Digit. Med. 2 (2019). 

[104] S. Du, C. Xie, Paradoxes of artificial intelligence in consumer markets: ethical 
challenges and opportunities, J. Bus. Res. 129 (2021) 961–974. 

[105] Z. Gan, X. Qin, H. Liu, J. Liu, J. Qin, Recent advances in defined hydrogels in 
organoid research, Bioact. Mater. 28 (2023) 386–401. 

[106] R. Morizane, J.V. Bonventre, Generation of nephron progenitor cells and kidney 
organoids from human pluripotent stem cells, Nat. Protoc. 12 (2017). 

[107] K.G. Abdullah, C.E. Bird, J.D. Buehler, L.C. Gattie, M.R. Savani, A.C. Sternisha, 
Y. Xiao, M.M. Levitt, W.H. Hicks, W.H. Li, D.M.O. Ramirez, T. Patel, T. Garzon- 
Muvdi, S. Barnett, G. Zhang, D.M. Ashley, K.J. Hatanpaa, T.E. Richardson, S. 
K. McBrayer, Establishment of patient-derived organoid models of lower-grade 
glioma, Neuro Oncol. 24 (2022) 612–623. 

[108] J.A. Bagley, D. Reumann, S. Bian, J. Lévi-Strauss, J.A. Knoblich, Fused cerebral 
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