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A B S T R A C T   

Knowledge of the energy and macronutrient content of complex foods is essential for the food industry and to 
implement population-based dietary guidelines. However, conventional methodologies are time-consuming, 
require the use of chemical products and the sample cannot be recovered. We hypothesize that the nutritional 
value of heterogeneous food products can be readily measured instead by using hyperspectral imaging systems 
(NIR and VIS-NIR) combined with mathematical models previously fitted with spectral profiles.118 samples from 
different food products were collected for building the predictive models using their hyperspectral imaging data 
as predictors and their nutritional values as dependent variables. Ten different models were screened (Multi-
variate Linear regression, Lasso regression, Rigde regression, Elastic Net regression, K-Neighbors regression, 
Decision trees regression, Partial Least Square, Support Vector Machines, Gradient Boosting regression and 
Random Forest regression). The best results were obtained with Ridge regression for all parameters. The best 
performance was for estimating the protein content with a RMSE of 1.02 and a R2 equal to 0.88 in a test set, 
following by moisture (RMSE of 2.21 and R2 equal to 0.85), energy value (RMSE of 21.84 and R2 equal to 0.76) 
and total fat (RMSE of 2.17 and R2 equal to 0.72). The performance with carbohydrates (RMSE of 2.12 and R2 

equal to 0.61) and ashes (RMSE of 0.25 and R2 equal to 0.38) was worse. This study shows that it is possible to 
predict the energy and nutrient values of processed complex foods, using hyperspectral imaging systems com-
bined with supervised machine learning methods.   

1. Introduction 

Determining the nutritional value of foods is important for the food 
industry to allow for accurate package labelling and appropriate pack-
aging conditions, as well as the development of new food products and 
innovation of existing ones. In addition, knowing the composition of 
foods in terms of nutrients and energy content is essential for the con-
struction of food composition databases, which are essential for 
designing therapeutic diets and formulating population dietary guide-
lines, amongst other uses (Sociedad Española de Nutrición (SEN), 2017). 
Despite recent progress in the field of food technology, there is still a 
growing interest in finding faster, cheaper and nondestructive 

techniques for determining the nutritional composition of foods. With 
the incorporation of artificial intelligence (AI) and machine learning 
(ML) models in the equation, this problem is being progressively solved. 
The food and nutrition field is not an exception. There are a lot of ap-
plications of ML, from food safety (Deng, X. et al., 2021; Wang, X et al., 
2022) to sales prediction (Tsoumakas, G., 2019). 

ML is a subfield of AI that mimics the way in which humans learn. ML 
basically learns hidden patters from data. There are several ways of 
learning from data, and depending on this the algorithms used are very 
different. When the aim is to carry out regression or classification tasks, 
the type of ML learning is called supervised. These supervised ML 
models try to find the best way to predict a value (regression if is a 
continuous variable or classification when the variable is categorical) 
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using features from the data. The more information is provided, the 
more accurate the model is making its predictions. 

Nutrient levels in foods are very important for human health given 
their proven impact on the development of several diseases (Afshin, A. 
et al., 2019). Specifically, the amount and type of carbohydrate, protein 
and fat (particularly refined starch, non-lean protein and saturated fat), 
as well as the energy load present in food have been directly linked with 
the prevalence of obesity, type 2 diabetes, stroke, cancer and other 
chronic diseases, for which a controlled intake of these nutrients is 
recommended (World Health Organization, 2019; U.S. Department of 
Health and Human Services, 2024). Current methods to quantitatively 
characterize food composition and determine its energy value, are based 
on analytical chemistry. However, these conventional methodologies 
are slow processes that require chemical products and trained techni-
cians, moreover, they are destructive processes in which the analyzed 
food cannot be recovered, and sometimes expensive materials are 
needed (Ingle, P.D. et al., 2016). 

Hyperspectral imaging (HSI) techniques use different wavelength 
ranges, such as ultraviolet (200–400 nm), visible (380–800 nm), VIS- 
NIR (400–1000 nm), NIR (900–1700 nm), and short-wave infrared 
(970–2500 nm). These wavelengths have been developed for optical 
sensing of different types of samples (Lohumi, S.et al., 2015). One can 
add a third dimension to the data combining several images from the 
object and create a hypercube, where each pixel has spectral data, this is 
known as a hyperspectral image. Overtones of the fundamental vibra-
tions occurring in the infrared (IR) region are the origin of the different 
absorptions, the predominantly features including: the methyl C–H 
stretching vibrations, methylene C–H stretching vibrations, aromatic 
C–H stretching vibrations, and O–H stretching vibrations. There are 
other less predominant features: methoxy C–H stretching, carbonyl 
associated C–H stretching; N–H from primary amides, secondary amides 
(both alkyl, and aryl group associations), N–H from primary, secondary, 
and tertiary amines, and N–H from amine salts (Wiley Analytical Sci-
ence, 2014). The NIR methods relies on the correlation between har-
monic vibrations and quantity of absorber and type of absorbing 
molecules that are present in a sample (Wiley Analytical Science, 2014). 

The combination of HSI systems together with AI is cornerstone to 
finding low-cost, rapid and nondestructive methods that can be used 
alongside conventional techniques. It is called as “low-cost” because, 
although the initial outlay is high and must be calibrated, maintenance 
is simple afterwards, and its use only requires taking photos to extract 
the spectral values. HSI is already being widely applied to determine the 
nutritional composition of animal feed as well as food products for 
human consumption, thanks especially to its ability to accurately predict 
nutritive values for protein and fat (Givens, D. et al., 1997). The ab-
sorption spectrum in the NIR region can provide information about the 
nutritional components of the sample. The NIR spectral region can be 
useful for predicting the content of nutritional values because food 
components have absorptions peaks in this region (Ingle, P.D.et al., 

2016) that represent the vibration of atoms bonding. On the other hand, 
VIS-NIR spectroscopy is a molecular/vibrational technique used to study 
the interactions of electromagnetic waves within a sample. Vibrations 
also provide information about the general molecular conformation, 
structure and intermolecular interactions within a sample (Ghidini, S. 
et al., 2019). The main two advantages of hyperspectral imaging are on 
the one hand its speed, and second, that it does not require sample ho-
mogenization because the entire sample can be scanned while ac-
counting for sample heterogeneity (Kämper, W. et al., 2020), but the 
penetrance of NIR radiation is low, this means that stacked food will be 
an issue that has to be solved by expanding the feed well on the surface. 
Based on this principle, HSI could be useful to measure the nutritional 
composition of complex food products that consist of a combination of 
different ingredients like broad beans and green beans or potato, carrot, 
peas (Fig. 1). The ingredient combined in the products could be either 
vegetables that come from different plants, different vegetable parts 
(roots, seeds, tubers) or vegetables combined with meat elements like 
ham or minced meat. meat. 

Currently there is a lack of tools to measure the nutritional compo-
sition of complex meals in a time-efficient way, beyond using manu-
facturers’ packaging information (food labels) and calculating 
proportions (which is only an estimative method). The use of HSI sys-
tems together with ML models offers a great opportunity to solve this 
problem, by obtaining objective results in real time from intact food 
products that do not need to be discarded and can be directly consumed 
or displayed in supermarket shelves. 

Knowing the energy and macronutrient content of foods such as 

Abbreviations 

AI artificial intelligence 
ML machine learning 
HSI hyperspectral imaging 
SNV standard normal variate 
SG1 Savitzky–Golay +1st derivate 
SG2 Savitzky–Golay +2nd derivate 
VIS-NIR visible-near infrared 
NIR near infrared 
IR infrared 
nm nanometers 
MC mean centering 

RMSE root mean squared error 
RMSEC root mean squared error in calibration 
RMSECV root mean squared error in cross-validation 
RMSEP root mean squared error in prediction in the test set 
R2 coefficient of determination 
ROI region of interest 
PCA principal component analysis 
LR Linear regression 
KNN K-Neighbors 
PLS Partial Least Square 
SVM Support Vector Machines 
GBR Gradient Boosting regression 
RF Random Forest regression  

Fig. 1. RGB images obtained from different dishes broad beans and green beans 
(left) and potato, carrot, and peas (right). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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protein, fat and carbohydrate levels is essential for food development 
and for human health. We hypothesize that we can estimate the energy 
and macronutrient content of heterogeneous food products using HSI 
systems combined with mathematical models previously fitted with 
spectral profiles. These techniques could replace time-consuming and 
destructive chemical analyses when fast results are needed. 

2. Material and methods 

2.1. Samples 

One hundred and eighteen samples from different food products 
were collected between 2021 and 2022. The samples were purchased in 
local supermarkets in Navarra, Spain (Eroski, Alcampo and Mercadona). 
All the samples included more than one ingredient in their formulation 
and consisted of mixtures of cooked vegetables, legumes, meat, rice, 
pasta, sauces and similar combinations. As can be shown in the Figs. 1 
and 2, the samples were very heterogeneous, them could be products 
ready to eat or mixes ready to cock. The ingredients of the samples can 
be of the same nature (vegetables) (Fig. 1) or mixes (meat and vegeta-
bles) (Fig. 2), and the section of the vegetable could be variable (roots, 
tubers, seeds …) (Fig. 1). All samples were stored according to the 
manufacturer’s instructions (including at room temperature, 4 ◦C or 
− 20 ◦C) until analysis. 

2.2. Nutritional analysis 

Conventional nutritional analyses were performed at the National 
Centre for Food Technology and Safety (CNTA) laboratory according to 
the following methods. Moisture/dry matter was obtained by the 
gravimetric method according to standard methods (Métodos Oficiales 
de Análisis de Alimentos. AMV Ediciones Mundi Prensa (1994)). The 
previously homogenized sample was dried at 102 ◦C until constant 
weight. Fat content was determined by gravimetry after Soxhlet 
extraction according to standard methods (Order of 17 September 1981; 
Order of 31 July 1979). Protein content in samples was determined by 
volumetric assay through Kjeldhal digestion according to standard 
methods (Métodos Oficiales de Análisis de Alimentos. AMV Ediciones 
Mundi Prensa. (1994)). The previously homogenized sample was first 
digested with sulfuric acid, then distilled to solubilize the ammonium 
cations and finally titrated with hydrochloric acid. Ash was determined 
by gravimetry after calcination of the sample according to standard 
methods (Métodos Oficiales de Análisis de Alimentos. AMV Ediciones 
Mundi Prensa. (1994)). The previously homogenized sample was 
pre-dried at 98 ◦C for 30 min and then calcinated in muffle at 550 ◦C for 
8 h. The tempered sample was finally weighted. Finally, macronutrient 

and energy value were estimated with the Atwater conversion factors as 
described previously (Food energy – methods of analysis and conversion 
factors:2002Food energy – methods of analysis and conversion fac-
tors:2002) using the formulas (1 and 2): 

Carbohydrates
(

g
100g

)

= 100 − Moisture
(

g
100g

)

− Ash
(

g
100g

)

− Fat
(

g
100g

)

− Protein
(

g
100g

)

(1)  

Kcal
100g

= [4 ∗ (Carbohydrates+Protein)+ (9 ∗ Fat)] (2) 

For whole nutritional analysis 400 g of sample was used. After ho-
mogenization the sample was split into aliquots of 1–5 g each to measure 
each nutritional parameter. Homogenization was performed using a 
GRINDOMIX or Ultra-Turrax equipment depending on the degree of 
sample heterogeneity. 

2.3. Hyperspectral imaging systems 

The imaging system employed acquires the hyperspectral images in 
the reflectance mode. The HSI system consists of two components: a line- 
scanning with two spectrographs (Specim FX10 and Specim FX17, 
Specim, Spectral Imaging Ltd., Oulu, Finland) covering the spectral 
range of the VIS-NIR region (400–1000 nm) and the NIR region 
(900–1700 nm); and an illumination source including a group of six light 
bulbs of stabilized halogen (each bulb has a voltage of 12 V and a power 
of 20 W), where three light bulbs are located at each side and with a 
perpendicular angle to illuminate the mobile platform where the tray 
with the sample is placed. Additionally, the HIS equipment requires a 
computer system equipped with an imaging acquisition software (Lumo- 
Scanner, Specim, Spectral Imaging Ltd., Oulu, Finland) to allow 
adjusting the most important parameters to obtain high quality images. 
Moreover, the spectral resolution is 3.5 nm and the spatial sampling of 
the camera is 640 pixels. The Fig. 3 shows a picture of imagen acquisi-
tion system employee and in the Table 1 the attributes and parameters 
for both HIS systems is summarized. 

2.4. Hyperspectral imaging sampling 

The process to acquire the hyperspectral image was the following. 
Frozen samples were thawed and samples that were stored in the fridge 
were tempered at room temperature, before measuring. Samples were 
then placed on a tray before placing them in the conveyor. The tray 
dimensions are 17,2 × 12,7 cm, and it can fit around 350–400 g. A single 
photo was taken of each sample after configuring the parameters. The 
collected images are named “hypercubes” with three dimensions (x,y,λ). 
The dimension of the original RGB image were of 1614 × 640 x 3 pixels, 
after reducing the background and the white plastic tray the image is 
reduced obtaining a hypercube dimension of 524 × 320 x 3 pixels. After 
the image was obtained, a segmentation process was carried out to 
retain only the values of the spectrum that match the product, called the 
region of interest (ROI), and to avoid capturing information about the 
background. This segmentation process is based on the selection of three 
wavelengths (1056.9 nm, 1213.87 nm, 1347.3 nm for NIR range and 
797.59 nm, 542.91 nm, 484.47 nm for VNIR range) and by developing 
code in Matlab. The size of ROI was adapted to each sample, because the 
quantity of each recipe was different. The Fig. 4 shows the different steps 
followed from RGB image acquisition to the final ROI image. After 
selecting the ROI, the extraction of the reflectance spectrum was carried 
out. This was obtained as the average of all the spectra associated with 
each pixel in the region of interest so finally, it was obtained one spec-
trum for each sample. Subsequently, the correction was made with the 
corresponding black and white according to the following equation (3), 
being reflectance the calibrated true reflectance, R0 the measurement, 

Fig. 2. RGB picture form different dishes on the left tripes with chickpeas and 
on the right meatballs with peas and tomato sauce. 
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and Rw and Rd the white and dark reference, respectively. 

Reflectance=
R0 − Rd

Rw − Rd
(3) 

For this reason, a black and white reference image was captured 
beforehand. To capture reference white was used a uniform Teflon white 
tile with about 100% reflectance, and the dark reference image of 0% 
reflectance was captured automatically by closing the lens of the 
camera. 

The same method was repeated for all ROI images resulting in a 
spectral matrix of approximately 118 samples × 224 bands. 

After the hyperspectral imaging was obtained, the samples were 
grinded to measure the nutritional parameters. 

2.5. Data preprocessing, analysis and modelling 

Data analysis and modelling were performed with Python (Python 
Software Foundation). From the spectra obtained by the hyperspectral 
camera, an analysis pipeline was carried out including different pre-
processing methods and models in order to find the combination that fits 
better the hyperspectral imaging with the actual nutritional values. 

To evaluate the predictive ability and to determine the adjustment of 
the model two regression metrics were used: RMSE (root mean squared 
error) and R2 coefficient. The first one measures the difference between 
the model’s predicted values and the actual values (the smaller the 
RMSE value, the better). The second one is a metric that assesses the fit 
of the model to an adjusted regression line. It shows us how much of the 
target variable’s variation can be explained by the model. 

The normalized spectra obtained by the camera were preprocessed 
with different methods (standard normal variate (SNV) method, the 
Savitzky–Golay + 1st derivate (SG1) and the Savitzky–Golay + 2nd 
derivate (SG2), all followed by mean centering (MC). Savitzky–Golay 
methods include a smoothing step before applying the derivate. 

The objective of each method is different. SNV belongs to scatter- 
corrective methods that try to remove the scatter and optical path var-
iations. This method eliminates the multiplicative interferences pro-
duced by the diffraction and difference in the particle size and its effect 
is independent of the original absorption values (Barnes, R.J. et al., 
1993; Echávarri-Dublán, J. et al., 2022). SNV centers and scales each 
spectra obtaining a mean value and variance equal to 0 and 1 respec-
tively. On the other hand, Savitzky–Golay belongs to a class of 
smoothing methods and is used to reduce the random noise appearing in 
the raw signal. First and second derivatives are techniques used to 
remove a baseline shift from the signal. It is based on adjusting an 
appropriate polynomial degree for a small wavelength interval. This 
changes the original values but removes some of the noise that affects 

Fig. 3. Imagen acquisition system employee.  

Table 1 
Summary of attributes and parameters for HSI systems (VIS-NIR and NIR).   

Specim FX10 (VIS-NIR) Specim FX17 (NIR) 

Wavelength range 400–1000 nm 900–1700 nm 
Variables 224 224 
Spectral resolution 2,7 mm 3,5 mm 
Image resolution (pixels) 1024 × 1024 640 × 640 
Motor speed 10 mm/s 8 mm/s 
Exposure time 19 ms 2 ms 
Frame rate 40 Hz 20 Hz 
Detector CMOS InGaAs  

Fig. 4. Original RGB image (on the left), original RGB image cropped (on the middle) and ROI image (on the right).  
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the spectra (Todeschini, R. 1998; Echávarri-Dublán, J.et al., 2022). The 
second derivative removes linear and constant background noises. Mean 
centering consists in changing the origin of the new variable scale to the 
mean of the variable before centering. The fundamental property of 
centered data is that the mean value of each of the variables is equal to 
zero. This pretreatment does not modify the variance of the data 
(Todeschini, R. 1998; Echávarri-Dublán, J. et al., 2022). Finally, before 
modelling (except for PLS), a dimension reduction method was applied 
to the data, Principal Component Analysis (PCA). This technique is 
useful for both exploring high dimensional data and reducing the 
complexity of the data. PCA is an unsupervised technique for pattern 
recognition based on the capture of the major source of explained 
variance. This technique transforms the predictive features into 
orthogonal components, which solves the problem of multicollinearity 
and reduces dimensionality (Vega-Vilca, JC, and Guzmán, JJ. 2011). 
PCA decomposes the original raw data (spectra) into loading and scoring 
matrices obtaining a lower number of principal components compared 
to the original features but retaining the source of variation present in 
the original data. Loadings are valuable for assessing the significance of 
each feature in explaining the variability observed in the principal 
components. After the transformation, the early first components are 
able to explain most of the variation in the original data (Zhu, F. et al., 
2013; Jiang, H. et al., 2021; Cheng, J. H. et al., 2015; Li, P. et al., 2023). 
This allows exploring the data distribution using two dimensional or 
three-dimensional scatter plots with the first, second and third principal 
components, and thus identify possible outliers or new trends in the 
data. 

To find which model better fitted our data, up to 10 algorithms were 
evaluated including linear and nonlinear models and ensemble methods 
using the Scikit learn library (Pedregosa, F. et al., 2011) in Python. This 
process is referred to as the “screening stage” (see details below). 
Multivariate Linear regression (MLR), Lasso regression (Lasso), Rigde 
regression (Ridge), Elastic Net regression (ElasticNet), K-Neighbors 
(KNN), Decision trees (Trees), Partial Least Square (PLS), Support Vector 
Machines (SVM), Gradient Boosting regression (GBR) and Random 
Forest regression (RF) were applied. The peculiarities of each method 
are out of the scope of this work but can be consulted on-line (Sciki-
t-learn: machine learning in Python). 

Previous modeling, to determine the presence of outliers in the 
sample, a combination of techniques and metrics was used (PCA and 
Leverge). PCA was used to visually evaluate the distribution of the data 
in two or three dimensions. Leverage is a PCA-based measure of out-
lyingness. Leverage can be used to assess the potential influence of each 
observation on the regression fit, and it is bounded between 0 and 1. 
This measure is related to the Mahalanobis distance (Mejia, A.F. et al., 
2017). 

To evaluate the performance of the models the dataset was randomly 
split into a training set (80% from original data) and a test set. The 
training set was used to select the best combination of preprocess 
method and model using 5 repeated 5-fold cross validation and to fit the 
selected combination. Cross validation is used to estimate the perfor-
mance of algorithms with less variance than a single split into train and 
validation. The 5-fold cross validation splits the data in 5 parts, four of 
them are used to train the algorithm holding one to assess the perfor-
mance of the model. This process is repeated as many times as each fold 
of the dataset is given a chance to be used to evaluate the model. So, 
when the cross validation is finished, you end up with 5 different per-
formance scores. In our study, we ended up with 25 as a repeated 5-fold 
cross validation algorithm was used. Finally, you can summarize the 
performance of the model using mean and standard deviation. 

The screening stage mentioned above tries to find the model that best 
fits the data and encompasses several steps. The first step consists in 
establishing a battery of different models to be evaluated (in our study 
we selected 10 algorithms) and select the metric that will be applied to 
evaluate the performance of the models. As this is a regression problem 
RMSE was used to compare which model fits better. After that, each 

algorithm in its raw configuration (without modifying any hyper-
parameter) is trained and its performance is evaluated using cross 
validation which results in an RMSE aggregated score for each model. 
After this step, each algorithm becomes ranked according to RMSE 
which allows to select the model (or models) that fits better to the data 
(lower values of RMSE). 

Once the model with the best performance has been identified in its 
raw configuration, hyperparameter tuning is needed. The hyper-
parameter tuning is an iterative process in which every iteration changes 
an hyperparameter value following the evaluation of the performance of 
the model configuration to achieve the best configuration of hyper-
parameters that produces the best results according to RMSE. To develop 
this process there are several approaches, a systematic search which 
evaluates each possible combination of hyperparameters, a random 
search which evaluates a random selection of combinations of hyper-
parameters and a Bayesian optimization that chooses the combinations 
of hyperparameters based on previous results. To perform this process, a 
training set and cross validation is used again. The approach that we 
chose in our study was the systematic search. The hyperparameters that 
our group used to tune the algorithms are summarized in the Table 2. 

After that process, the test set (test set denomination is used to avoid 
confusion with cross validation) was used to validate the performance of 
the fitted model. The use of training and test sets give us information 
about the performance of the model in terms of bias, variance and 
fitting. Bias is the error that occurs when there are differences between 
the predicted value and the actual value. These errors are systematic and 
occur when wrong assumptions are made in the process. On the other 
hand, the variance shows how the model depends on the data chosen to 
fit the predictive model, in other words, how the performance of the 
model changes when it is fitted with different subsets of data. The bal-
ance between these two concepts leads to the third one, fitting. When 
there is a low variance with a high bias, the model is underfitted; a high 
variance and a low bias leads to overfitting; a high variance and a high 
bias means the model is inconsistent and inaccurate. Finally, with a low 
variance and a low bias, the model is able to generalize well and the 
predictions will be consistent and accurate (although this is impossible 
in practice). 

To perform all these process Python 3.11 was used. The libraries 
employed were pandas, numpy, sklearn, matplotlib, seaborn, statsmo-
dels and scipy. 

3. Results 

3.1. Description of samples and nutritional analysis 

After the identification of outliers, the original pictures were checked 
in order to assess if there were any artefact in it. This process concluded 
that the deviation of the 7 NIR samples were produced by technical 
sources so they were removed. The final set used to develop the different 
predictive models consisted of 111 NIR samples. 

In the case of the Vis-NIR samples, no outliers were detected, so the 
process was carried out with 118 samples. 

A basic description of different nutritional parameters measured by 
conventional analysis is summarized in Table 3. 

As observed in Table 3, each objective variable was continuous, with 
a wide range of values, probably reflecting the wide range of food 
products included in the study. As expected, the attribute with the 
greatest range was energy content (range from 23.5 kcal/100 g to 204 
kcal/100 g). 

3.2. NIRs, Vis-NIRs analysis and modeling 

Despite the raw wavelength range was from 935.61 to 1720 nm, the 
spectra were trimmed at the end (from 1670 to 1720 nm) because these 
wavelengths show some random noise. For the Vis-NIR spectra, there 
was no random noise so the whole spectra were used. 
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After the random splitting, 80% of the spectra were assigned to the 
calibration (training) set, while the remaining 20% were assigned to the 
test (validation) set, for both the NIR and Vis-NIR samples sets. 

In the process of screening, we evaluated the performance of 
combine the different preprocessing techniques (SNV, SG1, SG2 with 
and without mean centering and with and without dimensional reduc-
tion) and each algorithm evaluated (algorithms in raw configuration). It 
means that we evaluated 120 combinations for each nutritional 
parameter and energetic value. Using cross validation techniques 
(repeated 5-fold cross validation), we obtained an aggregated RMSE 
value for each combination of preprocessing technique and algorithm, 
this allows us to select the better (one or more) combination for each 
nutritional parameter. These were the algorithms selected to be sub-
jected to hyperparameter tuning through cross validation. This process 
was done twice, once using the NIR spectra and once using VIS-NIR 
spectra. 

Once the process of screening of different pipelines was done, the 
better performance was obtained using NIR spectra starting with SNV, 
followed by MC (preprocessing) and PCA (dimensional reduction), and 
using the mathematical algorithm of Ridge regression (linear regression 
penalized with Ridge) as predictive model for all the parameters 
evaluated. 

Table 4 summarizes the results obtained for each nutritional 
parameter in both the training (cross validation and whole training set) 
and the test sets. 

As it can be observed, there are no major differences between the 
results obtained in the training set vs. the test sets (except for ashes). 
This is indicative of a low variance and means that the model is able to 
generalize when new data are supplied. 

According to the R2 value, the nutritional parameter with the best fit, 
was protein content with a value of 0.88 in the test set, plus a RMSEP of 
1.02. The next best parameter was moisture with a R2 value of 0.85, and 
RMSEP of 2.21 (test set). The remaining parameters have values smaller 
than 0.80 but greater than 0.60, except for the model fitted with ashes 
which has a poor performance (R2 of 0.38). 

The Fig. 5 shows the different scatterplots showing the predicted 
values with Ridge regression models using NIR spectra versus the actual 
values for each parameter. 

Table 5 summarizes the results obtained with the VIS-NIR spectra. 

Table 2 
Specific hyperparameters selected to be tuned in case that the algorithm is 
selected to hyperparameter tuning.  

Model Hyperparameters specific to each model 

Multivariate Linear 
regression 

There is not hyperparameter to be tunned 

Lasso regression  - alpha (constant that multiplies L1 term)  
- random_state (Controls the randomness of the estimator) 

Rigde regression  - alpha (constant that multiplies L2 term)  
- random_state (Controls the randomness of the estimator) 

Elastic Net regression  - alpha (constant that multiplies penalization terms)  
- l1_ratio (elastic net mixing parameter)  
- random_state (Controls the randomness of the estimator) 

K-Neighbors  - n_neighbors (Number of neighbors)  
- algorithm (algorithm used to compute the nearest 

neighbors)  
- metric (metric to use the distance computation)  
- weights (Weight function used in prediction)  
- leaf_size (Leaf size passed to BallTree or KDTree) 

Decision trees  - criterion (to measure the quality of a split)  
- max_depth (Maximum depth of the tree)  
- min_samples_split (Minimum number of samples 

required to split an internal node)  
- min_samples_leaf (Minimum of samples required to be at 

a leaf)  
- random_state (Controls the randomness of the estimator) 

Partial Least Square  - n_components (Number of components to keep, in other 
languages are known as latent variables)  

- tolerance (Is a convergence criteria) 
Support Vector 

Machines  
- kernel (Kernel type to be use in the algorithm)  
- gamma (kernel coefficient)  
- C (Regularization parameter)  
- tol (Criterion for stopping) 

Gradient Boosting 
regression  

- loss (Loss fuction to be optimized)  
- learning_rate (Learning rate shrinks the contribution of 

each tree)  
- n _estimators (number of boosting stages to perform)  
- criterion (Function to measure the quality of a split)  
- min_samples_leaf (Minimum of samples required to be at 

a leaf)  
- min_samples_split (Minimum number of samples 

required to split an internal node)  
- max_depth (Maximum depth of the individual regression 

estimator)  
- max_feature (The number of features to consider when 

looking for the best split)  
- random_state (Controls the randomness of the estimator) 

Random Forest 
regression  

- n _estimators (number of boosting stages to perform)  
- criterion (Function to measure the quality of a split)  
- min_samples_leaf (Minimum of samples required to be at 

a leaf)  
- min_samples_split (Minimum number of samples 

required to split an internal node)  
- max_depth (Maximum depth of the individual regression 

estimator)  
- max_feature (The number of features to consider when 

looking for the best split)  
- boostrap (Whether bootstrap samples are used when 

building trees)  
- random_state (Controls the randomness of the estimator)  

Table 3 
Statistical descriptive analysis for each conventional nutritional parameter measured in the different food products.  

Nutritional parameter Whole dataset Training set Test set 

Range Mean ± SD Range Mean ± SD Range Mean ± SD 

Energy (kcal/100 g) 23.5–204 113.96 ± 44.15 23.5–204 106.32 ± 41.23 38.00–190 116.96 ± 45.95 
Protein (g/100 g) 1.12–17.36 6.54 ± 3.77 1.12–17.36 6.23 ± 3.61 1.30–16.19 6.46 ± 3.93 
Total fat (g/100 g) 0.3–15 6.14 ± 3.92 0.3–15 5.32 ± 3.72 0.30–15.00 6.34 ± 4.29 
Carbohydrates (g/100 g) 0.5–16 7.07 ± 3.12 0.5–16 7.33 ± 3.03 0.5–11.70 7.37 ± 3.12 
Ashes (g/100 g) 0.3–2.20 1.34 ± 0.37 0.3–2.10 1.34 ± 0.34 0.3–2.20 1.43 ± 0.41 
Moisture (g/100 g) 66.0–92.40 77.17 ± 6.40 66.0–92.40 77.83 ± 6.01 68.5–88.00 76.90 ± 5.97  

Table 4 
Summary of regression metrics obtained for the different nutritional parameters 
in the pipeline SNV-MC-PCA-Ridge regression applied in data obtained in NIR 
wavelength range. RMSEC: root mean squared error in calibration set; RMSECV: 
root mean squared error in cross validation; RMSEP: root mean squared error in 
test set.  

Nutritional parameter Training set Test set 

RMSEC R2 RMSECV RMSEP R2 

Energy 16.20 0.86 20.01 21.84 0.76 
Protein 0.79 0.95 1.56 1.02 0.88 
Total fat 1.70 0.80 2.06 2.17 0.72 
Carbohydrates 1.09 0.86 1.87 2.12 0.61 
Ashes 0.15 0.85 0.35 0.25 0.38 
Moisture 2.34 0.86 2.96 2.21 0.85  
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Fig. 5. Scatter plots of predicted values versus actual values for each parameter: carbohydrates (up-left), energetic value (up-right), moisture (middle-left), protein 
(middle-right), ashes (bottom-left) and total fat (bottom-right) using Ridge regression model trained with NIR spectra and processed with SNV + MC + PAC. 
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All the parameters showed worst results compared with the NIR spectra 
(Table 4). The best results with the Vis-NIR spectra were for energy and 
protein content with a R2 of 0.63 plus RMSEP of 29.73 in the test set for 
energy; and R2 of 0.63 with RMSEP of 2.38 for protein. The remaining 
parameters had values of R2 under 0.60 and two parameters (carbohy-
drates and ashes) had R2 values close to 0, indicating unsuitability of this 
method for these measurements. The Fig. 6 shows the different scat-
terplots showing the predicted values versus the actual values for each 
parameter using with Ridge regression models with VIS-NIR spectra. 

The results obtained with both spectral range in the parameters 
measured, could indicate that most of the information related with 
protein, total fat and energy values are in the range of NIR spectra 
starting from 900 nm as models using NIR range performs better but 
models using VIS-NIR don’t do it so bad. However, the results indicates 
that the information for ashes and carbohydrates could be in other 
spectral range, maybe in UV as neither using NIR and VIS-NIR spectra 
together ML models showed a good performance. 

4. Discussion 

Up to now the use of spectral imaging for food composition analysis 
has focused on the determination of components and/or classification in 
single ingredient food products. To our knowledge, the present work 
represents the first study where HSI is used for determining the energetic 
value provided by a wide range of complex food products and also their 
nutritional components (protein, carbohydrates and total fat). 

Spectral imaging techniques measure the variance in wavelengths 
emitted by an object, and these differences provide information about its 
composition. HSI is a widely used technique in chemometrics that can 
provide useful information about the composition of a sample manly 
related with its nutritional components. Under the umbrella of HSI, a 
wide range of spectral wavelengths can be used depending on the 
objective of the experiment. Wavelengths range from ultraviolet 
(200–400 nm), visible (380–800 nm), VIS-NIR (400–1000 nm), NIR 
(900–1700 nm), to short-wave infrared (970–2500 nm). For the purpose 
of this study, both NIR and Vis-NIR were chosen. Both ranges are widely 
used in the field of food, for issues related to classification and regres-
sion, with good performance (Wang, L. et al., 2017; Yu, H. et al., 2021; 
Liu, F., and He, Y. 2008; You, H. et al., 2019; Kays, S.E. et al., 2000). 

Over the last years, HIS has emerged as a non-destructive and a less 
time-consuming method to be applied with a diverse range of food 
products to determine their sensory properties (Özdoğan G. et al., 2021), 
internal food injuries (Guo X et al., 2023) or to predict micronutrients 
(Hu N et al., 2021). The use of predictive, trained AI models combined 
with HSI offers a much better alternative to conventional methods as can 
produce results in real time or close to real time and are easy to use with 
a little training. But the combination of AI and HIS include disadvan-
tages like these techniques are still predictive, so they are not as accurate 
as the conventional biochemical techniques, and an initial investment in 
the equipment is necessary. However, on the whole, the use of HSI 
coupled with IA could be a cost-effective alternative, especially when 

there is a need to produce results in the very short time. Moreover, given 
that HSI + AI preserves the sample, it avoids measurement batch effects 
as it shows results for each individual sample, as opposed to a subsam-
ple, which no need to extrapolate to the rest of the sample. 

As shown in the results, the best outcomes in this study were ob-
tained using the NIR range for all the parameters, with Ridge regression. 
Ridge regression consists of a linear regression algorithm but with a 
penalization term, which changes the cost function, which means less 
overfitting in the model. Ridge regression adds to the cost function a 
penalty with the objective of avoiding very large parameters in the 
model, so the model ends up with two terms to minimize. Eventually this 
means that the model usually has a slightly higher bias but a lower 
variance. The lower variance makes the model better at generalizing and 
at making better predictions when new data (samples) are provided. The 
main difference between NIR and Vis-NIR is the wavelength range. That 
is, the optical requirements of both are different, so the cost is different 
being the technique of Vis-NIR cheaper than NIR. 

Finally, and answering to our initial hypothesis (we can estimate the 
energy and macronutrient content of heterogeneous food products using 
HSI systems combined with mathematical models), this study has shown 
that it is possible to use HSI systems and machine learning models to 
estimate both energy and macronutrient content. However, the accuracy 
of the models will depend on which macronutrient we are interested in. 

5. Conclusions 

ML algorithms are powerful tools that can help to understand 
different types of complex data problems and to discover hidden pat-
terns in the data which can be difficult to extract using other techniques. 
These methods have a huge dependency on the volume of the data 
available. The models were trained on a moderately sized dataset, and it 
is possible that their performance could be enhanced with a larger 
dataset. Another limitation is that only solid, processed food products 
and recipes were used, as opposed to freshly prepared meals. Therefore, 
for the application of this technique in food catering contexts for 
example, further research is needed to establish if the NIR method is still 
a valid option. 

Based on the initial exploration of a sample of 118 commercially 
available foods, it is possible to predict the energy and nutritional values 
in processed complex foods, using hyperspectral imaging systems (both 
NIR and Vis-NIR), combined with artificial intelligence machine 
learning methods. The best predictive performance was achieved for 
protein content, with spectral data obtained in the NIR wavelength 
range following this pipeline: first, processing the spectra with SNV and 
apply MC; second, dimensional reduction with PCA algorithm; and 
finally, using the mathematical algorithm of Ridge regression as pre-
dictive model. These methods achieve good performance in a training 
set as well as in a test set, showing a nice generalization for new data, but 
the process should be validated in new data with foods of different 
textures and composition similar to the samples used to train the model. 
Also, the model’s performance could be enhanced retraining the model 
with new data with similar composition, it means growing the number 
of samples using to achieve a greater knowledge from the data or using 
different compositions growing the variability of the sample and achieve 
a model that can be used to more types of dishes. 
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