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Background. Obesity is a heritable complex phe-
notype that can increase the risk of age-related
outcomes. Biological age can be estimated from
DNAmethylation (DNAm) using various “epigenetic
clocks.” Previous work suggests individuals with
elevated weight also display accelerated aging, but
results vary by epigenetic clock and population.
Here, we utilize the new epigenetic clock GrimAge,
which closely correlates with mortality.

Objectives. We aimed to assess the cross-sectional
association of body mass index (BMI) with age
acceleration in twins to limit confounding by genet-
ics and shared environment.

Methods and results. Participants were from the
Finnish Twin Cohort (FTC; n = 1424), includ-
ing monozygotic (MZ) and dizygotic (DZ) twin

pairs, and DNAm was measured using the Illu-
mina 450K array. Multivariate linear mixed effects
models including MZ and DZ twins showed
an accelerated epigenetic age of 1.02 months
(p-value = 6.1 × 10–12) per one-unit BMI increase.
Additionally, heavier twins in a BMI-discordant
MZ twin pair (�BMI >3 kg/m2) had an epigenetic
age 5.2 months older than their lighter cotwin
(p-value = 0.0074). We also found a positive asso-
ciation between log (homeostatic model assess-
ment of insulin resistance) and age acceleration,
confirmed by a meta-analysis of the FTC and two
other Finnish cohorts (overall effect = 0.45 years,
p-value = 4.1 × 10–25) from adjusted models.

Conclusion. We identified significant associations of
BMI and insulin resistance with age acceleration
based on GrimAge, which were not due to genetic
effects on BMI and aging. Overall, these results
support a role of BMI in aging, potentially in part
due to the effects of insulin resistance.
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Introduction

Obesity is a global public health concern, which
continues to increase in prevalence worldwide [1].
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It contributes to numerous adverse health out-
comes, including cardiovascular disease [2], dia-
betes [3], and cancers [4, 5], all of which are con-
sidered diseases of aging. It is possible to estimate
an individual’s age from DNA methylation (DNAm)
at selected genomic sites using algorithms known
as “epigenetic clocks.” These include the original
Horvath clock [6], HannumAge [7], and PhenoAge
[8], as well as the newer GrimAge [9], which is
more predictive of mortality than previous epige-
netic clocks and thus may be a more appropriate
measure of biological age. The difference between
the predicted epigenetic age and chronological age
is referred to as “age acceleration,” a phenomenon
that occurs in the context of many diseases such
as cancers [6, 10, 11]. Additionally, associations of
age acceleration with high body mass index (BMI)
and obesity have been reported in some [12–15]—
but not all [16, 17]—studies when epigenetic aging
is measured in blood. Two recent studies have
identified associations between age acceleration
based on GrimAge with BMI as well as associated
clinical measures, such as triglycerides [18, 19].
Therefore, excess body mass may play a role in the
heightened risk of conditions experienced in obe-
sity, including cancers and cardiovascular disease.

However, genotype is another important influence
on both body composition and the epigenome
[20,21], which introduces the possibility of genetic
confounding in the assessment of the association
between BMI and epigenetic aging. A monozygotic
(MZ) cotwin control study design controls for geno-
type as well as sex and a variety of environmental
exposures and experiences shared by MZ twin
siblings. Here, we assessed the cross-sectional
association of BMI with epigenetic age acceleration
determined using the GrimAge clock in twins
participating in the Finnish Twin Cohort (FTC),
and two independent Finnish cohorts. We chose
to focus on the GrimAge clock due to its stronger
relevance to mortality [22, 23], as well as the recent
studies showing its association with BMI [19, 24,
25]. To assess genetic confounding, we compared
within-pair analyses including dizygotic (DZ) twin
pairs and those limited to MZ twin pairs.

Materials and methods

Participants and study design

Study participants were MZ and DZ twin pairs
participating in the FTC, comprised of three longi-
tudinal cohorts. The Older Twin Cohort consists of
same-sex twin pairs born before 1958 [26], while

FinnTwin12 and FinnTwin16 are longitudinal
studies of five consecutive birth cohorts of Finnish
twins born during 1975–1979 and 1983–1987 [27,
28], respectively; the two latter studies include
opposite-sex twin pairs. Participants completed
multiple surveys on behavioral and lifestyle traits
as well as anthropometric measurements. Par-
ticipants were selected for the current analysis
if they had available data for blood DNAm, sex,
zygosity, and concurrent height, weight, and
age values, resulting in 1447 participants. MZ,
same-sex DZ, and opposite-sex DZ twin pairs
were included. A subset of MZ twin pairs par-
ticipated in the TwinFat subcohort [29, 30] (n =
90 pairs), in which more detailed information on
body composition and markers of cardiometabolic
health including fat percentage, subcutaneous
fat, intra-abdominal fat, liver fat percentage,
and fasting total, low density lipoprotein (LDL),
and high density lipoprotein (HDL) cholesterol,
triglycerides, C-reactive protein (CRP), leptin,
adiponectin, glucose, and insulin as well as the
homeostatic model assessment of insulin resis-
tance (HOMA-IR) was available. All participants
gave informed consent for their participation, and
the study procedures were approved by the ethics
committees of Helsinki University Central Hos-
pital (113/E3/2001, 249/E5/2001, 346/E0/05,
270/13/03/01/2008, and 154/13/03/00/2011).

Collection of biospecimens and DNAm measurement

Twins provided blood samples as part of targeted
studies [26–28]. As described previously, DNA was
extracted from whole blood using the QIAamp DNA
Mini kit (QIAGEN Nordic, Sollentuna, Sweden), and
bisulfite conversion was performed with the EZ-96
DNA Methylation-Gold Kit (Zymo Research, Irvine,
CA, USA) as per manufacturer instructions. We
used the Illumina Infinium HumanMethylation450
BeadChip to measure DNAmethylation at more
than 480,000 CpG sites throughout the genome
[31]. Samples from twin pairs were converted on
the same plate in order to reduce batch effects due
to technical variation.

Quality control and preprocessing of DNAm data

Sample processing was completed in R version
3.6.0. Samples with poor quality were identi-
fied using the R package MethylAid with default
thresholds [32]; those with a median methy-
lated and unmethylated log2 intensity smaller
than 10.5, an average log2 intensity of green and
red channels’ expected signals of nonpolymorphic
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controls smaller than 11.75, an average log2 inten-
sity of converted bisulfite type I controls in green
and red channels smaller than 12.75, an aver-
age log2 intensity of high and low hybridization
controls (green channel) smaller than 13.25, or
with less than 95% of probes with a detection
p-value <0.05 were excluded. Next, we normal-
ized the DNAmethylation data using minfi [33].
Removing bad quality samples resulted in a sample
size of 1424. We performed functional normaliza-
tion including the first two principal components
of the control probes with noob background cor-
rection in order to reduce technical variation in
the data [34]. We removed probes with a detection
p-value >0.01, an intensity value of exactly 0, or
a bead count greater than 3 in more than 5% of
samples. Beta-mixture quantile normalization was
used to adjust beta values for differences due to
probe type [35] using the R package wateRmelon
[36]. We additionally removed probes on sex chro-
mosomes, and those identified as unreliable such
as due to cross reactivity [37].

Epigenetic age calculation

In this study, we used the newly developed epi-
genetic clock GrimAge developed by the Hor-
vath group [9], which is a DNAmethylation-based
biomarker of mortality. The GrimAge value is cal-
culated in a two-step process, first estimating
seven plasma proteins including adrenomedullin,
beta-2 microglobulin, cystatin, growth differen-
tiation factor 15, leptin, plasminogen activation
inhibitor 1, and tissue inhibitor metalloproteinase
1, as well as pack-years, from DNAmethylation
data, then using these estimates in combination
with age and sex in a model developed from penal-
ized Cox proportional hazards regression. The
resulting GrimAge estimate is scaled to be in units
of years, with a higher GrimAge value correspond-
ing to higher hazard of death.

First, we subset the data to only include probes
used in estimating GrimAge. Any required probes
with missing beta values were replaced with “gold
database” beta values, which are the average beta
values from the largest white blood cell DNAmethy-
lation dataset used in the development of the first
epigenetic clock by the Horvath group (data avail-
able from GEOwith accession number GSE41037).
Next, we added participant age and sex to the
dataset, which are used in the estimation process.
A Python script provided by the Horvath group was
used to estimate GrimAge, smoking pack-years,

and the seven plasma proteins predicted in the
first stage of estimation. Finally, age acceleration
was calculated for each participant by regressing
GrimAge on chronological age and taking the raw
residual. Participants with a negative value of
age acceleration have a lower epigenetic age than
expected based on their chronological age, whereas
those with positive age acceleration values have a
higher epigenetic age.

Statistical analysis

We used two approaches to assess the relation-
ship between BMI and age acceleration—(1) treat-
ing each twin as an observation and (2) treating
twin pairs as observation. For both approaches, we
used linear mixed effects models implemented in R
version 3.2.2 and the R package Ime4 [38] (version
1.1-11).

In the first case, we accounted for the dependency
within twin pairs by including a random intercept
for family ID, and additionally included random
intercepts for twin cohort and zygosity. The depen-
dent variable was age acceleration, while the inde-
pendent variable was either BMI as a continuous
measure, BMI as a categorical measure, or one of
14 clinical obesity-related measures as continu-
ous measures (fat percentage, subcutaneous fat,
intra-abdominal fat, liver fat percentage, and fast-
ing total, LDL, HDL cholesterol, triglycerides, CRP,
leptin, adiponectin, glucose, and insulin as well
as HOMA-IR). Clinical variables with non-normal
distributions were transformed using the natural
logarithm. Three adjusted versions of the models
were performed: (1) adjusting for age, sex, and pre-
dicted smoking pack-years; (2) additionally adjust-
ing for predicted proportions of CD8 T cells, CD4 T
cells, natural killer cells, and neutrophils [39]; and
(3) in the case of the clinical models, additionally
adjusting for BMI. For the within-pair analyses,
intrapair differences in epigenetic age, BMI, and
covariates (predicted smoking pack-years and cell
type proportions) were calculated. Linear mixed
effects models were performed with the dependent
and independent variables being difference in epi-
genetic age and difference in BMI within a twin
pair, respectively, adjusted for age, sex, and dif-
ferences in predicted smoking pack-years and in
fully adjusted models the same cell type propor-
tions as in previous models, with random inter-
cepts for zygosity and twin cohort. All p-values
resulting from linear mixed effects models were cal-
culated using the likelihood ratio test comparing
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the full model with the nested model, except for
the models with BMI as a categorical variable, in
which the p-values were calculated using the Wald
test for each individual BMI category. We consid-
ered p-values <0.05 to be statistically significant.

Additional analyses were performed in R version
3.6.0. In order to validate our results, we next
analyzed two independent cohorts, the DIetary,
Lifestyle, and Genetic Determinants of Obesity and
Metabolic Syndrome (DILGOM, n = 306) study
[40] and the Young Finns Study [41] (YFS, n =
1591). DNAmethylation was measured in blood
using the Illumina 450K array in DILGOM, while
both the 450K and EPIC array were used in the
YFS. The quality control procedure described above
was used for DILGOM and YFS data. The DILGOM
data was preprocessed using the same steps as in
FTC data. GrimAge and age acceleration were cal-
culated as described above. We used linear regres-
sion to assess the association between BMI or clin-
ical measures and age acceleration, adjusting for
age, sex, and predicted smoking pack-years. We
additionally adjusted for predicted proportions of
blood cell types, as well as for BMI in the secondary
association analyses between the clinical measures
and age acceleration, as in the FTC analyses.

We performed ameta-analysis for BMI and the clin-
ical variables overlapping between studies using
the individual-level results from the FTC, YFS,
and DILGOM to obtain the best estimates for the
effects of each variable on age acceleration. The
R function metagen in the package meta [42] was
used to inverse variance fixed and random effects
meta-analyses. The empirical Bayes method was
used for estimating the between-study variance. If
no heterogeneity between studies was observed, a
fixed-effect meta-analysis was performed, while a
random-effect meta-analysis was performed in the
presence of significant heterogeneity between stud-
ies. Forest plots were generated using the forest
function in the R package metafor.

Heritability analyses for GrimAge acceleration as
well as BMI were conducted using the MZ and
DZ twin pairs in the FTC using the twinlm func-
tion in R package mets [43]. Models were adjusted
for age and sex, and included an interaction
term for age*sex. Variance components were esti-
mated for additive genetic effects, common envi-
ronmental effects (i.e., shared experiences and
exposures of the twin siblings), and unique envi-
ronmental effects (unshared experiences and expo-

sures) under the standard assumptions of the clas-
sic twin model [44]. Heritability was estimated as
the proportion of overall variance accounted for by
additive genetic effects. Intraclass correlation
coefficients for MZ and DZ twins were estimated
with the R package irr as a one-way model.

Results

Participant characteristics

Participant characteristics for all participants are
presented in Table 1. There were a total of 1424
twin individuals from the FTC included in this
study, with 790 MZ twins, 445 same-sex DZ twins,
and 189 opposite-sex DZ twins; additionally, there
were nontwin participants from the YFS (n = 1591)
and DILGOM (n = 306). In the FTC, age ranged
from 21 to 73 years old, with an average age
of 34.5 years, while the age ranged from 34 to
49 years in the YFS and 25 to 74 years in DIL-
GOM. A majority of participants were female in all
three studies (57.7%, 55.6%, and 52.9%, respec-
tively). The average BMI was lowest in the FTC at
24.7 kg/m2 compared to 26.6 in both the YFS and
DILGOM.

Individual analysis

First, we assessed the relation of BMI as a con-
tinuous measure with age acceleration with twins
as individuals. Each one-unit increase in BMI
corresponded to an increase in age accelera-
tion of 1.02 months (0.08 years, likelihood ratio
p-value = 6.1 × 10–12, Fig. 1a). After adjusting for
cell type proportions, the effect of BMI on age accel-
eration was slightly attenuated, with each one-unit
increase in BMI corresponding to 0.91 months
(likelihood ratio p-value = 9.0 × 10–11). BMI was
positively associated with age acceleration in both
validation populations, with a one-unit increase in
BMI associated with an increase in age acceleration
of 1.08 months (0.09 years) in the YFS (p-value =
2.6 × 10−27) and 0.67 months (0.06 years) in
DILGOM (p-value = 0.0050). Performing a meta-
analysis of these estimates revealed no evidence
of heterogeneity between studies (p-value = 0.23),
and an overall estimate for the effect of BMI on age
acceleration of 0.96 months (0.08 years) per each
one-unit BMI increase (meta-analysis p-value =
7.07 × 10–39, Fig. 1b).

We observed a linear association of BMI cate-
gories with age acceleration; in the FTC, com-
pared to individuals classified as normal weight
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Table 1. The characteristics of study participants from the FTC, the YFS, and the DILGOM (n = 3321). Continuous outcomes
are presented in the format of mean± SD [range] and categorical outcomes are presented in the format of counts (percentage,
%). Missing data are indicated as footnotes

N (%) or mean ± SD [range]
Variable FTC (n = 1424) YFS (n = 1591) DILGOM (n = 306)

Age 34.5 ± 17.6 [21–73] 41.9 ± 5.0 [34 - 49] 52.1 ± 13.6 [25–74]
GrimAgea 35 ± 14.2 [15.9–75.8] 40.9 ± 5.8 [27.0–63.2] 49.6 ± 11.2 [25.9–73.9]
Age accelerationa 0 ± 3.1 [−9 to 17.5] 0 ± 4.1 [−9.5 to 20.2] 0 ± 4.2 [−13.4 to 14.1]
Sex
Female 822 (57.7) 884 (55.6) 162 (52.9)
Male 602 (42.3) 707 (44.4) 144 (47.1)

Zygosity
Monozygotic 790 (55.5) – –
Same–sex dizygotic 445 (31.2) – –
Opposite–sex dizygotic 189 (13.3) – –

Cohort
FT12 759 (53.3) – –
FT16 268 (18.8) – –
Old Cohort 397 (27.9) – –

BMI 24.7 ± 4.7 [16.3−51.2] 26.6 ± 5.0 [16.2−58.5]b 26.6 ± 4.8 [16.4–48.9]c

Underweight 44 (3.1) 14 (0.9) 1 (0.3)
Normal weight 820 (57.6) 654 (41.1) 123 (40.2)
Overweight 400 (28.1) 577 (36.3) 119 (38.9)
Obese 160 (11.2) 336 (21.1) 62 (20.3)

Smoking behavior
Never 681 (47.8) 800 (50.3) 170 (55.6)
Former 294 (20.6) 372 (23.4) 64 (20.9)
Current 444 (31.2) 338 (21.2) 72 (23.5)
Missing 5 (0.351) 81 (5.1) 0 (0)

Smoking pack-yearsa −3.7 ± 11.3 [−25.9 to 54.8] −2.8 ± 12.2 [−26.3 to 46.8] 4.3 ± 12.3 [−21.5 to 45.3]
Abbreviations: BMI, body mass index; DILGOM, DIetary, Lifestyle, and Genetic Determinants of Obesity and Metabolic
syndrome; FTC, Finnish Twin Cohort; SD, standard deviation; YFS, Young Finns Study.
aInferred from DNA methylation data.
bTen subjects with missing data.
cOne subject with missing data.

(18.5 ≤ BMI < 25), the age acceleration of under-
weight participants (BMI < 18.5) was 6 months
lower (β = −0.50 years, p-value = 0.049), that
of overweight participants (25 ≤ BMI < 30) was
4 months higher (0.34 years, p = 0.003), and that
of obese participants (BMI ≥30) was 11 months
higher (0.91 years, p = 3.15 × 10–8, Table S1,
Fig. S1a) in analyses adjusting for age, sex, pre-
dicted smoking pack-years, blood cell type propor-
tions, and relatedness. Similar associations were
also found in the YFS participants, with over-
weight individuals displaying age acceleration of
5.2 months compared to normal weight individu-
als (0.43 years, p = 4.5 × 10–6) and obese individ-

uals showing an age acceleration of 1.07 years (p-
value = 5.55 × 10–22, Table S1, Fig. S1a). Obese
individuals in the DILGOM cohort also displayed
higher age acceleration compared with the normal
weight individuals (8.5 months [0.71 years], p =
0.006, Table S1, Fig. S1a). While the age accel-
eration of underweight individuals did not differ
significantly from that of normal weight individ-
uals within the YFS subjects (β = −5.3 months
[−0.44 years], p-value = 0.31), the effect size was
comparable to that observed in the FTC. Addi-
tionally, performing a meta-analysis revealed sig-
nificantly lower age acceleration of 5.9 months in
underweight individuals (overall effect−0.49 years,
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Fig. 1 Body mass index (BMI) associates with age accel-
eration. (a) Scatterplot with best fit line showing the asso-
ciation of age acceleration with BMI in the FTC. (b) Forest
plot showing the estimates for the association of BMI with
age acceleration in each study, and the overall effect from
a fixed effect meta-analysis. Between-study variance was
determined by empirical Bayes method. The reported esti-
mates are in units of years. DILGOM, DIetary, Lifestyle and
Genetic Determinants of Obesity and Metabolic syndrome;
FTC, Finnish Twin Cohort; YFS, Young Finns Study.

meta-analysis p-value = 0.026), and higher age
acceleration of 4.32 months in overweight individ-
uals (0.36 years, p = 1.61 × 10–7) and 11.8 months
in obese individuals (0.98 years, p = 1.24 × 10–30)
compared to normal weight individuals (Table S1,
Fig. S1b).

Differences in epigenetic aging within twin pairs

Next, we calculated the differences in BMI and epi-
genetic age between each twin in a pair, subtract-
ing the lighter twin from the heavier twin. Each
one-unit increase in BMI in the heavier twin was
associated with an increase in epigenetic age of
1.6 months compared to their lighter cotwin (like-
lihood ratio p-value = 4.7 × 10–12, Fig. 2a). There
was no heterogeneity by zygosity, with the estimate
for the random effect at 0. We repeated the same
analysis including only MZ twin pairs in order to
fully control for the effect of genetics, which showed
that each one-unit difference in BMI within the
twin pairs was associated with an increase in epige-

Fig. 2 Difference in body mass index (BMI) is related
with the difference in GrimAge within twin pairs. (a) Scat-
terplot showing the association of the difference in BMI
within twin pairs in relation with the difference in Grim-
Age, including both DZ and MZ twin pairs. One twin pair
was excluded due to an extreme difference in BMI of
greater than 30. (b) Scatterplot showing the association
of the difference in BMI within twin pairs in relation with
the difference in GrimAge, including only MZ twin pairs.
The reported estimates are in units of years. DZ, dizygotic;
MZ, monozygotic.

netic age of 1.1 months (likelihood ratio p-value =
1.0 × 10–4, Fig. 2b).

BMI discordance within MZ twin pairs

The average BMI of the lighter twins in BMI-
discordant pairs was 24.9 kg/m2 versus
30.3 kg/m2 for the heavier twins, and their
average age was 41.9 years. The heavier twins
were less likely to smoke, with 24.8% of heavier
twins current smokers, versus 31.6% of lighter
twins. Heavier cotwins had higher age acceleration
by 5.2 months compared to their leaner cotwin
(0.43 years, likelihood ratio p-value = 0.0066,
Fig. S2, Table S2). The average difference in
BMI between a discordant pair was around five
units, resulting in an effect size per BMI unit of
1.04 months (0.09 years).
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Table 2. Obesity-related clinical measures associate with age acceleration in FTC (n = 90). The median and range of each
clinical measure is indicated for twins from body mass index (BMI)-discordant monozygotic twin pairs in the FTC. Results
for the effect of each measure on GrimAge acceleration from each of three mixed-effects linear models are presented; Model
1 adjusted for age, sex, and predicted smoking pack-years, Model 2 further adjusted for predicted proportions of CD8 T
cells, CD4 T cells, natural killer cells, and neutrophils, and Model 3 additionally adjusted for BMI

Variable Median (range)a Coefficientb p-valueb Coefficientc p-valuec Coefficientd p-valued

Body fat (per 10%) 33.60 (7.10–56.30) 0.51 0.012 0.34 0.069 0.10 0.78
Subcutaneous fat (dm3) 4.03 (0.5–11.73) 0.23 0.006 0.17 0.0312 0.02 0.921
Intra-abdominal fat (dm3)e 0.76 (0.1–2.95) 0.61 0.009 0.47 0.028 0.22 0.547
Liver fat (%)e 1.04 (0.2–25.2) 0.47 0.001 0.27 0.047 0.14 0.384
hs-CRPe 5.33 (0.14–247.81) 0.36 0.039 0.19 0.263 0.15 0.403
HOMA-IR indexe 1.11 (0.27–6.27) 0.58 0.027 0.43 0.063 0.26 0.324
fP-insulin (mU/L)e 5.05 (1.2–23.5) 0.68 0.014 0.48 0.052 0.31 0.267
fP-glucose (mmol/L)e 5.08 (4.00–6.58) −1.11 0.55 0.40 0.814 −0.71 0.676
fP-Leptin (ng/ml)e 14.82 (0.74–77.64) 0.59 0.036 0.22 0.417 0.03 0.937
fP-Adiponectin (μg/ml) 2.67 (1.24–5.56) −0.11 0.69 0.04 0.87 0.10 0.675
fS-HDL cholesterol (mmol/L) 1.34 (0.52–3.04) −0.86 0.075 −0.80 0.066 −0.49 0.325
fS-LDL cholesterol (mmol/L) 2.5 (1.02–5.1) 0.11 0.62 0.16 0.421 −3.58 0.999
fs-Total cholesterol (mmol/L) 4.3 (3–7) −0.01 0.97 0.006 0.974 −0.09 0.610
fS-Triglycerides (mmol/L)e 0.96 (0.37–2.65) 0.50 0.21 0.15 0.665 −0.11 0.764

Abbreviations: fP, fasting plasma; fS, fasting serum; FTC, The Finnish Twin Cohort; HDL, high density lipoprotein; HOMA-
IR, homeostatic model assessment of insulin resistance; hs-CRP, high-sensitivity C-reactive protein; LDL, low density
lipoprotein.
aUntransformed values.
bModel 1.
cModel 2.
dModel 3.
eNatural log transformation was performed due to skewed distribution of variable.

Clinical measures and age acceleration

A subset of 90 MZ twins belonging to BMI-
discordant twin pairs were evaluated clinically for
obesity-related measures (Table 2). After adjusting
with the estimated blood cell type proportions, only
the body fat distribution measures remained asso-
ciated with age acceleration in the FTC. Each dm3

increase in subcutaneous fat was positively asso-
ciated with an acceleration in age of 2.02 months
(coefficient = 0.17 years, p-value = 0.031), each
log (intra-abdominal fat dm3) was associated
with an increased epigenetic age of 5.63 months
(0.47 years, p = 0.028), and a unit increase in log
(liver fat percentage) corresponded to increased
age acceleration of 3.29 months (0.27 years, p =
0.047). Further adjusting with BMI attenuated
all these associations of body fat measures in
the FTC. In the meta-analyses, clinical variables
available in all three cohorts (HOMA-IR index
and fasting insulin, glucose, HDL cholesterol, and
triglycerides) were significantly associated with
age acceleration both before and after adjusting

for BMI (Tables 2–4, Fig. 3). There was no evidence
of heterogeneity between studies for any other
clinical variable but for glucose (Fig. 3). Addition-
ally, CRP (only available in FTC and YFS) was
positively associated with age acceleration in YFS
participants, both before and after adjusting for
BMI (Table 4), but was only significantly asso-
ciated with age acceleration in FTC participants
in the model not adjusting for cell types or BMI
(Table 2). This association was significant in the
meta-analysis for the models both before and after
adjusting for BMI (coefficient = 0.37 years, meta-
analysis p-value = 1.8 × 10–28, and 0.25 years,
6.21 × 10–11, respectively, Fig. S3).

Heritability analyses

Finally, we estimated the heritability of GrimAge
acceleration and BMI using the MZ and DZ twin
pairs in the FTC. The equal environments assump-
tion was not violated for either BMI or GrimAge
acceleration. Heritability for GrimAge acceleration
was 0.58 (95% confidence interval [CI]= 51%–65%)

© 2022 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
Journal of Internal Medicine, 2022, 292; 627–640

633



BMI positively associates with age acceleration / S. Lundgren et al.

Fig. 3 Obesity-related clinical measures associate with age acceleration. Meta-analysis forest plots showing associations
between age acceleration and homeostatic model assessment of insulin resistance (HOMA-IR) index, and fasting insulin,
glucose, high density lipoprotein (HDL) cholesterol, and triglycerides (a) without body mass index (BMI) adjustment and (b)
with BMI adjustment in meta-analyses including all three cohorts. Meta-analyses were performed by fixed effects models
for HOMA-IR index, insulin, HDL, and triglycerides, with no heterogeneity, while meta-analysis for glucose was performed
by random effects model due to significant heterogeneity. Between-study variance was determined by empirical Bayes
method. The reported estimates are in units of years. The “*” symbol indicates the variable was transformed using the
natural logarithm. DILGOM, DIetary, Lifestyle and Genetic Determinants of Obesity and Metabolic syndrome; FTC, Finnish
Twin Cohort; TG, triglyceride; YFS, Young Finns Study.
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Table 3. Obesity-related clinical measures in relation to age acceleration in YFS (n = 1581). The median and range of each
measure is indicated for participants in the YFS. Results for the effect of each measure on GrimAge acceleration from each
of three linear models are presented: Model 1 adjusted for age, sex, and predicted smoking pack-years, Model 2 further
adjusted for predicted proportions of CD8 T cells, CD4 T cells, natural killer cells, and neutrophils, and Model 3 additionally
adjusted for body mass index (BMI)

Variable Median (range)a Coefficientb p-valueb Coefficientc p-valuec Coefficientd p-valued

BMI 25.8 (16.2–58.5) 0.09 6.63 × 10-27 0.09 2.60 × 10-27 − −
HbA1Ce 36 (22–102) 1.26 1.8 × 10-3 1.56 3.73 × 10-5 0.41 0.29
fP-insulin (mU/L)e,f 7.41 (0.06–95.7) 0.52 1.98 × 10-21 0.49 1.58 × 10-21 0.26 1.68 × 10-5

fP-glucose
(mmol/L)e,g

5.25 (3.14–12.65) 2.88 1.69 × 10-12 2.77 3.70 × 10-13 1.66 1.99 × 10-5

fS-HDL cholesterol
(mmol/L)

1.29 (0.52–2.64) −0.81 1.62 × 10-8 −0.75 2.57 × 10-8 −0.31 0.024

fS-LDL cholesterol
(mmol/L)

3.19 (1.06–7.05) −0.005 0.93 −0.0004 0.99 −0.046 0.37

fs-Total cholesterol
(mmol/L)

5.1 (2.8–10.2) 0.04 0.44 0.067 0.14 0.02 0.68

fS-Triglycerides
(mmol/L)e

1.05 (0.34–6.05) 0.66 1.25 × 10-13 0.74 5.39 × 10-19 0.46 2.05 × 10-7

hs-CRPe 0.79 (0.05–29.08) 0.43 9.94 × 10-32 0.38 1.75 × 10-27 0.25 1.08 × 10-10

HOMA-IR indexe 1.73 (0.02–21.0) 0.49 4.82 × 10-22 0.46 1.94 × 10-22 0.25 4.74 × 10-6

Abbreviations: fP, fasting plasma; fS, fasting serum; HDL, high density lipoprotein; HOMA-IR, homeostatic model assess-
ment of insulin resistance; hs-CRP, high-sensitivity C-reactive protein; LDL, low density lipoprotein; YFS, Young Finns
Study.
aUntransformed values.
bModels adjusted for age, sex, and predicted smoking pack-years.
cModels adjusted for age, sex, predicted smoking pack-years, and predicted proportions of CD8T cells, CD4T cells, natural
killer cells, and neutrophils.
dModels adjusted for age, sex, predicted smoking pack-years, predicted proportions of CD8T cells, CD4T cells, natural
killer cells, neutrophils, and BMI.
eNatural log transformation was performed due to skewed distribution of variable.
fOne sample excluded for extreme log-transformed insulin value (mU/L) of over 8.
gTwo samples excluded for extreme log-transformed glucose (mmol/L) value of over 2.75.

and 0.68 (95% CI = 63%–73%) for BMI (Table S3).
Common environmental factors did not explain the
variance for either GrimAge acceleration or BMI.

Discussion

In this study, we investigated the association of
BMI with epigenetic aging using a new epigenetic
clock, GrimAge, using Finnish MZ and DZ twin
pairs. We found a positive association between BMI
and age acceleration as inferred from DNAmethyla-
tion in blood. Importantly, the observation of epi-
genetic age acceleration between heavy and light
twins within BMI-discordant MZ twin pairs shows
that this association is not due to confounding
by shared genetic and environmental effects on
DNAmethylation at aging-associated CpGs. Addi-

tionally, we found a linear relationship between
BMI and age acceleration, with underweight indi-
viduals displaying the lowest amount of age accel-
eration, and an incremental increase in the amount
of age acceleration through each subsequent BMI
category. Given that most studies of BMI suggest
that underweight individuals are at higher risk
of disease [45–47], it is noteworthy that we find
no evidence of that here. Finally, we found that
the most strongly associated obesity-related clini-
cal features were those of body fat distribution—
including ectopic fat accumulation—and glucose
metabolism and insulin resistance, as shown by
the positive relation between age acceleration and
subcutaneous and intra-abdominal fat volume,
liver fat percentage, the HOMA-IR index, and fast-
ing insulin.
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Table 4. Obesity-related clinical measures in relation to age acceleration in DILGOM (n = 305). The median and range of each
measure is indicated for participants in DILGOM. Results for the effect of each measure on GrimAge acceleration from each
of three linear models are presented: Model 1 adjusted for age, sex, and predicted smoking pack-years, Model 2 further
adjusted for predicted proportions of CD8 T cells, CD4 T cells, natural killer cells, and neutrophils, and Model 3 additionally
adjusted for body mass index (BMI)

Variable Median (range)a Coefficientb p-valueb Coefficientc p-valuec Coefficientd p-valued

BMI 25.8 (16.4–48.9) 0.05 0.019 0.06 0.005 − −
fP-glucose (mmol/L)e 5.8 (4.4–15.0) −1.15 0.136 −0.57 0.436 −0.96 0.188
fP-insulin (mU/L)e 5.3 (1.5–94.5) 0.44 0.012 0.46 0.004 0.30 0.119
HOMA-IR indexe 1.33 (0.34–23.53) 0.30 0.051 0.35 0.017 0.18 0.287
fS-HDL cholesterol (mmol/L) 1.42 (0.51–2.82) −0.27 0.323 −0.27 0.301 −0.10 0.718
fS-Triglycerides (mmol/L)e 1.02 (0.37–5.14) 0.19 0.392 0.39 0.068 0.22 0.330

Abbreviations: DILGOM, DIetary, Lifestyle, and Genetic Determinants of Obesity and Metabolic Syndrome; fP, fasting
plasma; fS, fasting serum; HDL, high density lipoprotein; HOMA-IR, homeostatic model assessment of insulin resistance.
aUntransformed values.
bModel 1.
cModel 2.
dModel 3.
eNatural log transformation was performed due to skewed distribution of variable.

The association of BMI with accelerated epige-
netic aging was also observed in two independent
Finnish cohorts of unrelated individuals, DILGOM
and the YFS. However, the effect estimates for the
relation of BMI with age acceleration were slightly
different in the FTC compared to DILGOM and
YFS. The analysis including all twins showed an
increase in age acceleration of 0.9 months per unit
BMI increase among all individual participants,
while within BMI-discordant MZ twin pairs whose
cotwins differed in BMI on average by five BMI
units showed an increase of 5.2 months in age
acceleration, or around 1 month per unit BMI dif-
ference. However, DILGOM participants displayed
an age acceleration increase of around 0.7 months
and YFS participants around 1 month per unit
BMI increase. Nonetheless, our meta-analysis pro-
vides no evidence of heterogeneity between studies
for the effect estimate of BMI on age acceleration.
Interestingly, we observed associations of HOMA-
IR index and fasting insulin with age acceleration
in all three cohorts of which the magnitude was
comparable in all three studies, with the meta-
analyses not indicating any heterogeneity. The lack
of evidence of heterogeneity in the associations
of BMI and measures of glucose metabolism and
insulin resistance with age acceleration indicate
that the observed associations are robust to dif-
ferences in the ascertainment of the samples and
can be considered to be a true population effect.

Based on the results we obtained, insulin resis-
tance may be responsible in part for the effect of

obesity on epigenetic aging, since adjusting for
BMI results in a reduction in the effect estimates
of HOMA-IR, insulin, and glucose on age accelera-
tion. Obesity and aging both play a role in insulin
resistance and type 2 diabetes [48–50]. Obesity
is known to promote inflammation [51], which
in turn is involved in the onset of lipid-induced
insulin resistance [50]. Interestingly, metformin,
a drug used to lower blood glucose levels, is being
tested as an intervention to protect against aging
and age-related diseases [52]. Additionally, we
also observed increased age acceleration with
rising CRP, an inflammatory marker; however,
this was primarily observed in YFS participants. It
is possible that the association between CRP and
age acceleration was less apparent in the FTC due
to the much smaller sample size, some amount
of genetic confounding, or a combination of these
factors.

These findings are consistent with other stud-
ies using GrimAge to determine age acceleration
[18,19]; however, Horvath’s epigenetic clock seems
to be able to detect the effect of BMI better in
other tissues such as liver [17], visceral adipose
tissue [16], and saliva [53] than blood. This could
indicate that the GrimAge epigenetic clock is better
suited for usage for assessment of age acceleration
related to cardiometabolic phenotypes, which is
possible given the unique process used to develop
the GrimAge clock of estimating blood proteins.
This includes leptin, for example, which is known
to be higher in obesity [54]. In line with this,
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leptin associated positively with age acceleration
in the FTC. Overall, our results support the well-
established association of BMI with aging as well
as a strong role of insulin resistance.

Further, nutrient-sensing pathways may play a
role in the relation of obesity and aging. For exam-
ple, genes belonging to nutrient-sensing pathways
including insulin/insulin-like growth factor (IGF)
pathway, mechanistic target of rapamycin, adeno-
sine monophosphate-activated protein kinase
(AMPK), and sirtuin deacetylases appear to reg-
ulate lifespan in mice [55]. In fact, mutations in
these genes including IGF1 and IGFR associate
with increased longevity in humans [56], and
a low energy state activates AMPK as well as
sirtuins [57]. This information points to a link
between nutrient-sensing pathways, weight gain,
and aging, since weight gain is caused in part by
excess energy intake.

Our study has several strengths that contribute
to its significance. First, the usage of MZ twin
pairs discordant for obesity allows us to be cer-
tain that the associations we identified are not
entirely due to confounding by genetic predisposi-
tion to both obesity and accelerated aging. Addi-
tionally, we identified associations with obesity-
related clinical measures that are in line with the
results obtained for BMI, with a detrimental effect
of insulin resistance and a beneficial effect of HDL
on aging. Further, we performed meta-analyses for
the associations of BMI and obesity-related clin-
ical measures with age acceleration, and demon-
strated consistent associations for BMI, HOMA-IR,
and fasting insulin with increased age acceleration
in all three studies. However, our study is limited
by the small number of MZ twin pairs discordant
for BMI, which is due to the rarity of this occurring.
Additionally, our study populations consisted of
exclusively Finnish participants, which may some-
what limit the generalizability of our findings to
other populations; however, this is unlikely given
that the same associations have previously been
observed in other populations.

Conclusion

In conclusion, we identified significant associa-
tions of BMI, HOMA-IR, a measure of insulin
resistance, and fasting insulin with epigenetic age
acceleration calculated using the GrimAge epige-
netic clock. These associations were not due to the
effects of genetics on BMI and aging, and measures

of insulin resistance were also associated inde-
pendently from BMI with age acceleration. Overall,
these results suggest that BMI plays a role in aging,
along with and perhaps in part due to insulin resis-
tance. More research needs to be done to determine
whether weight loss can reverse BMI-associated
epigenetic aging.
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Supporting Information

Additional Supporting Informationmay be found in
the online version of this article:

Figure S1: Age acceleration increases with increas-
ing BMI category in FTC, YFS, and DILGOM. (A)
Boxplots showing differences in age acceleration
by BMI category in all the three cohorts. (B) For-
est plot showing the estimates for the associa-
tion of BMI categories with age acceleration in
each study, and the overall effect from a fixed
effect meta-analysis. Normal weight category was
used as the reference group. Between study vari-
ance was determined by empirical Bayes method.
The reported estimates are in units of years. FTC,
Finnish Twin Cohort; YFS, Young Finns Study,
DILGOM, DIetary, Lifestyle and Genetic determi-
nants of Obesity and Metabolic syndrome.

Figure S2: Heavier twins in a BMI-discordant pair
more often have higher age acceleration compared
to their leaner co-twin. Waterfall plot showing the
difference in age acceleration in years within MZ
twin pairs discordant for obesity, subtracting the
value for the leaner twin from that of the heavier
twin.
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Figure S3: CRP associates with age acceleration in
the meta-analysis of FTC and YFS (a) without BMI
adjustment and (b) with BMI adjustment. Meta-
analysis were performed by fixed effects models,
and the between study variance was determined
by empirical Bayes method. The reported estimates
are in units of years. FTC, Finnish Twin Cohort;
YFS, Young Finns Study, CRP, C-reactive protein.

Table S1: BMI category associates with age accel-
eration. The association of BMI category with age
acceleration, with the normal weight BMI group
as the reference category, was tested in the FTC
using a linear mixed effects model and in the
YFS and DILGOM using a linear model. Models
were adjusted for relevant covariates. Addition-
ally, meta-analyses for the estimates for each BMI
category were performed. The meta-analysis for
the underweight category was performed on the

FTC and YFS, while for the rest of the categories all
three cohorts were used.

Table S2: Comparison of BMI vs. age acceleration
estimates by zygosity in the FTC (n = 1424). Two
models were built to test (1) the association of BMI
with age acceleration in all twins as individuals
and (2) the association of being the heavier twin in
a BMI discordant pair with age acceleration. MZ,
monozygotic; DZ dizygotic.

Table S3: GrimAge acceleration and BMI are her-
itable. The amount of variance in GrimAge accel-
eration and BMI explained by additive genetic fac-
tors, common environmental factors, and unique
environmental factors was calculated using classi-
cal twin modeling methods. Heritability was con-
sidered to be the amount of variance explained by
additive genetic factors.

640 © 2022 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
Journal of Internal Medicine, 2022, 292; 627–640


