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ABSTRACT
Cardiovascular disease (CVD) is the major cause of disability-adjusted life years (DALY) and 
death globally. The most common internal modification of mRNA is N6-adenosylate methylation 
(m6A). Recently, a growing number of studies have been devoted to researching cardiac 
remodeling mechanisms, especially m6A RNA methylation, revealing a connection between m6A 
and cardiovascular diseases. This review summarized the current understanding regarding m6A 
and elucidated the dynamic modifications of writers, erasers, and readers. Furthermore, we 
highlighted m6A RNA methylation related to cardiac remodeling and summarized its potential 
mechanisms. Finally, we discussed the potential of m6A RNA methylation in the treatment of 
cardiac remodeling.
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INTRODUCTION

Cardiovascular diseases result from 
complicated interactions between multiple 
genetic variations and environmental 
factors.[1] Common fatal cardiovascular 
diseases include ischemic heart disease 
(IHD),[2,3] hypertensive heart disease,[4] 
cardiomyopathies, [5] and heart failure 
(HF),[6,7] among others. One of  the global 
health policy goals launched by World 
Health Organization is to reduce early 
mortality from noncommunicable diseases 
by 25% by 2025.[8] Therefore, it is of  great 
significance to study the mechanisms of  
cardiovascular disease.

Cardiac hypertrophy is an important factor 
in the pathogenesis of  cardiovascular 
diseases. Physiological cardiac hypertrophy 
is typically caused by exercise or pregnancy.[9]  
It is characterized by a slight increase in 
cardiac mass (10%–20%) and an increase 
in the length and width of  individual 
cardiomyocytes.[10] However, the heart shape 
is normal, and this process is advantageous 
to the cardiac function. Pathological cardiac 

hypertrophy includes altered cardiac gene 
expression, cell death, fibrosis, imbalance 
in Ca2+ transport regulatory proteins, 
mitochondrial dysfunction, changes in 
sarcomere structure, and inadequate 
angiogenesis.[11] The signaling mechanisms 
that induce these responses contribute 
to maladaptive heart remodeling and 
dysfunction, ultimately leading to heart 
failure. Inhibiting concurrent signaling 
pathways may also have important 
therapeutic significance.[9]

RNAs can be modified after transcription, 
and more than 170 types of  RNA 
posttranscriptional modifications have 
been discovered to date.[12] An increasing 
number of  inner modifications of  eukaryotic 
epigenetics have been explored in recent 
studies, including well-known markers named 
histone tails.[13,14] RNA modifications involve 
adenosine N6-methyladenosine (m6A), N1-
methyladenosine (m1A), 5-methylcytosine 
(m5C), pseudothiopyrimidine (Ψ), N6, 2’-O- 
dimethyladenosine (m6Am),[15] the methylation 
of  cytosine to 5-methylcytosine and its 
oxidation product 5-hydroxymethylcytosine 
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(hm5C),[13] N7-methylguanosine (m7G),[16] N4-acetylcytidine 
(ac4C),[17] and ribose methylations (Nm).[18] The most 
extensive modification of  mammalian mRNA, N6-
methyladenosine (m6A), has aroused widespread interest 
and scrutiny in the field.[19] Scientists have isolated RNA 
from mammals and discovered that approximately 1‰–4‰ 
of  adenosine was modified as m6A, which made up about 
half of the total ribonucleotide methylation.[20] m6A is also 
found in precursor RNAs (pre-RNAs) and long noncoding 
RNAs (lncRNAs).[21] Generally, m6A is embedded in the 
conserved sequence 5’-RRACU-3’,[22] and it mainly occurs 
in the beginning segment of  the 3’-UTR, which is near the 
translation end codon.[23] Currently, extensive studies are 
being conducted to investigate the connection between 
m6A and various diseases.[24–26] One of  the research hotspots 
is tumorigenesis, but research reports on the relationship 
between m6A modification and cardiovascular diseases are 
still limited.[27] This review summarizes m6A RNA methylation 
and the regulation of  RNA stability in cardiac remodeling. 
It also focuses on how research advances in the relationship 
between m6A modification and cardiac remodeling provide 
new ideas for the prevention, early detection, and treatment 
of  cardiac hypertrophy and heart failure. 

m6A RNA METHYLATION

RNA modified as m6A refers to the methylation of  N6 
in the nitrogenous base adenine.[28] There are three key 
enzymes mediating this process: methyltransferases 
(writers), demethylases (erasers), and methylation-reading 
proteins (readers).[29] We summarized their participation in 
biological dynamic modification and function, as shown 
in Figure 1.

Writers
“Writers” refer to methyltransferases. Enzymes of  this 
class mainly contain methyltransferase-like 3 (METTL3), 
methyltransferase-like 14 (METTL14), methyltransferase-
like 16 (METTL16), Wilms tumor 1-associated protein 
(WTAP),[30] vir-like m6A methyltransferase associated 
(KIAA1429/VIRMA),[31] zinc finger protein (ZFP217),[32] 
RNA-binding motif  protein 15 (RBM15),[33] zinc finger 
CCCH-type containing 13 (ZC3H13),[34] zinc finger 
CCHC-type containing 4 (ZCCHC4),[35] and other 
components. They exist in the form of  complexes 
and jointly catalyze the m6A modification of  adenine 
on RNA. A steady formation can be achieved with 
METTL3 and METTL14,[36] which catalyze the epigenetic 
modification of  m6A RNA in vitro and in vivo.[37] WTAP 
has no methyltransferase activity but can bind to 
METTL3 and METTL14.[38] These three proteins are 
colocalized in nuclear speckles and play important roles 
in regulating gene expression and alternative splicing.[39]  
METTL3, an m6A methyltransferase, also plays a key role 

in autophagy in non–small-cell lung cancer (NSCLC) 
cells.[40-42] This process reverses gefitinib resistance through 
β-elemene. Compared to paired normal tissues, METTL3 
expression was increased in lung adenocarcinoma tissues 
and participated in gefitinib drug tolerance of  NSCLC cells. 
The key genes in autophagy pathways, such as ATG7 and 
ATG5, are upregulated by METTL3.[43] The upregulation 
of  inflammatory cytokines, such as tumor necrosis factor α 
(TNF-α), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and 
interleukin 18 (IL-18), and the inflammatory proteins TNF 
receptor associated factor 6 (TRAF6) and nuclear factor of  
kappa light polypeptide gene enhancer in B cells 1 (NF-κB) 
was observed in a microglial inflammation model mediated by 
lipopolysaccharide (LPS). Surprisingly, METTL3 expression 
levels were also upregulated alongside TRAF6 in this model. 
The TRAF6-NF-κB pathway is also activated when METTL3 
is overexpressed. Therefore, METTL3 activates the TRAF6-
NF-κB pathway and accelerates LPS-induced microglial 
inflammation.[44]

Erasers
Demethylases, also known as the “erasers,” remove the 
m6A modification of  RNA. This process demonstrates 
the dynamic and reversible modification of  m6A. It has 
been found that demethylases mainly include the genes 
Fat Mass and Obesity Associated (FTO)[45] and ALKBH5 
(alkane hydroxylase homolog 5).[46] These two molecules 
are part of  the α-ketoglutarate-dependent dioxygenase 
family.[47] m6A demethylation can be catalyzed in an Fe2+- 
and α-ketoglutarate-dependent manner.[48] A decrease in 
FTO and ALKBH5 expression was found to be coupled 
with an increase in m6A modification in mRNA.[45] FTO is 
associated with human obesity and is considered an obesity 
susceptibility gene.[49] It is related to body mass index 
through energy expenditure and intake.[50] Several studies 
have revealed that FTO is involved in m6A modifications. 
m6A demethylation catalyzed by FTO can regulate the 
stability of  mRNA, regulate the efficiency of  degradation 
and translation, and control the expression of  protein 
levels. Research has shown that FTO is necessary for the 
normal development of  the central nervous system[51] and 
the cardiovascular system.[52] This confirms that mutations 
in the alkb-related dioxygenase family of  genes could 
cause severe polymalformation syndrome.[53] The Alkb 
family, which is enriched with iron- and 2-oxoglutarate-
dependent nucleic acid oxygenase (NAOX), contains 
a member named ALKBH5. ALKBH5 catalyzes m6A 
demethylation.[54] According to a report, the double-
stranded β-helix domain of  ALKBH5 has a mutual effect 
on the ATP domain of  the DEAD (Asp-Glu-Ala-Asp) box 
polypeptide 3 (DDX3). This domain participates in critical 
biological processes, such as the cell cycle, metabolism, and 
apoptosis.[55] Furthermore, it was revealed that both FTO 
and ALKBH5 are closely associated with single-nucleotide 
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Figure 1: The dynamic modification of m6A. Writers (METTL3, METTL14, WTAP, METTL16, KIAA1429, RBM15/15B, ZFP127, ZC3H13, and ZCCHC4) can identify 
and methylate the N6 of RNA. Erasers (FTO, ALKBH5, ALKBH3) can catalyze m6A-RNA demethylation. m6A-RNA can be discerned by readers such as YTHDC1 for 
mRNA splicing. Other readers of m6A are located in the cytoplasm; for instance, YTHDF1, YTHDF2, YTHDF3, YTHDC2, HNRNPA2B1, HNRNPC/G, and IGF2BP1/2/3 
are involved in the splicing, processing, translation, and degradation of m6A RNAs. METTL3: methyltransferase 3, N6-adenosine-methyltransferase complex 
catalytic subunit; METTL14: methyltransferase 14, N6-adenosine-methyltransferase subunit; METTL16: methyltransferase 16, N6-methyladenosine; WTAP: 
WT1-associated protein; KIAA1429/VIRMA: vir-like m6A methyltransferase-associated; RBM15/15B: RNA-binding motif protein 15/15B; ZFP127/MKRN3: 
makorin ring finger protein 3; ZC3H13: zinc finger CCCH-type containing 13; ZCCHC4: zinc finger CCHC-type containing 4; FTO: FTO α-ketoglutarate dependent 
dioxygenase; ALKBH5: alkB homolog 5, RNA demethylase; ALKBH3: alkB homolog 3, RNA demethylase; YTHDC1/2: YTH domain-containing 1/2; YTHDF1/2/3: 
YTH N6-methyladenosine RNA binding protein 1/2/3; HNRNPA2B1: heterogeneous nuclear ribonucleoprotein A2/B1; HNRNPC/G: heterogeneous nuclear 
ribonucleoprotein C/G; IGF2BP1/2/3: insulin-like growth factor 2 mRNA-binding protein 1/2/3.



Yang et al.: m6A RNA modification in heart failure remodeling

343JOURNAL OF TRANSLATIONAL INTERNAL MEDICINE / OCT-DEC 2022 / VOL 10 / ISSUE 4

polymorphisms (SNPs).[56] In addition, it was reported that 
ALKBH3 could demethylate 1-meA and 3-meC; thus, the 
damage and incomplete methylation of  DNA/RNA could 
be repaired.[57]

Readers
The major function of  m6A-reading proteins is to recognize 
the bases that have been modified by m6A and to regulate 
the processing, transportation, translation, and stability of  
the modified RNA.[58] To date, the m6A reading proteins that 
have been identified include the YT521-B homology (YTH) 
family (YTHDF1, YTHDF2, YTHDF3, YTHDC1, and 
YTHDC2),[59] HNRNP family (HNRNPA2B1, HNRNPC, 
and HNRNPG),[60-62] IGF2BP (IGF2BP1, IGF2BP2, and 
IGF2BP3),[63] and eIF3A/B.[64] The YTHDFs, YTHDC2, 
IGF2BP, and eIF3A/B proteins are located in the 
cytoplasm,[65] whereas the YTHDC1 and HNRNP families 
can be found in the nucleus.[66] YTH N6-methyladenosine 
RNA-binding protein 2 (YTHDF2) was the first m6A reader 
to be discovered.[67] YTHDF2 accelerates the degradation 
of  transcripts modified by m6A by directly enlisting the 
glucose-repressible alcohol dehydrogenase transcriptional 
effector (CCR4-NOT) deadenylase complex. In contrast, 
YTH N6-methyladenosine RNA binding protein 1 
(YTHDF1) was initially shown to combine with the m6A 
site near the stop codon and then bind to the translation 
origination mechanism to enhance the translation efficiency 
of  specific RNA in mammals.[68] YTH N6-methyladenosine 
RNA-binding protein 3 (YTHDF3) plays a crucial role 
in the original stages of  translation and stability.[69] The 
YTH domain-containing 1 (YTHDC1) mediates m6A-
regulated mRNA splicing,[70] nuclear transport, and gene 
translation silencing[71] as a nuclear RNA-binding protein.[72] 
YTH domain-containing 2 (YTHDC2) increases mRNA 
translation efficiency.[73] HNRNPA2B1 promotes miRNA 
maturation.[74] Heterogeneous nuclear ribonucleoprotein 
C (HNRNPC) participates in pre-mRNA processing[75] 
and alternative splicing.[76] Heterogeneous nuclear 
ribonucleoprotein G (HNRNPG) regulates alternative 
splicing and the abundance of  target mRNAs.[77] Insulin-
like growth factor 2 mRNA-binding proteins (IGF2BPs), 
located in the cytoplasm as m6A readers, preferentially 
recognize m6A-modified mRNAs. They can reinforce 
mRNA stability and promote translational efficiency.[78]

m6A RNA METHYLATION AND 
PATHOLOGICAL CARDIAC 
REMODELING

Cardiac remodeling includes changes in genomic expression, 
molecules, cells, and the mesenchyme that clinically 
manifest as changes in cardiac size, shape, and function 
after injury.[79] Cardiac remodeling can be categorized into 

physiological remodeling and pathological remodeling. 
Physiological cardiac remodeling is often caused by exercise 
or pregnancy.[80] It manifests as a slight (15%) increase 
in heart weight and an increase in the length and width 
of  individual cardiomyocytes. The shape of  the heart is 
normal, which is beneficial to its function.[81] However, 
pathological cardiac hypertrophy can manifest as changes in 
cardiac gene expression, cell death, fibrosis, Ca2+ transport 
regulatory protein disorders,[9] mitochondrial dysfunction, 
metabolic maladjustment, restoration of  antenatal gene 
expression, damaged protein quality assurance mechanisms, 
changes in sarcomere structure, and lack of  angiogenesis.[82]  
The signaling mechanism inducing these reactions 
promotes maladaptive cardiac remodeling and dysfunction, 
eventually leading to heart failure (HF).[83] It has been 
reported that heart failure (HF) is a chronic disease that 
inflicts more than 20 million patients worldwide.[84,85] In 
the past several years, a growing number of  studies have 
revealed the relationship between m6A modifications and 
cardiovascular diseases, including cardiac hypertrophy,[86] 
heart failure,[19] atherosclerosis, coronary heart disease,[87] 
ischemic cardiomyopathy, hypertension, and vascular 
disease.[88] Therefore, inhibiting concurrent signaling 
pathways will have important therapeutic significance for 
interventions in these cardiac diseases. 

Cardiac hypertrophy
In the presence of  hemodynamic stress, cardiomyocytes 
adapt by becoming hypertrophic. This reaction plays a 
reparative role in improving cardiac function, decreasing 
the strain on the ventricular wall and oxygen expenditure.[89]  
Cardiac hypertrophy can be divided into two types: 
physiological and pathological. Physiological cardiac 
hypertrophy, which can maintain normal morphology and 
play a beneficial role in the heart, mostly results from exercise 
training or pregnancy.[90] In contrast, pathological cardiac 
hypertrophy causes many cardiovascular pathophysiological 
changes, such as ventricular remodeling, fibrosis, and 
cardiac gene expression alteration.[91]

Hinger et al.[92] found an increase in m6A content in human 
heart failure samples but showed a preserved distribution. 
The protein level of  METTL3 was increased, and that of  
FTO was decreased, while there was no change in ALKBH5 
levels. Afterward, human and hypertrophic neonatal rat 
ventricular myocytes obtained from heart failure samples 
were used to investigate whether there was conserved 
specificity in m6A events in cardiomyocytes across species. 
Their results showed stress-responsive m6A-transcripts 
between rats and humans were conservative. In both 
human hearts and rat cardiomyocytes, Western blotting 
showed that coronin 6 (CORO6) levels were reduced, 
whereas the expression of  RE1 silencing transcription 
factor (REST) was increased. However, the mRNA levels 
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of  these two genes remained unaffected. Furthermore, they 
detected m6A content in both human heart failure samples 
and hypertrophic cardiomyocytes. They found that REST 
expression was increased, while CORO6 had greater m6A 
content in nonfailing heart and normal cardiomyocytes. 
Upon upregulation of  METTL3, the translation levels of  
REST and CORO6 increased. Hence, posttranscriptional 
modifications may play a direct role in gene expression in 
cardiomyocytes.

Gao et al.[93] revealed a piRNA (PIWI-interacting RNA) 
named CHAPIR (cardiac-hypertrophy-associated piRNA), 
which regulates cardiac hypertrophy. Overexpression 
of  CHAPIR using a mimic aggravated pathological 
hypertrophic response in a TAC mouse model, while the 
downregulation of  CHAPIR notably attenuated cardiac 
hypertrophy and recovered cardiac function. In terms of  
mechanism, METTL3 combined with CHAPIR–PIWIL4 
complexes suppressed Parp10 mRNA m6A methylation. 
The mRNA and protein expression levels of  poly(ADP-
ribose) polymerase family member 10 (PARP10) increased, 
which promoted mono-ADP-ribosylation of  GSK3β and 
suppressed its kinase activity.[94] This process increased 
nuclear NFATC4 levels and led to the progression of  
pathological hypertrophy. Therefore, targeting the CHAPIR-
METTL3-PARP10-NFATC4 signaling axis could be a 
therapeutic mechanism for improving cardiac hypertrophy.

Dorn et al.[95] discovered that the extent of  m6A methylation 
increases in response to hypertrophic stimulation. The 
growth of  hypertrophic cardiomyocytes was fully abolished 
upon stimulation, and they did not undergo hypertrophy 
when METTL3 was suppressed in vitro. However, the 
overexpression of  METTL3 can cause spontaneous 
and compensatory hypertrophy. In vivo, cardiac-specific 
METTL3-knockout mice showed cardiac remodeling and 
heart failure followed by cardiac homeostasis disorders, 
whereas increased METTL3 levels caused cardiac 
hypertrophy.

Kmietczyk et al.[96] showed that the mechanism of  
m6A RNA methylation is dynamic and effective in 
cardiomyocytes undergoing pressure[97] and regulates gene 
expression and cellular proliferation in the heart. They 
found that METTL3 and FTO could participate in m6A 
RNA methylation by influencing transcript stability and 
regulating translational efficiency. In an in vitro model of  
neonatal rat cardiomyocytes (NRCM), the knockdown of  
METTL3 reduced m6A levels[98] and increased the cell size 
and the expression of  the hypertrophic markers ANP and 
BNP. However, FTO-KO mice exhibited enhanced m6A 
levels and weakened NRCM hypertrophy. In an in vivo 
model of  AAV9-mediated METTL3 overexpression in 
C57Bl6/N mice and TAC mice, METTL3 overexpression 

shrank the cross-sectional area of  the myocytes and 
suppressed pathological hypertrophic cellular growth. 
Nevertheless, how METTL3 and FTO regulate gene 
expression and cellular growth and which specific target 
genes play an essential role in cardiomyocyte hypertrophy 
are still under study.

Heart failure
Berulava et al.[99] discovered that the level of  m6A RNA 
methylation decreases during heart failure. The mRNA 
level of  calmodulin 1 (calm1) remained unchanged, while 
the protein expression level of  calm1 was reduced. In other 
words, m6A RNA methylation levels influenced protein 
levels rather than mRNA levels. m6A RNA methylation is 
directly proportional to ribosomal occupancy, indicating 
increased protein levels of  hypermethylated transcripts and 
decreased protein levels of  hypomethylated transcripts. A 
worsened cardiac phenotype in the FTO-knockout mice 
model after TAC was also observed, as the ejection fraction 
was reduced and the degree of  dilatation was increased.

Mathiyalagan et al.[100] discovered that the demethylase 
FTO was associated with cardiac function during 
cardiac remodeling and repair. They detected reduced 
FTO expression levels in failing mammalian hearts and 
hypoxic cardiomyocytes; therefore, m6A RNA methylation 
increased. Sarco/endoplasmic reticulum Ca2+-ATPase 
2a (SERCA2a) is a contractile protein that exhibits less 
stability and lower efficiency to regulate translation when 
hypermethylated, eventually resulting in cardiomyocyte 
contractile function. However, FTO overexpression 
in human myocytes led to SERCA2a demethylation. 
Furthermore, cardiac contractile function improved with 
an increase in SERCA2a expression. They also found 
that FTO overexpression reduced fibrosis and promoted 
angiogenesis in mouse models of  myocardial infarction. 
Hence, this mechanism provides novel insights into cardiac 
remodeling and repair.

RESEARCH PROGRESS ON NEW 
TECHNIQUES IN DETECTING m6A 
RNA METHYLATION

Researchers are actively exploring the role of  m6A 
modification-related molecules in cardiovascular disease; 
however, many problems and challenges still need to be 
resolved. For example, transcriptome-wide mapping used in 
m6A can help us better understand catalog m6A targets and 
reveal the underlying epigenetic modification mechanisms. 
In 2012, Nature and Cell published a method for the whole 
transcriptome sequencing of  m6A modification via m6A-
specific antibody enrichment (MeRIP-seq or m6A-seq);[19,101] 
however, MeRIP-seq has an insufficient resolution (about 
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100 nt). However, insurmountable weaknesses in principle, 
such as low repeatability, large sample demand, and 
cumbersome operation, have caused significant problems 
in m6A research in recent years. 

In 2015, Nature Methods proposed a new method 
for the high-resolution detection of  the localization 
of  N6-methyladenosine in eukaryotic RNA called 
m6A single-nucleotide resolution cross-linking and 
immunoprecipitation (miCLIP).[102] Mutations would occur 
when the cross-linking of  the RNA-m6A antibody-binding 
sites is reverse-transcribed. The mutated sequences had 
unique features (e.g., C-T transition or truncation) that 
could pinpoint m6A. miCLIP can perform high-resolution 
detection of  individual m6A residues and m6A cluster 
analysis of  the total RNA. In particular, miCLIP is suitable 
for small nucleolar RNA (snoRNA).

In a recent study, Zhang et al. published a research paper 
titled “Single-base mapping of  m6A by an antibody-
independent method,” [103] which described a new 
principle of  m6A detection technology named m6A-REF-
seq (m6A-sensitive RNA-endoribonuclease-facilitated 
sequencing). This technology used the sensitivity of  the 

newly discovered RNA endonuclease to m6A, which 
eliminated the dependence of  traditional methods on 
antibodies and achieved accurate detection of  m6A across 
the transcriptome.[104] New methods must be implemented 
in the m6A field with the development of  better scientific 
methods and technological advances. However, whether 
other types of  m6A modification have some links to 
cardiac remodeling is still to be discovered. Finally, drugs 
targeting m6A are promising for the clinical treatment of  
cardiovascular diseases.

We hope that consistent studies in this field can further 
deepen our understanding of  the processes surrounding 
heart failure and approach the reality of  discovering new 
treatments, thereby improving the quality of  life of  patients 
with heart failure.

CONCLUSIONS AND FUTURE 
PERSPECTIVES

The most abundant RNA modification in RNA epigenetics is 
m6A methylation.[105]  m6A methylation studies have currently 
gained significant popularity in scientific research.[106] In this 
review, we focused on cardiac remodeling, summarized the 

Table 1: m6A and cardiac remodeling
Types of 
cardiac 
remodeling

Effector Type of 
effector

Expression Target genes Mechanism Reference

Cardiac
hypertrophy

METTL3 Writer Upregulation REST 
CORO6

Protein expression was higher in condition of greater 
m6A content, and overexpression of METTL3 was 
sufficient to positively affect the translation of REST 
and CORO6

[92]
FTO Eraser Downregulation

METTL3 Writer Reduce activity 
of METTL3

PARP10 CHAPIR-PIWIL4  METTL3  m6A-PARP10 
 PARP10 (mRNA and protein)  mono-ADP-
ribosylation of GSK3β  GSK3β kinase activity  
NFATC4  pathological hypertrophy

[93]

METTL3 Writer Upregulation MAP3K6/ In vitro: METTL3  prevent pathological hypertrophy 
METTL3  spontaneous and compensate hypertrophy
In vivo: METTL3-KO  remodeling and heart failure 
 cardiac homeostasis disorder 
METTL3  cardiac hypertrophy

[95]
MAP4K5/
MAPK14/
Nppa/Nppb

METTL3 Writer Downregulation Unknown In vitro: METTL3-KO  m6A level  cell size 
and level of Nppa/Nppb; FTO-KO  m6A level  
hypertrophy of NRCM  
In vivo: METTL3-overexpression  myocytes cross-
sectional area  pathological hypertrophic cellular 
growth  

[96]

Heart failure FTO Eraser Downregulation Calm1 Calm1 protein expression regulation in heart failure 
occurs partially only on translational level and 
without changes in DNA to RNA transcription

[99]

FTO Eraser Downregulation SERCA2a In failing mammalian hearts and hypoxic 
cardiomyocyte, FTO SERCA2a mRNA is 
hypermethylated    cardiomyocytes
contractile function 

[100]

METTL3: methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit; REST: RE1 silencing transcription factor; CORO6: coronin 6; 
PARP10: poly (ADP-ribose) polymerase family member 10; MAP3K6/5/14: mitogen-activated protein kinase kinase kinase 6/5/14; Nppa: natriuretic peptide  
A; Nppb: natriuretic peptide B; FTO: FTO α-ketoglutarate-dependent dioxygenase; Calm1: calmodulin 1; SERCA2a: sarco/endoplasmic reticulum Ca2+-ATPase.
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classification of  m6A RNA methylases, and discussed their 
dynamic modification (Figure 1) in detail. Furthermore, we 
surveyed m6A RNA modifications in cardiac remodeling, 
including cardiac hypertrophy and heart failure (Table 1). 
The mechanisms regarding the development of  cardiac 
hypertrophy are intricate; however, what we currently 
know is just the tip of  the iceberg, and further research is 
needed to elucidate the epigenetic mechanisms underlying 
heart failure.[107] In the past few years, we have opened new 
areas for advancing the known mechanisms and identifying 
the unknown pathways involved in cardiac remodeling. 
Heart failure is still difficult to cure in the clinical setting 
and its prevalence rate increases with age.[108] m6A has 
potential applications in the diagnosis and treatment of  
heart failure. Research focus should be placed on the 
abnormal expression of  some m6A enzymes, such as 
METTL3 and FTO, because they are related to cardiac 
hypertrophy or heart failure since the early detection of  
these abnormalities will help in the early diagnosis of  
heart failure. It is also possible that we interfere with the 
expression of  methylases, such as METTL3 and FTO, to 
prevent heart failure.
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