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Abstract: Neonatal screening (NS) for methylmalonic acidemia uses propionylcarnitine (C3) as a
primary index, which is insufficiently sensitive at detecting methylmalonic acidemia caused by
defects in the adenosylcobalamin synthesis pathway. Moreover, homocystinuria from cystathionine
β-synthase deficiency is screened by detecting hypermethioninemia, but methionine levels decrease
in homocystinuria caused by defects in homocysteine remethylation. To establish NS detection of
methylmalonic acidemia and homocystinuria of these subtypes, we evaluated the utility of indices (1)
C3 ≥ 3.6 µmol/L and C3/acetylcarnitine (C2) ≥ 0.23, (2) C3/methionine ≥ 0.25, and (3) methionine
< 10 µmol/L, by retrospectively applying them to NS data of 59,207 newborns. We found positive
results in 116 subjects for index (1), 37 for (2), and 15 for (3). Second-tier tests revealed that for index
1, methylmalonate (MMA) was elevated in two cases, and MMA and total homocysteine (tHcy) were
elevated in two cases; for index 2 that MMA was elevated in one case; and for index 3 that tHcy
was elevated in one case. Though data were anonymized, two cases identified by index 1 had been
diagnosed with maternal vitamin B12 deficiency during NS. Methylene tetrahydrofolate reductase
deficiency was confirmed for the case identified by index 3, which was examined because an elder
sibling was affected by the same disease. Based on these data, a prospective NS study is underway.

Keywords: neonatal screening; homocystinuria; methylmalonic acidemia; disorders of cobalamin
metabolism; hypomethioninemia

1. Introduction

Current neonatal screening (NS) in Japan identifies methylmalonic acidemia and
propionic acidemia by elevated levels of propionylcarnitine (C3), and homocystinuria
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caused from cystathionine β-synthase (CBS) deficiency by elevated levels of methionine
(Met). However, C3 is not always sufficiently sensitive to detect methylmalonic acidemia
caused by defects in the adenosylcobalamin synthesis pathway, as we show below in a
case of cobalamin D disease (cblD) variant 2 missed in NS. Moreover, Met levels actually
decrease in homocystinuria resulting from defects in homocysteine remethylation. The
prognosis of these diseases can be greatly improved by starting specific medication in the
early neonatal period [1–7], as observed through the management of two siblings affected
by methylenetetrahydrofolate reductase (MTHFR) deficiency, which is described below.

2. Materials and Methods
2.1. Preliminary Retrospective Study

In Japan, dried blood spot (DBS) testing for NS generally takes place on the fourth
or fifth day after birth. In the Hiroshima area, there are approximately 20,000 births each
year, and all NS samples are analyzed in the Hiroshima City Medical Association Clinical
Laboratory. To improve the sensitivity of current NS for methylmalonic acidemia caused by
defects in the adenosylcobalamin synthesis pathway and to establish NS for homocystinuria
caused by defects in homocysteine remethylation, we planned a preliminary retrospective
study to apply the following indices to NS data from April 2015 to September 2017: (1) C3
and C3/acetylcarnitine (C2) (current NS indices for methylmalonic acidemia and propionic
acidemia), (2) C3/Met, and (3) Met (the lower cutoff).

2.2. Prospective Pilot Study

After evaluating positive rates for each index, we enrolled newborns from 10 major
hospitals in the Hiroshima area into a pilot study on prospective NS. Parents provided their
written informed consent for participation. Samples were anonymized by the removal of
personal information. Samples that met one or more of the three indices were transported
to the National Center for Child Health and Development for the second-tier measure-
ment of methylmalonate (MMA) and total homocysteine (tHcy). Patients with elevated
MMA and/or tHcy were further examined in the Department of Pediatrics, Hiroshima
University Hospital.

2.3. Biochemical Analysis

Analysis of amino acids and acylcarnitines in the NS DBS was performed using the
flow injection method with an LCMS-8030 tandem mass spectrometer (Shimadzu, Kyoto,
Japan). The second-tier measurement of MMA and tHcy in DBS was performed using
liquid chromatography–mass spectrometry with an LCMS-8040 tandem mass spectrometer
(Shimadzu). Cutoff values for MMA and tHcy were 1 µmol/L and 5 µmol/L, respectively.

2.4. Statistical Analysis

Statistical analyses of NS test results were performed using a Tandem Internal Quality
Control System (System Kay, Kyoto, Japan) and Histogram Creation Sheet (Technical
Subcommittee, Japanese Society for Neonatal Screening, Tokyo, Japan).

3. Case Report
3.1. Case 1

A baby boy born as the first child of healthy nonconsanguineous parents at 37 weeks’
gestation weighed 2864 g at birth. His NS DBS showed that C3 level was elevated to
4.79 nmol/mL (cutoff, 3.6 nmol/mL), but C3/C2 was considered normal at 0.231 (cutoff,
0.25). He showed normal growth and psychomotor development. At 1 year of age, he had
norovirus gastroenteritis, presenting with vomiting, groaning, and impaired conscious-
ness, and was taken to an emergency hospital. Blood tests revealed marked acidosis,
and plasma ammonia was elevated to 251 µg/dL (normal range, 30–80 µg/dL). Fur-
ther diagnostic analysis revealed plasma MMA levels of 132.7 nmol/mL (normal range,
0.23–0.45 nmol/mL), suggestive of MMA. Lymphocyte methylmalonyl-CoA mutase ac-
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tivity was normal in the presence of adenosylcobalamin (56.2 pmol succinyl-CoA/min/
106 cells, control 61.6 ± 22.2). His serum tHcy and vitamin B12 levels were normal. Based
on these results, he was diagnosed with suspected vitamin B12-responsive methylmalonic
acidemia. A vitamin B12 challenge test was performed by daily infusion of 1 mg cyanocobal-
amin for 5 days. Post-challenge, his MMA levels decreased. Genetic analysis revealed
compound heterozygous variants in MMADHC; c.18T > A (p.C6X) and c.702insT. Based
on a diagnosis of CblD (variant 2), cobalamin and carnitine therapy was started. This case
was reported previously [8].

3.2. Case 2

A baby girl born as the first child of healthy nonconsanguineous parents at 40 weeks’
gestation weighed 2810 g at birth, and NS results were normal. However, her sucking
was weak and her weight gain was poor. From 2.5 months of age, she presented with
hypertonia and the setting-sun eye phenomenon. Although ultrasonography of her brain
at 13 days old showed no abnormal findings (Figure 1), head magnetic resonance imaging
(MRI) at 2.5 months revealed marked ventricular enlargement, suggesting hydrocephalus
or brain atrophy (Figure 2). She underwent ventricular drainage, but respiratory failure
became evident at 4 months of age when there was no improvement in head MRI findings.
Further diagnostic analysis revealed plasma tHcy levels of 170 µmol/L (normal range,
3.7–13.5 µmol/L) and urinary Hcy levels of 510 µmol/mg·cre (reference value, “unde-
tectable”), suggestive of homocystinuria. As plasma Met level was as low as 3.4 µmol/L
(normal range, 18.9–40.5 µmol/L), defects in homocysteine remethylation were indicated.
A Met decrease in the NS DBS was also ascertained retrospectively (6.6 µmol/L).

The administration of betaine monohydrate (100 mg/kg/day) was started at 4 months
of age, and her respiratory status and vitality improved rapidly. Sanger sequencing of
the methylenetetrahydrofolate reductase gene (MTHFR) detected a homozygous variant,
c.466_467GC > TT, and both parents were found to be heterozygous carriers of this variant.
Based on the diagnosis of homocystinuria type III caused by MTHFR deficiency, betaine
therapy was continued at the dosage of 300 mg/kg/day, which raised plasma Met levels to
14–40 µmol/L, and reduced plasma tHcy concentrations to 50–110 µmol/L. Head MRI at
the age of 12 months revealed the almost complete resolution of ventricular enlargement
and atrophic changes (Figure 3). However, severe psychomotor retardation became evident,
with a development quotient of 36 at the age of 1 year and 4 months. Epileptic seizures
also appeared at the age of 3 years, so the administration of sodium valproate was added.
This case was reported previously [9].

Figure 1. Brain ultrasonography of Case 2 at 13 days of age. (a) Coronal plane; (b) sagittal plane.
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Figure 3. Brain CT of Case 2 at 12 months of age, 7 months after starting betaine treatment.

3.3. Case 3

A baby boy born as the second child of the same parents as Case 2 at the gestational
age of 38 weeks and 5 days, with a birth weight of 2936 g, had a normal perinatal course.
Due to the medical history of his sister (Case 2), blood samples were collected within 24 h
of birth. Concentrations of Met in his DBS and plasma were 8.7 µmol/L and 5.4 µmol/L,
respectively. Plasma tHcy levels were elevated to 97.4 µmol/L, which was associated
with increased urinary Hcy levels (3437.1 µmol/mg·cre). These data suggested MTHFR
deficiency, so the administration of betaine at 300 mg/day (approximately 100 mg/kg/day)
was started at the age of 7 days. Thereafter, plasma Met and tHcy were controlled within
the range of 12–15 µmol/L and 80–120 µmol/L, respectively. He has maintained normal
growth and psychomotor development up to the age of 12 months, and no abnormalities
were found on head MRI. This case was reported previously [9].

4. Results
4.1. Preliminary Retrospective Study

Prior to the preliminary retrospective study, we evaluated statistical data for C3,
C3/C2, Met, and C3/Met in the DBS of 23,467 newborns in the Hiroshima area from April
2016 to March 2017 (Tables 1 and 2). The C3 cutoff has remained at 3.6 µmol/L since the
start of tandem mass spectrometry (MS/MS)-based NS in 2013. This value corresponds to
the 98.1st percentile of the enrolled data, resulting in a positive rate of 1.82%. The C3/C2
cutoff needs adjusting every few years, so was set at 0.22. The combination of cutoffs for
C3 and C3/C2 yielded a positive rate of 0.09%. The 99.9th percentile and 99.5th percentile
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of C3/Met were 0.25 and 0.20, respectively. Setting the C3/Met cutoff at 0.25 (the 99.9th
percentile) gave a positive rate of 0.13%, which was appropriate for the first screening
test. However, a lower Met cutoff was required to detect MTHFR deficiency. Cutoffs of
9.0 µmol/L and 10.0 µmol/L achieved positive rates of 0.05% and 0.12%, respectively.
Based on these data, we established the following cutoffs for the preliminary study: (1)
C3 ≥ 3.6 µmol/L and C3/C2 ≥ 0.22, (2) C3/Met ≥ 0.25, and (3) Met < 10.0 µmol/L.

Table 1. Index distributions of dried blood spots from newborns in the Hiroshima area from April
2016 to March 2017 (n = 23,467).

Mean 99th Centile 99.5th Centile 99.9th Centile

C3 (µmol/L) 1.83 3.96 4.36 5.8
C3/C2 0.09 0.18 0.19 0.24

C3/Met 0.08 0.18 0.20 0.25
Met (µmol/L) 22.10 34.71 36.60 41.75

Table 2. Newborns meeting different cutoff levels in the Hiroshima area from April 2016 to March
2017 (n = 23,437).

Index Cutoff Level

C3 (µmol/L)
3.5 3.6 3.7

n % n % n %
513 2.19 423 1.82 350 1.49

C3/C21
0.22 0.23 0.24

n % n % n %
30 0.12 23 0.09 15 0.06

C3/C2 and
C3 ≥ 3.6 µmol/L 1

0.22 0.23 0.24
n % n % n %
22 0.09 16 0.08 13 0.05

C3/Met 2
0.24 0.25 0.26

n % n % n %
12 0.13 10 0.13 8 0.10

Met (µmol/L)
9 10 11

n % n % n %
11 0.05 28 0.12 56 0.24

1 Data of 23,390 newborns; 2 data of 7714 newborns.

For the preliminary study, NS data of 59,207 newborns were evaluated, and a total of
116, 37, and 15 newborns were selected for second-tier tests using indices 1–3, respectively.
For index 1, we observed a MMA increase in two cases, and increased MMA and tHcy in
two cases. For index 2, we observed a MMA increase in one case. For index 3, we observed
a tHcy increase in one case (Table 3). Though further examination was not included in
this study, three out of the four cases assessed using index 1 were shown to be positive
for screening with C3 and C3/C2 indicators in the current NS, and maternal vitamin B12
deficiency was confirmed in two of them. One case with increased MMA had no apparent
cause. The case with increased tHcy measured using index 3 was Case 3 described above.
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Table 3. Retrospective screening for disorders of cobalamin metabolism in 59,207 newborns in the Hiroshima area from
April 2015 to September 2017.

Index First Test (n)
Second-Tier Test (n)

Elevated MMA Elevated MMA and tHcy Elevated tHcy Total

(1) C3 ≥ 3.6 µmol/L and
C3/C2 ≥ 0.22 116 2 2 0 4

(2) C3/Met > 0.25
and Met < 10 µmol/L 37 1 0 0 1

(3) Met < 10 µmol/L 15 0 0 1 1
Total 168 (0.35%) 3 2 1 6 (3.67%)

Reference range: methylmalonate (MMA) < 1 µmol/L; total homocysteine (tHcy) < 5 µmol/L.

4.2. Prospective Pilot Study

Between April 2019 and December 2020, 6080 of 40,595 newborns in the Hiroshima
area were enrolled in the pilot study. The C3/C2 cutoff is reviewed every few years, and
was set at 0.23 from April 2019 (data not shown). Therefore, we set the C3/C2 cutoff to
0.23 in the prospective pilot study. The number of cases shown to be positive was two
using index 1 alone, one using both indices 1 and 2, seven using index 2 alone, eight using
indices 2 and 3, and 54 using index 3 alone (Table 4). Only one subject out of a total of 72
with a positive finding had increased MMA levels in the second-tier tests, but no increase
in serum MMA or plasma tHcy was observed on detailed examination (data not shown).
Additionally, no obvious pathological variants were detected in genes associated with
cobalamin metabolism (MMAA, MMAB, MMACHC, MMADHC), MUT, PCCA, or PCCB
(data not shown).

Table 4. Prospective pilot screening in the Hiroshima area from April 2019 to March 2021.

Newborns Enrolled
in This Study (n = 6080)

All Newborns
in the Area (n = 40,595)

Index First Test, n (%)

(1) C3 ≥ 3.6 µmol/L and
C3/C2 ≥ 0.23 3 (0.05) 21 * 1 (0.05)

(2) C3/Met > 0.25 15 * 2 (0.24) 54 * 3 (0.13)

(3) Met < 10 µmol/L 54 (0.89) 271 (0.05)

Total 72 (1.18) 346 (0.85)

Second test, n

Elevated MMA 1 ND
Elevated tHcy 0 ND

Reference range: methylmalonate (MMA) < 1 µmol/L; total homocysteine (tHcy) < 5 µmol/L. * 1 4 using indices
(1) and (2); * 2 8 using indices (2) and (3); * 3 10 using indices (2) and (3).

To investigate the low Met levels of low birth weight infants, each index was examined
in the NS carried out from April to October 2019 for infants with a birth weight of ≤2000 g
who were part of the pilot study. No association with low birth weight infants was found
for index 1, but the frequency of low birth weight infants increased for indices 2 and 3
(Table 5).
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Table 5. Correlation between low birth weight and hypomethioninemia.

Birth Weight ≥ 2000
g, n (%)

Birth Weight < 2000
g, n (%) p-Value

n (%) 12,191 (98.32) 209 (1.68)
(1) C3 ≥ 3.6 µmol/L
and C3/C2 ≥ 0.23 5 * 1 (0.04) (0) –

(2) C3/Met > 0.25 3 (0.02) 3 (1.43) <0.001

(3) Met < 10 µmol/L 74 (0.61) 26 (12.44) <0.001

* 1 1 using indices (1) and (2).

5. Discussion

Fifteen years after the pilot study in 1997, MS/MS-based NS was adopted as an official
Japanese public health care service in 2013 [11]. Its target diseases include methylmalonic
acidemia and homocystinuria caused by CBS deficiency. In clinical practice, however,
we encountered two symptomatic infants with biochemical profiles identical to those of
methylmalonic acidemia who were diagnosed with cblD variant 2 (Case 1) and maternal
vitamin B12 deficiency (data not shown), respectively, and their NS results were within
normal range. Retrospective evaluation of NS data from the cblD patient revealed mild
elevation of C3 with a C3/C2 value slightly below the cutoff. The first NS test for both
C3 and C3/C2 had been positive in the patient with maternal vitamin B12 deficiency, but
their second NS test was normal. Additionally, several previous studies reported that
methylmalonic acidemia caused by defects in the adenosylcobalamin synthesis pathway
tend to show only a slight increase in C3, if any, in neonatal DBS [1,2,11–13]. As the
symptoms of some of these patients can easily be prevented by the specific administration
of vitamin B12, more sensitive NS tests are required to enable medication to be administered
before the clinical onset of disease [1–3,11–14].

In the present study, we document our experience of two siblings with MTHFR defi-
ciency who followed contrasting clinical courses. The differences in their prognoses appear
to be dependent upon the timing when betaine therapy was started. Betaine (N,N,N-
trimethylglycine) is the substrate for betaine-homocysteine methyltransferase (BHMT)
and thus serves as a methyl donor instead of methylcobalamin. Though the physiological
function of BHMT cannot compensate for methionine synthase which requires methylcobal-
amin, the pharmacological dosage of betaine is effective in reducing tHcy and increasing
Met levels in the blood. Met is converted into S-adenosylmethionine (SAM), which is
an important methyl donor for various methylation reactions. Therefore, maintaining
normal levels of plasma Met is essential in preventing SAM deficiency, which causes severe
damage to the central nervous system, especially during infancy and childhood. As it has
been shown that the early introduction of betaine therapy can suppress the symptoms of
homocystinuria caused by remethylation defects [1–7], a highly preventive effect of NS
is expected. In our preliminary retrospective study, the Met cutoffs of 9.0 µmol/L and
10.0 µmol/L achieved positive rates of 0.05% and 0.12%, respectively, and none of the new-
borns had Met levels below 8.0 µmol/L. Referring to the cases of MTHFR deficiency that
we experienced (Case 2) and previously reported cases, we set the Met cutoff at 10 µmol/L
to perform more sensitive NS.

Several studies have been conducted on primary indices and second-tier tests to
determine if they have sufficient sensitivity and specificity for screening for cobalamin
metabolic disorders [2,10,12,13,15–17]. MMA and tHcy in DBS are recommended as promis-
ing metabolites for the second-tier measurement [1,2], but current NS practice for these
diseases varies between countries [2]. In Japan, our pilot study is the first known trial of
prospective screening. In the prospective pilot study, using indices C3, C3/C2, C3/Met,
and Met with a lower cutoff increased the number of newborn babies targeted for the
second-tier test to 1.18% (72 out of 6080 newborns). By combining the measurement of
MMA and tHcy as a second-tier test, only one newborn was found to have an elevated
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MMA level. Measuring MMA and tHcy as a second-tier is apparently useful in reducing
false positives.

Our prospective pilot study raises the question of why the number of newborns with
C3/Met levels above the cutoff and below the Met level were higher in the Hiroshima area
during the study period. Taking into consideration the fact that newborns enrolled in this
study were limited to those born in 10 major hospitals, of which many have a neonatal
intensive care unit, and that the ratio of newborns enrolled in this study was as low as 15%,
we speculate that the study group has a higher frequency of low birth weight infants than
the surrounding area. Low birth weight and preterm infants were previously reported to
have low levels of Met concentration in their blood [2], and our NS data suggest similar
tendencies (Table 5).

6. Conclusions

Although no affected patients has been detected in our prospective pilot study so far,
the use of indices C3, C3/C2, C3/Met, and Met with a lower cutoff in combination with
second-tier measurements of MMA and tHcy seem to be promising in the establishment
of NS for methylmalonic acidemia caused by defects in the adenosylcobalamin synthesis
pathway and homocystinuria caused by defects in homocysteine remethylation. We should
discuss in this study whether newborns with the real target disease can be detected, and if
there are any undetected cases. The progress of future research will be clarified.
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