Research progress on N⁶-adenosylate methylation RNA modification in heart failure remodeling

Yiqing Yang, Mbikyo B Muisha, Junzhe Zhang, Yingxian Sun, Zhao Li Department of Cardiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China

ABSTRACT

Cardiovascular disease (CVD) is the major cause of disability-adjusted life years (DALY) and death globally. The most common internal modification of mRNA is N⁶-adenosylate methylation (m⁶A). Recently, a growing number of studies have been devoted to researching cardiac remodeling mechanisms, especially m⁶A RNA methylation, revealing a connection between m⁶A and cardiovascular diseases. This review summarized the current understanding regarding m⁶A and elucidated the dynamic modifications of writers, erasers, and readers. Furthermore, we highlighted m⁶A RNA methylation related to cardiac remodeling and summarized its potential mechanisms. Finally, we discussed the potential of m⁶A RNA methylation in the treatment of cardiac remodeling.

Key words: RNA modification, m⁶A RNA methylation, cardiac remodeling, cardiac hypertrophy, heart failure

INTRODUCTION

Cardiovascular diseases result from complicated interactions between multiple genetic variations and environmental factors.^[1] Common fatal cardiovascular diseases include ischemic heart disease (IHD),^[2,3] hypertensive heart disease,^[4] cardiomyopathies,^[5] and heart failure (HF),^[6,7] among others. One of the global health policy goals launched by World Health Organization is to reduce early mortality from noncommunicable diseases by 25% by 2025.^[8] Therefore, it is of great significance to study the mechanisms of cardiovascular disease.

Cardiac hypertrophy is an important factor in the pathogenesis of cardiovascular diseases. Physiological cardiac hypertrophy is typically caused by exercise or pregnancy.^[9] It is characterized by a slight increase in cardiac mass (10%–20%) and an increase in the length and width of individual cardiomyocytes.^[10] However, the heart shape is normal, and this process is advantageous to the cardiac function. Pathological cardiac hypertrophy includes altered cardiac gene expression, cell death, fibrosis, imbalance in Ca²⁺ transport regulatory proteins, mitochondrial dysfunction, changes in sarcomere structure, and inadequate angiogenesis.^[11] The signaling mechanisms that induce these responses contribute to maladaptive heart remodeling and dysfunction, ultimately leading to heart failure. Inhibiting concurrent signaling pathways may also have important therapeutic significance.^[9]

RNAs can be modified after transcription, and more than 170 types of RNA posttranscriptional modifications have been discovered to date.^[12] An increasing number of inner modifications of eukaryotic epigenetics have been explored in recent studies, including well-known markers named histone tails.^[13,14] RNA modifications involve adenosine N⁶-methyladenosine (m⁶A), N¹methyladenosine (m¹A), 5-methylcytosine (m⁵C), pseudothiopyrimidine (Ψ), N⁶, 2'-Odimethyladenosine (m⁶A_m),^[15] the methylation of cytosine to 5-methylcytosine and its oxidation product 5-hydroxymethylcytosine

Address for Correspondence:

Prof. Zhao Li, Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, Liaoning Province, China. E-mail: drzhaoli123@163.com

Access this article online

Website:

www.intern-med.com DOI: 10.2478/jtim-2022-0025 (hm⁵C),^[13] N⁷-methylguanosine (m⁷G),^[16] N⁴-acetylcytidine (ac⁴C),^[17] and ribose methylations (N_m).^[18] The most extensive modification of mammalian mRNA, N6methyladenosine (m⁶A), has aroused widespread interest and scrutiny in the field.^[19] Scientists have isolated RNA from mammals and discovered that approximately 1%-4% of adenosine was modified as m⁶A, which made up about half of the total ribonucleotide methylation.^[20] m⁶A is also found in precursor RNAs (pre-RNAs) and long noncoding RNAs (IncRNAs).^[21] Generally, m⁶A is embedded in the conserved sequence 5'-RRACU-3',[22] and it mainly occurs in the beginning segment of the 3'-UTR, which is near the translation end codon.^[23] Currently, extensive studies are being conducted to investigate the connection between m6A and various diseases.[24-26] One of the research hotspots is tumorigenesis, but research reports on the relationship between m6A modification and cardiovascular diseases are still limited.^[27] This review summarizes m⁶A RNA methylation and the regulation of RNA stability in cardiac remodeling. It also focuses on how research advances in the relationship between m⁶A modification and cardiac remodeling provide new ideas for the prevention, early detection, and treatment of cardiac hypertrophy and heart failure.

m⁶A RNA METHYLATION

RNA modified as m⁶A refers to the methylation of N⁶ in the nitrogenous base adenine.^[28] There are three key enzymes mediating this process: methyltransferases (writers), demethylases (erasers), and methylation-reading proteins (readers).^[29] We summarized their participation in biological dynamic modification and function, as shown in Figure 1.

Writers

"Writers" refer to methyltransferases. Enzymes of this class mainly contain methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14), methyltransferaselike 16 (METTL16), Wilms tumor 1-associated protein (WTAP),^[30] vir-like m⁶A methyltransferase associated (KIAA1429/VIRMA),^[31] zinc finger protein (ZFP217),^[32] RNA-binding motif protein 15 (RBM15),^[33] zinc finger CCCH-type containing 13 (ZC3H13),^[34] zinc finger CCHC-type containing 4 (ZCCHC4),^[35] and other components. They exist in the form of complexes and jointly catalyze the m6A modification of adenine on RNA. A steady formation can be achieved with METTL3 and METTL14,^[36] which catalyze the epigenetic modification of m⁶A RNA in vitro and in vivo.^[37] WTAP has no methyltransferase activity but can bind to METTL3 and METTL14.^[38] These three proteins are colocalized in nuclear speckles and play important roles in regulating gene expression and alternative splicing.^[39] METTL3, an m⁶A methyltransferase, also plays a key role in autophagy in non-small-cell lung cancer (NSCLC) cells.^[40-42] This process reverses gefitinib resistance through β-elemene. Compared to paired normal tissues, METTL3 expression was increased in lung adenocarcinoma tissues and participated in gefitinib drug tolerance of NSCLC cells. The key genes in autophagy pathways, such as ATG7 and ATG5, are upregulated by METTL3.^[43] The upregulation of inflammatory cytokines, such as tumor necrosis factor α (TNF- α), interleukin 1 beta (IL-1 β), interleukin 6 (IL-6), and interleukin 18 (IL-18), and the inflammatory proteins TNF receptor associated factor 6 (TRAF6) and nuclear factor of kappa light polypeptide gene enhancer in B cells 1 (NF- α B) was observed in a microglial inflammation model mediated by lipopolysaccharide (LPS). Surprisingly, METTL3 expression levels were also upregulated alongside TRAF6 in this model. The TRAF6-NF-B pathway is also activated when METTL3 is overexpressed. Therefore, METTL3 activates the TRAF6-NF-xB pathway and accelerates LPS-induced microglial inflammation.^[44]

Erasers

Demethylases, also known as the "erasers," remove the m⁶A modification of RNA. This process demonstrates the dynamic and reversible modification of m⁶A. It has been found that demethylases mainly include the genes Fat Mass and Obesity Associated (FTO)^[45] and ALKBH5 (alkane hydroxylase homolog 5).^[46] These two molecules are part of the α -ketoglutarate-dependent dioxygenase family.^[47] m⁶A demethylation can be catalyzed in an Fe²⁺and α -ketoglutarate-dependent manner.^[48] A decrease in FTO and ALKBH5 expression was found to be coupled with an increase in m⁶A modification in mRNA.^[45] FTO is associated with human obesity and is considered an obesity susceptibility gene.^[49] It is related to body mass index through energy expenditure and intake.^[50] Several studies have revealed that FTO is involved in m⁶A modifications. m⁶A demethylation catalyzed by FTO can regulate the stability of mRNA, regulate the efficiency of degradation and translation, and control the expression of protein levels. Research has shown that FTO is necessary for the normal development of the central nervous system^[51] and the cardiovascular system.^[52] This confirms that mutations in the alkb-related dioxygenase family of genes could cause severe polymalformation syndrome.^[53] The Alkb family, which is enriched with iron- and 2-oxoglutaratedependent nucleic acid oxygenase (NAOX), contains a member named ALKBH5. ALKBH5 catalyzes m⁶A demethylation.^[54] According to a report, the doublestranded β-helix domain of ALKBH5 has a mutual effect on the ATP domain of the DEAD (Asp-Glu-Ala-Asp) box polypeptide 3 (DDX3). This domain participates in critical biological processes, such as the cell cycle, metabolism, and apoptosis.^[55] Furthermore, it was revealed that both FTO and ALKBH5 are closely associated with single-nucleotide

Figure 1: The dynamic modification of m⁶A. Writers (METTL3, METTL14, WTAP, METTL16, KIAA1429, RBM15/15B, ZFP127, ZC3H13, and ZCCHC4) can identify and methylate the N6 of RNA. Erasers (FTO, ALKBH5, ALKBH3) can catalyze m⁶A-RNA demethylation. m⁶A-RNA can be discerned by readers such as YTHDC1 for mRNA splicing. Other readers of m⁶A are located in the cytoplasm; for instance, YTHDF1, YTHDF2, YTHDF3, YTHDC2, HNRNPA2B1, HNRNPC/G, and IGF2BP1/2/3 are involved in the splicing, processing, translation, and degradation of m⁶A RNAs. METTL3: methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit; METTL14: methyltransferase 14, N6-adenosine-methyltransferase subunit; METTL16: methyltransferase 16, N6-methyladenosine; WTAP: WT1-associated protein; KIAA1429/VIRMA: vir-like m⁶A methyltransferase-associated; RBM15/15B: RNA-binding motif protein 15/15B; ZFP127/MKRN3: makorin ring finger protein 3; ZC3H13: zinc finger CCCH-type containing 13; ZCCHC4: zinc finger CCHC-type containing 4; FTO: FTO α-ketoglutarate dependent dioxygenase; ALKBH5: alkB homolog 5, RNA demethylase; ALKBH3: alkB homolog 3, RNA demethylase; YTHDC1/2: YTH domain-containing 1/2; YTHDF1/2/3: YTH N6-methyladenosine RNA binding protein 1/2/3; HNRNPA2B1: heterogeneous nuclear ribonucleoprotein A2/B1; HNRNPC/G: heterogeneous nuclear ribonucleoprotein C/G; IGF2BP1/2/3: insulin-like growth factor 2 mRNA-binding protein 1/2/3. polymorphisms (SNPs).^[56] In addition, it was reported that ALKBH3 could demethylate 1-meA and 3-meC; thus, the damage and incomplete methylation of DNA/RNA could be repaired.^[57]

Readers

The major function of m6A-reading proteins is to recognize the bases that have been modified by m⁶A and to regulate the processing, transportation, translation, and stability of the modified RNA.^[58] To date, the m⁶A reading proteins that have been identified include the YT521-B homology (YTH) family (YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2),^[59] HNRNP family (HNRNPA2B1, HNRNPC, and HNRNPG),[60-62] IGF2BP (IGF2BP1, IGF2BP2, and IGF2BP3),^[63] and eIF3A/B.^[64] The YTHDFs, YTHDC2, IGF2BP, and eIF3A/B proteins are located in the cytoplasm,^[65] whereas the YTHDC1 and HNRNP families can be found in the nucleus.^[66] YTH N6-methyladenosine RNA-binding protein 2 (YTHDF2) was the first m⁶A reader to be discovered.^[67] YTHDF2 accelerates the degradation of transcripts modified by m⁶A by directly enlisting the glucose-repressible alcohol dehydrogenase transcriptional effector (CCR4-NOT) deadenylase complex. In contrast, YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) was initially shown to combine with the m⁶A site near the stop codon and then bind to the translation origination mechanism to enhance the translation efficiency of specific RNA in mammals.^[68] YTH N6-methyladenosine RNA-binding protein 3 (YTHDF3) plays a crucial role in the original stages of translation and stability.^[69] The YTH domain-containing 1 (YTHDC1) mediates m⁶Aregulated mRNA splicing,^[70] nuclear transport, and gene translation silencing^[71] as a nuclear RNA-binding protein.^[72] YTH domain-containing 2 (YTHDC2) increases mRNA translation efficiency.^[73] HNRNPA2B1 promotes miRNA maturation.^[74] Heterogeneous nuclear ribonucleoprotein C (HNRNPC) participates in pre-mRNA processing^[75] and alternative splicing.^[76] Heterogeneous nuclear ribonucleoprotein G (HNRNPG) regulates alternative splicing and the abundance of target mRNAs.^[77] Insulinlike growth factor 2 mRNA-binding proteins (IGF2BPs), located in the cytoplasm as m⁶A readers, preferentially recognize m⁶A-modified mRNAs. They can reinforce mRNA stability and promote translational efficiency.^[78]

m⁶A RNA METHYLATION AND PATHOLOGICAL CARDIAC REMODELING

Cardiac remodeling includes changes in genomic expression, molecules, cells, and the mesenchyme that clinically manifest as changes in cardiac size, shape, and function after injury.^[79] Cardiac remodeling can be categorized into physiological remodeling and pathological remodeling. Physiological cardiac remodeling is often caused by exercise or pregnancy.^[80] It manifests as a slight (15%) increase in heart weight and an increase in the length and width of individual cardiomyocytes. The shape of the heart is normal, which is beneficial to its function.^[81] However, pathological cardiac hypertrophy can manifest as changes in cardiac gene expression, cell death, fibrosis, Ca²⁺ transport regulatory protein disorders,^[9] mitochondrial dysfunction, metabolic maladjustment, restoration of antenatal gene expression, damaged protein quality assurance mechanisms, changes in sarcomere structure, and lack of angiogenesis.^[82] The signaling mechanism inducing these reactions promotes maladaptive cardiac remodeling and dysfunction, eventually leading to heart failure (HF).[83] It has been reported that heart failure (HF) is a chronic disease that inflicts more than 20 million patients worldwide.[84,85] In the past several years, a growing number of studies have revealed the relationship between m6A modifications and cardiovascular diseases, including cardiac hypertrophy,[86] heart failure,^[19] atherosclerosis, coronary heart disease,^[87] ischemic cardiomyopathy, hypertension, and vascular disease.^[88] Therefore, inhibiting concurrent signaling pathways will have important therapeutic significance for interventions in these cardiac diseases.

Cardiac hypertrophy

In the presence of hemodynamic stress, cardiomyocytes adapt by becoming hypertrophic. This reaction plays a reparative role in improving cardiac function, decreasing the strain on the ventricular wall and oxygen expenditure.^[89] Cardiac hypertrophy can be divided into two types: physiological and pathological. Physiological cardiac hypertrophy, which can maintain normal morphology and play a beneficial role in the heart, mostly results from exercise training or pregnancy.^[90] In contrast, pathological cardiac hypertrophy causes many cardiovascular pathophysiological changes, such as ventricular remodeling, fibrosis, and cardiac gene expression alteration.^[91]

Hinger *et al.*^[92] found an increase in m⁶A content in human heart failure samples but showed a preserved distribution. The protein level of METTL3 was increased, and that of FTO was decreased, while there was no change in ALKBH5 levels. Afterward, human and hypertrophic neonatal rat ventricular myocytes obtained from heart failure samples were used to investigate whether there was conserved specificity in m⁶A events in cardiomyocytes across species. Their results showed stress-responsive m⁶A-transcripts between rats and humans were conservative. In both human hearts and rat cardiomyocytes, Western blotting showed that coronin 6 (CORO6) levels were reduced, whereas the expression of RE1 silencing transcription factor (REST) was increased. However, the mRNA levels of these two genes remained unaffected. Furthermore, they detected m⁶A content in both human heart failure samples and hypertrophic cardiomyocytes. They found that REST expression was increased, while CORO6 had greater m⁶A content in nonfailing heart and normal cardiomyocytes. Upon upregulation of METTL3, the translation levels of REST and CORO6 increased. Hence, posttranscriptional modifications may play a direct role in gene expression in cardiomyocytes.

Gao et al.^[93] revealed a piRNA (PIWI-interacting RNA) named CHAPIR (cardiac-hypertrophy-associated piRNA), which regulates cardiac hypertrophy. Overexpression of CHAPIR using a mimic aggravated pathological hypertrophic response in a TAC mouse model, while the downregulation of CHAPIR notably attenuated cardiac hypertrophy and recovered cardiac function. In terms of mechanism, METTL3 combined with CHAPIR-PIWIL4 complexes suppressed Parp10 mRNA m6A methylation. The mRNA and protein expression levels of poly(ADPribose) polymerase family member 10 (PARP10) increased, which promoted mono-ADP-ribosylation of GSK3B and suppressed its kinase activity.^[94] This process increased nuclear NFATC4 levels and led to the progression of pathological hypertrophy. Therefore, targeting the CHAPIR-METTL3-PARP10-NFATC4 signaling axis could be a therapeutic mechanism for improving cardiac hypertrophy.

Dorn *et al.*^[95] discovered that the extent of m⁶A methylation increases in response to hypertrophic stimulation. The growth of hypertrophic cardiomyocytes was fully abolished upon stimulation, and they did not undergo hypertrophy when METTL3 was suppressed *in vitro*. However, the overexpression of METTL3 can cause spontaneous and compensatory hypertrophy. *In vivo*, cardiac-specific METTL3-knockout mice showed cardiac remodeling and heart failure followed by cardiac homeostasis disorders, whereas increased METTL3 levels caused cardiac hypertrophy.

Kmietczyk *et al.*^[96] showed that the mechanism of m⁶A RNA methylation is dynamic and effective in cardiomyocytes undergoing pressure^[97] and regulates gene expression and cellular proliferation in the heart. They found that METTL3 and FTO could participate in m⁶A RNA methylation by influencing transcript stability and regulating translational efficiency. In an *in vitro* model of neonatal rat cardiomyocytes (NRCM), the knockdown of METTL3 reduced m⁶A levels^[98] and increased the cell size and the expression of the hypertrophic markers ANP and BNP. However, FTO-KO mice exhibited enhanced m⁶A levels and weakened NRCM hypertrophy. In an *in vivo* model of AAV9-mediated METTL3 overexpression in C57Bl6/N mice and TAC mice, METTL3 overexpression

shrank the cross-sectional area of the myocytes and suppressed pathological hypertrophic cellular growth. Nevertheless, how METTL3 and FTO regulate gene expression and cellular growth and which specific target genes play an essential role in cardiomyocyte hypertrophy are still under study.

Heart failure

Berulava *et al.*^[99] discovered that the level of m⁶A RNA methylation decreases during heart failure. The mRNA level of calmodulin 1 (calm1) remained unchanged, while the protein expression level of calm1 was reduced. In other words, m⁶A RNA methylation levels influenced protein levels rather than mRNA levels. m⁶A RNA methylation is directly proportional to ribosomal occupancy, indicating increased protein levels of hypermethylated transcripts and decreased protein levels of hypomethylated transcripts. A worsened cardiac phenotype in the FTO-knockout mice model after TAC was also observed, as the ejection fraction was reduced and the degree of dilatation was increased.

Mathiyalagan et al.[100] discovered that the demethylase FTO was associated with cardiac function during cardiac remodeling and repair. They detected reduced FTO expression levels in failing mammalian hearts and hypoxic cardiomyocytes; therefore, m⁶A RNA methylation increased. Sarco/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) is a contractile protein that exhibits less stability and lower efficiency to regulate translation when hypermethylated, eventually resulting in cardiomyocyte contractile function. However, FTO overexpression in human myocytes led to SERCA2a demethylation. Furthermore, cardiac contractile function improved with an increase in SERCA2a expression. They also found that FTO overexpression reduced fibrosis and promoted angiogenesis in mouse models of myocardial infarction. Hence, this mechanism provides novel insights into cardiac remodeling and repair.

RESEARCH PROGRESS ON NEW TECHNIQUES IN DETECTING m⁶A RNA METHYLATION

Researchers are actively exploring the role of m⁶A modification-related molecules in cardiovascular disease; however, many problems and challenges still need to be resolved. For example, transcriptome-wide mapping used in m⁶A can help us better understand catalog m⁶A targets and reveal the underlying epigenetic modification mechanisms. In 2012, *Nature* and *Cell* published a method for the whole transcriptome sequencing of m⁶A modification via m⁶A-specific antibody enrichment (MeRIP-seq or m⁶A-seq);^[19,101] however, MeRIP-seq has an insufficient resolution (about

100 nt). However, insurmountable weaknesses in principle, such as low repeatability, large sample demand, and cumbersome operation, have caused significant problems in m⁶A research in recent years.

In 2015, *Nature Methods* proposed a new method for the high-resolution detection of the localization of N⁶-methyladenosine in eukaryotic RNA called m⁶A single-nucleotide resolution cross-linking and immunoprecipitation (miCLIP).^[102] Mutations would occur when the cross-linking of the RNA-m⁶A antibody-binding sites is reverse-transcribed. The mutated sequences had unique features (*e.g.*, C-T transition or truncation) that could pinpoint m⁶A. miCLIP can perform high-resolution detection of individual m⁶A residues and m⁶A cluster analysis of the total RNA. In particular, miCLIP is suitable for small nucleolar RNA (snoRNA).

In a recent study, Zhang *et al.* published a research paper titled "Single-base mapping of m⁶A by an antibodyindependent method,"^[103] which described a new principle of m⁶A detection technology named m⁶A-REFseq (m⁶A-sensitive RNA-endoribonuclease-facilitated sequencing). This technology used the sensitivity of the newly discovered RNA endonuclease to m⁶A, which eliminated the dependence of traditional methods on antibodies and achieved accurate detection of m⁶A across the transcriptome.^[104] New methods must be implemented in the m⁶A field with the development of better scientific methods and technological advances. However, whether other types of m⁶A modification have some links to cardiac remodeling is still to be discovered. Finally, drugs targeting m⁶A are promising for the clinical treatment of cardiovascular diseases.

We hope that consistent studies in this field can further deepen our understanding of the processes surrounding heart failure and approach the reality of discovering new treatments, thereby improving the quality of life of patients with heart failure.

CONCLUSIONS AND FUTURE PERSPECTIVES

The most abundant RNA modification in RNA epigenetics is m⁶A methylation.^[105] m⁶A methylation studies have currently gained significant popularity in scientific research.^[106] In this review, we focused on cardiac remodeling, summarized the

Table 1: m ⁶ A and cardiac remodeling						
Types of cardiac remodeling	Effector	Type of effector	Expression	Target genes	Mechanism	Reference
Cardiac hypertrophy	METTL3 FTO	Writer Eraser	Upregulation Downregulation	REST CORO6	Protein expression was higher in condition of greater m ⁶ A content, and overexpression of METTL3 was sufficient to positively affect the translation of REST and CORO6	[92]
	METTL3	Writer	Reduce activity of METTL3	PARP10	CHAPIR-PIWIL4 \rightarrow METTL3 \rightarrow m ⁶ A-PARP10 \rightarrow PARP10 (mRNA and protein) \rightarrow mono-ADP- ribosylation of GSK3 β \rightarrow GSK3 β kinase activity \rightarrow NFATC4 \rightarrow pathological hypertrophy	[93]
	METTL3	Writer	Upregulation	MAP3K6/ MAP4K5/ MAPK14/ Nppa/Nppb	<i>In vitro</i> : METTL3 → prevent pathological hypertrophy METTL3 → spontaneous and compensate hypertrophy <i>In vivo</i> : METTL3-KO → remodeling and heart failure → cardiac homeostasis disorder METTL3 → cardiac hypertrophy	[95]
	METTL3	Writer	Downregulation	Unknown	In vitro: METTL3-KO \rightarrow m ⁶ A level \rightarrow cell size and level of Nppa/Nppb; FTO-KO \rightarrow m ⁶ A level \rightarrow hypertrophy of NRCM In vivo: METTL3-overexpression \rightarrow myocytes cross- sectional area \rightarrow pathological hypertrophic cellular growth	[96]
Heart failure	FTO	Eraser	Downregulation	Calm1	Calm1 protein expression regulation in heart failure occurs partially only on translational level and without changes in DNA to RNA transcription	[99]
	FTO	Eraser	Downregulation	SERCA2a	In failing mammalian hearts and hypoxic cardiomyocyte, FTO SERCA2a mRNA is hypermethylated cardiomyocytes contractile function	[100]

METTL3: methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit; REST: RE1 silencing transcription factor; CORO6: coronin 6; PARP10: poly (ADP-ribose) polymerase family member 10; MAP3K6/5/14: mitogen-activated protein kinase kinase kinase 6/5/14; Nppa: natriuretic peptide A; Nppb: natriuretic peptide B; FTO: FTO α -ketoglutarate-dependent dioxygenase; Calm1: calmodulin 1; SERCA2a: sarco/endoplasmic reticulum Ca²⁺-ATPase.

classification of m6A RNA methylases, and discussed their dynamic modification (Figure 1) in detail. Furthermore, we surveyed m⁶A RNA modifications in cardiac remodeling, including cardiac hypertrophy and heart failure (Table 1). The mechanisms regarding the development of cardiac hypertrophy are intricate; however, what we currently know is just the tip of the iceberg, and further research is needed to elucidate the epigenetic mechanisms underlying heart failure.^[107] In the past few years, we have opened new areas for advancing the known mechanisms and identifying the unknown pathways involved in cardiac remodeling. Heart failure is still difficult to cure in the clinical setting and its prevalence rate increases with age.^[108] m⁶A has potential applications in the diagnosis and treatment of heart failure. Research focus should be placed on the abnormal expression of some m⁶A enzymes, such as METTL3 and FTO, because they are related to cardiac hypertrophy or heart failure since the early detection of these abnormalities will help in the early diagnosis of heart failure. It is also possible that we interfere with the expression of methylases, such as METTL3 and FTO, to prevent heart failure.

Source of Funding

This study was funded by the National Natural Science Foundation of China (No. 8197021725) and the Shenyang Science and Technology Project (No. 19-112-4-003).

Conflict of Interest

Yingxian Sun is an Associate Editor-in-Chief of the journal. The article was subject to the journal's standard procedures, and peer review was handled independently of this editor and his research groups.

REFERENCES

- 1. De Backer G. Epidemiology and prevention of cardiovascular disease: Quo vadis? Eur J Prev Cardiol 2017;24:768–72.
- Wang Y, Chen J, Cowan DB, Wang DZ. Noncoding RNAs in cardiac regeneration: Mechanism of action and therapeutic potential. Semin Cell Dev Biol 2021;118:150–62.
- Duan B. Concise Review: Harnessing iPSC-derived Cells for Ischemic Heart Disease Treatment. J Transl Intern Med 2020;8:20–5.
- Saliba LJ, Maffett S. Hypertensive Heart Disease and Obesity: A Review. Heart Fail Clin 2019;15:509–17.
- Ciarambino T, Menna G, Sansone G, Giordano M. Cardiomyopathies: An Overview. Int J Mol Sci 2021;22:7722.
- Gedela M, Khan M, Jonsson O. Heart Failure. S D Med 2015;68:403–5, 407–9.
- Li C, Wang DW, Zhao C. Cardiovascular Involvement in Patients with 2019 Novel Coronavirus Disease. J Transl Intern Med 2021;9:152–60.
- Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, *et al.* Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ Res 2017;121:677–94.
- 9. Nakamura M, Sadoshima J. Mechanisms of physiological and pathological

cardiac hypertrophy. Nat Rev Cardiol 2018;15:387-407.

- Oldfield CJ, Duhamel TA, Dhalla NS. Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can J Physiol Pharmacol 2020;98:74–84.
- 11. Li Y, Liang Y, Zhu Y, Zhang Y, Bei Y. Noncoding RNAs in Cardiac Hypertrophy. J Cardiovasc Transl Res 2018;11:439–49.
- Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, *et al.* MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 2018;46:303–7.
- Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA Modifications in Gene Expression Regulation. Cell 2017;169:1187–200.
- 14. Zhu M, Ding Q, Lin Z, Chen X, Chen S, Zhu Y. New insights of epigenetics in vascular and cellular senescence. J Transl Intern Med 2021;9:239–48.
- Ma CJ, Ding JH, Ye TT, Yuan BF, Feng YQ. AlkB Homologue 1 Demethylates N(3)-Methylcytidine in mRNA of Mammals. ACS Chem Biol 2019;14:1418–25.
- Cockman E, Anderson P, Ivanov P. TOP mRNPs: Molecular Mechanisms and Principles of Regulation. Biomolecules 2020;10:969.
- Karthiya R, Wasil SM, Khandelia P. Emerging role of N4-acetylcytidine modification of RNA in gene regulation and cellular functions. Mol Biol Rep 2020;47:9189–99.
- Wiener D, Schwartz S. The epitranscriptome beyond m⁶A. Nat Rev Genet 2021;22:119–31.
- Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 2012;149:1635–46.
- Sun T, Wu R, Ming L. The role of m⁶A RNA methylation in cancer. Biomed Pharmacother 2019;112:108613.
- Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. m⁶A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer Cell 2017;31:591–606.
- Li Y, Wu K, Quan W, Yu L, Chen S, Cheng C, *et al.* The dynamics of FTO binding and demethylation from the m⁶A motifs. RNA Biol 2019;16:1179–89.
- Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, *et al.* Topology of the human and mouse m⁶A RNA methylomes revealed by m⁶A-seq. Nature 2012;485:201–6.
- Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, *et al.* The interplay between m⁶A RNA methylation and noncoding RNA in cancer. J Hematol Oncol 2019;12:121.
- 25. He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer 2019;18:176.
- Tong J, Flavell RA, Li HB. RNA m⁶A modification and its function in diseases. Front Med 2018;12:481–9.
- Chen J, Wei X, Yi X, Jiang DS. RNA Modification by m⁶A Methylation in Cardiovascular Disease. Oxid Med Cell Longev 2021;2021:8813909.
- Li LJ, Fan YG, Leng RX, Pan HF, Ye DQ. Potential link between m⁶A modification and systemic lupus erythematosus. Mol Immunol 2018;93:55–63.
- Zhang W, Qian Y, Jia G. The detection and functions of RNA modification m⁶A based on m⁶A writers and erasers. J Biol Chem 2021;297:100973.
- Reichel M, Köster T, Staiger D. Marking RNA: m⁶A writers, readers, and functions in Arabidopsis. J Mol Cell Biol 2019;11:899–910.
- Zhu W, Wang JZ, Wei JF, Lu C. Role of m⁶A methyltransferase component VIRMA in multiple human cancers (Review). Cancer Cell Int 2021;21:172.
- Liu Q, Zhao Y, Wu R, Jiang Q, Cai M, Bi Z, *et al.* ZFP217 regulates adipogenesis by controlling mitotic clonal expansion in a METTL3-m⁶A dependent manner. RNA Biol 2019;16:1785–93.
- Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, *et al*. N6methyladenosine-dependent regulation of messenger RNA stability. Nature 2014;505:117–20.
- Knuckles P, Lence T, Haussmann IU, Jacob D, Kreim N, Carl SH, et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m⁶A machinery component

Wtap/Fl(2)d. Genes Dev 2018;32:415-29.

- Ma H, Wang X, Cai J, Dai Q, Natchiar SK, Lv R, *et al.* N(6-) Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat Chem Biol 2019;15:88–94.
- Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 2014;10:93–5.
- Wang P, Doxtader KA, Nam Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Mol Cell 2016;63:306–17.
- Selberg S, Žusinaite E, Herodes K, Seli N, Kankuri E, Merits A, et al. HIV Replication Is Increased by RNA Methylation METTL3/METTL14/ WTAP Complex Activators. ACS Omega 2021;6:15957–63.
- Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, *et al.* Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014;24:177–89.
- Zhang Y, Liu S, Zhao T, Dang C. METTL3-mediated m⁶A modification of Bcl-2 mRNA promotes non-small cell lung cancer progression. Oncol Rep 2021;46:163.
- Li M, Wang Q, Zhang X, Yan N, Li X. CircPUM1 promotes cell growth and glycolysis in NSCLC via upregulating METTL3 expression through miR-590-5p. Cell Cycle 2021;20:1279–94.
- 42. Jin D, Guo J, Wu Y, Du J, Yang L, Wang X, et al. m⁶A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol 2021;14:32.
- Liu S, Li Q, Li G, Zhang Q, Zhuo L, Han X, *et al.* The mechanism of m⁶A methyltransferase METTL3-mediated autophagy in reversing gefitinib resistance in NSCLC cells by β-elemene. Cell Death Dis 2020;11:969.
- Wen L, Sun W, Xia D, Wang Y, Li J, Yang S. The m⁶A methyltransferase METTL3 promotes LPS-induced microglia inflammation through TRAF6/NF-κB pathway. Neuroreport 2022;33:243–51.
- 45. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, *et al.* N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011;7:885–7.
- 46. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, *et al*. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 2013;49:18–29.
- 47. Wu G, Yan Y, Cai Y, Peng B, Li J, Huang J, *et al.* ALKBH1-8 and FTO: Potential Therapeutic Targets and Prognostic Biomarkers in Lung Adenocarcinoma Pathogenesis. Front Cell Dev Biol 2021;9:633927.
- Huo FC, Zhu ZM, Pei DS. N(6) -methyladenosine (m(6) A) RNA modification in human cancer. Cell Prolif 2020;53:e12921.
- 49. Zhou Y, Hambly BD, McLachlan CS. FTO associations with obesity and telomere length. J Biomed Sci 2017;24:65.
- 50. Yuzbashian E, Asghari G, Chan CB, Hedayati M, Safarian M, Zarkesh M, *et al.* The association of dietary and plasma fatty acid composition with FTO gene expression in human visceral and subcutaneous adipose tissues. Eur J Nutr 2021;60:2485–94.
- Pan T, Wu F, Li L, Wu S, Zhou F, Zhang P, *et al.* The role m⁶A RNA methylation is CNS development and glioma pathogenesis. Mol Brain 2021;14:119.
- 52. Liu C, Mou S, Pan C. The FTO gene rs9939609 polymorphism predicts risk of cardiovascular disease: a systematic review and meta-analysis. PLoS One 2013;8:e71901.
- Boissel S, Reish O, Proulx K, Kawagoe-Takaki H, Sedgwick B, Yeo GS, et al. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet 2009;85:106–11.
- Zhou B, Han Z. Crystallization and preliminary X-ray diffraction of the RNA demethylase ALKBH5. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013;69:1231–4.
- Shah A, Rashid F, Awan HM, Hu S, Wang X, Chen L, *et al.* The DEAD-Box RNA Helicase DDX3 Interacts with m⁶A RNA Demethylase ALKBH5.

Stem Cells Int 2017;2017:8596135.

- Piette ER, Moore JH. Identification of epistatic interactions between the human RNA demethylases FTO and ALKBH5 with gene set enrichment analysis informed by differential methylation. BMC Proc 2018;12:59.
- 57. Ueda Y, Ooshio I, Fusamae Y, Kitae K, Kawaguchi M, Jingushi K, *et al*. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep 2017;7:42271.
- Patil DP, Pickering BF, Jaffrey SR. Reading m⁶A in the Transcriptome: m⁶A-Binding Proteins. Trends Cell Biol 2018;28:113–27.
- Xu C, Wang X, Liu K, Roundtree IA, Tempel W, Li Y, *et al.* Structural basis for selective binding of m⁶A RNA by the YTHDC1 YTH domain. Nat Chem Biol 2014;10:927–9.
- Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF. HNRNPA2B1 Is a Mediator of m⁶A-Dependent Nuclear RNA Processing Events. Cell 2015;162:1299–308.
- Zarnack K, König J, Tajnik M, Martincorena I, Eustermann S, Stévant I, et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 2013;152:453–66.
- Zhou KI, Shi H, Lyu R, Wylder AC, Matuszek Ż, Pan JN, et al. Regulation of Co-transcriptional Pre-mRNA Splicing by m⁶A through the Low-Complexity Protein hnRNPG. Mol Cell 2019;76:70–81.
- Huang X, Zhang H, Guo X, Zhu Z, Cai H, Kong X. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in cancer. J Hematol Oncol 2018;11:88.
- Shi H, Chai P, Jia R, Fan X. Novel insight into the regulatory roles of diverse RNA modifications: Re-defining the bridge between transcription and translation. Mol Cancer 2020;19:78.
- Liu N, Pan T. N6-methyladenosine–encoded epitranscriptomics. Nat Struct Mol Biol 2016;23:98–102.
- Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m⁶A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res 2018;28:616–24.
- Wang JY, Lu AQ. The biological function of m⁶A reader YTHDF2 and its role in human disease. Cancer Cell Int 2021;21:109.
- Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)methyladenosine Modulates Messenger RNA Translation Efficiency. Cell 2015;161:1388–99.
- Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, et al. Cytoplasmic m⁶A reader YTHDF3 promotes mRNA translation. Cell Res 2017;27:444–7.
- Wu S, Zhang S, Wu X, Zhou X. m⁶A RNA Methylation in Cardiovascular Diseases. Mol Ther 2020;28:2111–9.
- Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, *et al.* m⁶A RNA methylation promotes XIST-mediated transcriptional repression. Nature 2016;537:369–73.
- Roundtree IA, He C. Nuclear m⁶A Reader YTHDC1 Regulates mRNA Splicing, Trends Genet 2016;32:320–1.
- Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, *et al*. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 2017;27:1115–27.
- Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6methyladenosine marks primary microRNAs for processing. Nature 2015;519:482–5.
- Cieniková Z, Damberger FF, Hall J, Allain FH, Maris C. Structural and mechanistic insights into poly(uridine) tract recognition by the hnRNP C RNA recognition motif. J Am Chem Soc 2014;136:14536–44.
- Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N(6)-methyladenosinedependent RNA structural switches regulate RNA-protein interactions. Nature 2015;518:560–4.
- Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, Pan T. N6methyladenosine alters RNA structure to regulate binding of a lowcomplexity protein. Nucleic Acids Res 2017;45:6051–63.
- Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 2018;20:285–95.

- Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling--concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 2000;35:569–82.
- 80. Hill JA, Olson EN. Cardiac plasticity. N Engl J Med 2008;358:1370-80.
- 81. Bernardo BC, McMullen JR. Molecular Aspects of Exercise-induced Cardiac Remodeling. Cardiol Clin 2016;34:515–30.
- Wu QQ, Xiao Y, Yuan Y, Ma ZG, Liao HH, Liu C, *et al.* Mechanisms contributing to cardiac remodelling. Clin Sci (Lond) 2017;131:2319– 45.
- Tham YK, Bernardo BC, Ooi JY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015;89:1401–38.
- Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J 2014;35:2950–9.
- 85. Kapiloff MS, Emter CA. The cardiac enigma: current conundrums in heart failure research. F1000Res 2016;5:F1000 Faculty Rev-72.
- Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond. J Biol Chem 2015;290:20734–42.
- Wu Y, Zhan S, Xu Y, Gao X. RNA modifications in cardiovascular diseases, the potential therapeutic targets. Life Sci 2021;278:119565.
- Paramasivam A, Vijayashree Priyadharsini J, Raghunandhakumar S. N6-adenosine methylation (m⁶A): a promising new molecular target in hypertension and cardiovascular diseases. Hypertens Res 2020;43:153–4.
- Berenji K, Drazner MH, Rothermel BA, Hill JA. Does load-induced ventricular hypertrophy progress to systolic heart failure? Am J Physiol Heart Circ Physiol 2005;289:h8–h16.
- Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010;128:191–227.
- 91. Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 2016;97:245–62.
- Hinger SA, Wei J, Dorn LE, Whitson BA, Janssen PML, He C, et al. Remodeling of the m⁶A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy. J Mol Cell Cardiol 2021;151:46–55.
- Gao XQ, Zhang YH, Liu F, Ponnusamy M, Zhao XM, Zhou LY, et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3dependent N(6)-methyladenosine methylation of Parp10 mRNA. Nat Cell Biol 2020;22:1319–31.
- 94. Huang B, Ding C, Zou Q, Wang W, Li H. Cyclophosphamide Regulates N6-Methyladenosine and m⁶A RNA Enzyme Levels in Human Granulosa Cells and in Ovaries of a Premature Ovarian Aging Mouse Model. Front

Endocrinol (Lausanne) 2019;10:415.

- Dorn LE, Lasman L, Chen J, Xu X, Hund TJ, Medvedovic M, et al. The N(6)-Methyladenosine mRNA Methylase METTL3 Controls Cardiac Homeostasis and Hypertrophy. Circulation 2019;139:533–45.
- Kmietczyk V, Riechert E, Kalinski L, Boileau E, Malovrh E, Malone B, et al. m⁶A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci Alliance 2019;2:e201800233.
- 97. Zhou Y, Kong Y, Fan W, Tao T, Xiao Q, Li N, *et al.* Principles of RNA methylation and their implications for biology and medicine. Biomed Pharmacother 2020;131:110731.
- Dai D, Wang H, Zhu L, Jin H, Wang X. N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis 2018;9:124.
- Berulava T, Buchholz E, Elerdashvili V, Pena T, Islam MR, Lbik D, *et al.* Changes in m⁶A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail 2020;22:54–66.
- 100. Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, et al. FTO-Dependent N(6)-Methyladenosine Regulates Cardiac Function During Remodeling and Repair. Circulation 2019;139:518–532.
- Zhang C, Chen Y, Sun B, Wang L, Yang Y, Ma D, et al. m⁶A modulates haematopoietic stem and progenitor cell specification. Nature 2017;549:273-6.
- 102. Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. Single-nucleotide-resolution mapping of m⁶A and m⁶Am throughout the transcriptome. Nat Methods 2015;12:767–72.
- 103. Zhang Z, Chen LQ, Zhao YL, Yang CG, Roundtree IA, Zhang Z, et al. Single-base mapping of m⁶A by an antibody-independent method. Sci Adv 2019;5:eaax0250.
- 104. Gao Y, Liu X, Wu B, Wang H, Xi F, Kohnen MV, *et al.* Quantitative profiling of N(6)-methyladenosine at single-base resolution in stemdifferentiating xylem of Populus trichocarpa using Nanopore direct RNA sequencing. Genome Biol 2021;22:22.
- Meyer KD, Jaffrey SR. Rethinking m⁶A Readers, Writers, and Erasers. Annu Rev Cell Dev Biol 2017;33:319–42.
- Liu ZX, Li LM, Sun HL, Liu SM. Link Between m⁶A Modification and Cancers. Front Bio Biotechnol 2018;6:89.
- 107. Morissens M, Besse-Hammer T, Azerad MA, Efira A, Rodriguez JC. Evaluation of Cardiac Function in Patients with Sickle Cell Disease with Left Ventricular Global Longitudinal Strain. J Transl Intern Med 2020;8:41–7.
- 108. Xu S, Qiu Y, Tao J. The challenges and optimization of cell-based therapy for cardiovascular disease. J Transl Intern Med 2021;9:234–8.

How to cite this article: Yang Y, Muisha MB, Zhang J, Sun Y, Li Z. Research progress on N⁶-adenosylate methylation RNA modification in heart failure remodeling. J Transl Intern Med 2022; 10: 340-348.