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SUMMARY

Animals commonly integrate multiple sources of information to guide their
behavior. Among insects, previous studies have suggested that the relative reli-
ability of cues affects their weighting in behavior, but have not systematically
explored how well alternative integration strategies can account for the
observed directional choices. Here, we characterize the directional reliability of
an ersatz sun at different elevations and wind at different speeds as guiding
cues for a species of ball-rolling dung beetle. The relative reliability is then shown
to determine which cue dominates when the cues are put in conflict. We further
show throughmodeling that the results are best explained by continuous integra-
tion of the cues as a vector-sum (rather than switching between them) but with
non-optimal weighting and small individual biases. The neural circuitry in the in-
sect central complex appears to provide an ideal substrate for this type of vec-
tor-sum-based integration mechanism.

INTRODUCTION

Cue integration is the process whereby an agent combinesmultiple sensory estimates of the world to perform

a single action (Ernst and Bülthoff, 2004). Most explorations of cue integration stem from human psychophys-

ical experiments (Ernst and Banks, 2002; Alais and Burr, 2004), but many examples of cue integration have

been found throughout the animal kingdom from monkeys (Fetsch et al., 2012), to rodents (Knight et al.,

2014), to insects (Legge et al., 2014; Wystrach et al., 2015; Hoinville and Wehner, 2018; Dreyer et al., 2018;

Dacke et al., 2014, 2019; Müller and Wehner, 2007; Collett, 2012; Khaldy et al., 2021; Wehner et al., 2016).

While there is an abundance of evidence suggesting that insects integrate multiple cues when performing

navigation behaviors, few propose concrete models which describe the integration process. Compass cue

integration presents a direct case study for directional cue integration, and for this, the ball-rolling dung

beetle Kheper lamarcki (MacLeay, 1821) provides an ideal model organism. Upon finding a dung pat, these

beetles break off a piece of dung, shape it into a ball, climb on top of it, and rotate about their own vertical

axis. During this ‘‘orientation dance’’, a snapshot of all available cues is taken and then used to support a

directed and efficient escape from the competition at the dung pile (Baird et al., 2012; Byrne et al., 2003; el

Jundi et al., 2016). The natural environment provides a plethora of cues that are used by the beetles to sus-

tain this straight-line orientation. Known orientation cues include the position of the sun (Byrne et al., 2003),

moon (Dacke et al., 2004), spectral gradients (Jundi et al., 2015), the intensity pattern of the milky way

(Dacke et al., 2013; Foster et al., 2017), and wind direction (Dacke et al., 2019). Previous studies have

also shown that the beetles will interpret an artificial green light spot as an ersatz sun and will use it to orient

with equal accuracy as under natural conditions (El Jundi et al., 2015).

Dacke et al. (2019) previously demonstrated that the influence of a wind cue is dependent on the elevation

of the accompanying sun cue. Sun cues above an elevation threshold were seemingly ignored in the pres-

ence of a wind cue. This appears to be consistent with the notion that cues are integrated with weights

determined by their reliability; cues which are subject to greater perceptual noise (e.g. the azimuth of

the sun at a high elevation) are less reliable. Indeed, statistically optimal cue integration models, which

seek to maximize the reliability of the combined cue, predict cue weights which are directly proportional

to their respective reliabilities (Ernst and Bülthoff, 2004; Murray and Morgenstern, 2010).

Here, we extend this line of work by providing an in-depth exploration of multimodal (ersatz sun and wind)

cue integration in the dung beetle compass with an indoor setup which completely isolates the cues under
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study. Our approach combines behavioral data with computational modeling to describe the cue integra-

tion method employed by the South African ball-rolling dung beetle K. lamarcki. Our descriptive modeling

points to a vector-sum-based integration mechanism, for which the neural circuitry in the insect central

complex appears to provide an ideal substrate.

RESULTS AND DISCUSSION

Reliability of ersatz sun and wind cues

Dung beetle compass orientation is characterized by menotaxis with respect to a given cue-oriented

behavior but without a specific directional preference. As a measure of cue reliability, we analyzed beetles’

orientation precision at solar elevations and wind speeds where menotactic behavior was observed with

respect to the isolated cue. Wind cues are provided by custom-built wind generators and a solar cue is pro-

vided by a green LED (ersatz sun; see STAR Methods, Experimental setup). Cue reliability (variability from

the perspective of the animal) is not something we can analyze directly. We therefore use orientation pre-

cision as a proxy (see STAR Methods, Simulated cue representation). It is important to note that precision

changes could be brought about by changes in a cue’s usefulness, i.e. how good of an orientation cue it

actually is from the perspective of the animal, as opposed to its variability. Orientation precision was calcu-

lated from ten exit bearings for each beetle and reported as mean vector lengths; the closer to 1 the more

clustered the exits, where more clustered exits are interpreted as higher precision (R-values; see STAR

Methods, Quantification and statistical analysis and Figure 1). To show menotactic behavior statistically,

we use Rayleigh tests, where a significant result indicates a directed population (i.e. a preferred direction

for all beetles with respect to the cue) and a uniform distribution indicates menotaxis (i.e. arbitrary direc-

tions selected by each beetle). These Rayleigh tests were performed on the mean directions taken by bee-

tles where each mean was calculated from the aforementioned ten exit bearings.

Orientation to the ersatz sun at different elevations

The bearings traveled across the population of beetles at solar elevations of 5�, 20�, 45�, 60�, 80�, 82�, 84�,
86�, and 88� did not differ from a uniform distribution (p = 0.201 (n = 18), 0.756 (n = 17), 0.534 (n = 16),

0.477 (n = 17), 0.772 (n = 10), 0.237 (n = 15), 0.709 (n = 9), 0.184 (n = 6), and 0.167 (n = 4), respectively,

Rayleigh tests, see Table S1). Similar results have previously been found in dung beetles orienting under

natural conditions (Baird et al., 2010). In contrast, at 75+, the bearings traveled by the beetles were signif-

icantly different from uniformity (p = 0:02, Rayleigh test, n = 13); but as this bearing preference was not

present at either lower or higher solar elevations, we decided to treat it as an outlier and proceeded to

perform orientation precision analysis for all solar elevations.

The beetles’ ability to maintain their bearings remained stable until an elevation of 75�, beyond which it

decreased rapidly with increasing elevation (5� = 0.78 [0.71, 0.84], 20� = 0.78 [0.69, 0.86], 45� = 0.74

[0.64, 0.84], 60� = 0.70 [0.61, 0.88], 75� = 0.69 [0.48, 0.80], 80� = 0.55 [0.40, 0.70], 82� = 0.61 [0.40, 0.66],
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Figure 1. Mean menotactic orientation precision at each elevation and wind speed. Error bars indicate standard

error of the mean.

The mean precision at 60+ and 75+ elevation is highlighted to allow comparison to the wind (dashed lines). The mean

precision at 60+ is close to that at 2.5 m=s wind speed, and similarly the mean precision at 75+ is less than that at 2.5 m= s

wind speed but much greater than would be expected at 1.25m=s. This relationship matches our cue conflict results. The

line fits are those used in Equation 2, excluding the additive constants (which are only required for the k estimation stage,

see STAR Methods, Simulated cue representation). Circular insets illustrate ten paths traveled by a highly directed (left,

R-value = 0.91) and a weakly directed (right, R-value = 0.21) beetle.
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84� = 0.50 [0.34, 0.67], 86� = 0.41 [0.27, 0.60], 88� = 0.33 [0.19, 0.48], and 90� = 0.37 [0.22, 0.49], median R-

values [IQR], n = 20, see Figure 1). These results suggest that higher solar elevations provide a less reliable

cue, which can be attributed to the decrease in directional information given by a visual cue as it ap-

proaches zenith. It should be noted that direct comparisons between the indoor setup and outdoor con-

ditions may not be applicable as the light intensity is lower in the artificial setup. Despite this, a similar

decrease in orientation precision at high solar elevations can also be observed outdoors for the same spe-

cies of dung beetles (Dacke et al., 2014), as well as for other animals (for example, equatorial sandhoppers

and desert ants (Ugolini, 2001, 2002; Müller and Wehner, 2007)).

Orientation to the wind at different speeds

Next, we analyzed the population bearing preference in relationship to the wind cue at different wind

speeds. At 0.5, 0.8, 3.0, and 4.0 m=s,the mean bearings differed significantly from a uniform distribution

(p< 0:05, Rayleigh tests, n = 10, 9, 13, and 14 for wind speeds 0.5, 0.8, 3.0, and 4.0, respectively, see

Table S1), suggesting anemotaxis. At 1.0, 1.5, 1.9, and 2.5 m=s, the mean bearings did not differ signifi-

cantly from a uniform distribution (p = 0.108 (n = 7), 0.611 (n = 14), 0.734 (n = 14), and 0.865 (n =

14), respectively, Rayleigh tests, see Table S1), suggesting menotaxis.

Under the conditions where menotaxis was observed, we found that as the speed increased, so did the bee-

tles’ ability to maintain their bearings (1.0 = 0.47 [0.36, 0.72], 1.5 = 0.61 [0.45, 0.80], 1.9 = 0.63 [0.54, 0.81], and

2.5 = 0.68 [0.51, 0.84], median R-values [IQR], n = 20, see Figure 1). Taken together, the results suggest that

higher wind speeds provide amore reliable cue for menotaxis (changing to anemotaxis beyond 3.0m= s). Pre-

vious studies have demonstrated that the antennae of dung beetles are wind sensitive (Linsenmair, 1972), and

Okubo et al. (2020) have shown that with increasing wind speed, the antennae of fruit flies are subject to larger

displacements. Our results are therefore in line with previous research as onewould expect greater deflections

of the dung beetle antennae to provide a clearer perception of wind direction. Note the similarity in reliability

between a wind cue of 2.5 m=s and an ersatz sun at a 60� elevation (see Figure 1).

Cue conflict between an ersatz sun and wind

The effect of reliability on the integration and weighting of a visual sun cue and amechanosensory wind cue

was studied in a cue conflict experiment. The reliability was manipulated by changing the elevation of the

ersatz sun or the speed of the wind current and the conflict was introduced by shifting the azimuthal direc-

tion of the wind (see STAR Methods, Behavioural experiments - Cue conflict between an ersatz sun and

wind). Changes in heading direction were calculated using the angular difference between two consecutive

exits (see Figure 2). All beetles included in the analysis were able to recover their initial bearing following

each cue conflict run (see STAR Methods, Quantification and statistical analysis - Cue conflict between an

ersatz sun and wind).

Dung beetles perform a weighted integration of a wind cue and sun cue

As can be expected fromprevious studies outdoors (Dacke et al., 2019), when presented with a wind cue of 2.5

m=s and a simulated solar elevation of 45+, 60+, 75+, or 86+, beetles were able to maintain their bearing be-

tween two consecutive exits when thedirectional information from the two cues remained unchanged (mG SD:

� 3+G28+ (n = 30),� 11+G28+ (n = 27),� 5+G45+ (n = 26), and 3+G47+ (n = 23);p< 0:001, Rayleigh tests,

see Figure 2B). However, when the directional information from the sun and wind cues were put in conflict, by

altering the wind direction between two consecutive exits, the behavior changed depending on solar eleva-

tion. At a solar elevation of 45� and thewind current set to 2.5m=s, the beetles did not change their direction at

either a 60� or a 120� cue conflict (mGSD:� 9+G43+ and 16+G68+; p< 0:001, Rayleigh tests, n = 30, see Fig-

ure 2B). This suggests that at this elevation, the ersatz sun has a greater weight compared to the wind cue. In

contrast, for solar elevations of 75+ and 86+, the beetles updated their bearing in accordance with the 60� or
120� azimuthal change of the wind current (mGSD: 78+G56+ and 116+G60+; p< 0:001 at 75+ elevation (n =

26), 74+G80+ and 123+G62+; p = 0:025 andp< 0:001 at 86+ elevation (n = 23), Rayleigh tests, see Figure 2B).

At a 60� solar elevation, the beetles again responded to the 60� azimuthal shift of the wind (mG SD: 55+G 76+;

p< 0:01, Rayleigh test, n = 27); interestingly, when presented with a conflict of 120+, the changes in bearing

did not differ significantly from a uniform distribution (p = 0:837, Rayleigh test, n = 27). Thus, the beetles did

not seem to keep their relative bearing to either the ersatz sun or the wind.

Together, our results suggest that the relative weight between the sun cue and the wind cue is affected by

elevation and that the critical elevation (at which the ersatz sun becomes less reliable than a wind cue of 2.5
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m=s) lies between 45� and 75�. This result matches previous observations in dung beetles (Dacke et al.,

2019) and ants (Müller and Wehner, 2007); the higher the solar elevation, the lower the influence of the

cue. From our results, it may appear as if the beetles are simply following the more reliable cue, which

has previously been a suggested orientation strategy among dung beetles when presented with sun

and wind (Dacke et al., 2019), sun and polarized light (Jundi et al., 2014), or sun and other skylight cues

(Dacke et al., 2014). However, considering the uniform distribution found at a solar elevation of 60�

together with a 120� cue conflict, the beetles are not always able to follow one cue over the other. This

could indicate that at this elevation, the cue reliabilities intersect. Furthermore, the population spread in-

creases with conflict; this effect is consistent across almost all test conditions when the wind speed is set to

2.5 m=s. This suggests that the beetles are not following a simple winner-take-all strategy, as under strict

winner-take-all (see STAR Methods, Integration models) the population dispersion should be unaffected

by cue conflict. The pseudo winner-take-all behavior and increasing variance that we observe at elevations

of 45�, 75�, and 86� could be explained by a circular integration model (Murray andMorgenstern, 2010) with
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Figure 2. Behavioral results from a cue conflict experiment

(A) Schematic procedure of the cue conflict experiment. Change in heading was calculated for individual beetles between

two consecutive exits; initial condition (1st exit where the initial bearing is established) to conflict condition (2nd exit

where the wind had changed direction by 0�, 60�, or 120� relative to the ersatz sun).

(B) The changes in headings at wind speed 2.5 m=s are illustrated as black circles and at 1.25 m=s as gray circles. Lines

extending from the centers indicate mean vectors, black lines for 2.5 m=s and gray lines for 1.25 m=s, and end in a 95%

confidence interval of the spread.

(C) Schematic procedure of the experiment where a 2.5 m=s wind cue was subjected to a 120� azimuthal shift in the

presence of a sun cue at 60� elevation.
(D) The changes in headings at three different days. Each colored data point illustrates the change in heading of the same

individual across days.
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non-optimal weights (see STAR Methods, Integration models), suggesting both cues are contributing to

behavior, even when one appears to be followed and the other ignored.

Orientation behavior varies when cue weights are similar

Due to the random distribution of beetles’ changes in heading when the 60� elevation sun cue and the

2.5 m/s wind cue were put in conflict by 120�, it appeared that the population failed to orient under this

condition. However, an additional experiment that focused on individual precision, in which each beetle

was permitted to exit the arena ten times in the presence of the cue conflict conditions, showed that the

beetles did not fail to orient. Instead, we found that the beetles oriented along a new random bearing

that they then successfully maintained (0.91 [0.86, 0.95], median R-value [IQR], n = 11). Beetles were

also able to maintain their bearings at conflicts of 0� and 60� (0.76 [0.66, 0.85] and 0.89 [0.82, 0.91], respec-

tively, median R-value [IQR], n = 11).

Furthermore, when the two cues were returned to their original positions, the beetles recovered their initial

bearing (see STARMethods, Quantification and statistical analysis - Cue conflict between an ersatz sun and

wind), suggesting that this new random bearing we see is actually an effect of the integration strategy and

not a permanent re-set of the bearing. Similarly, Khaldy et al. (2021) showed that the ball-rolling dung bee-

tles Garreta unicolor and Garreta nitens appeared disoriented when subjected to a conflict produced by

simultaneous manipulation of a sun cue and the pattern of polarized light. However, upon returning the

cues to their original positions, these animals recovered their initial bearings. Likewise, bogong moths

fly in a seemingly disoriented manner when presented with a conflict between the magnetic field and visual

landmarks; when the cues are returned to their original positions the moths, too, recover their initial bear-

ings (Dreyer et al., 2018).

To explore these apparent new bearings taken by beetles at a 120� conflict, we tested whether the individ-

ual change in bearing was consistent over different days or if it was prone to change. We employed the

previously described cue conflict assay, focusing on a 60+ solar elevation with a wind speed of 2.5 m= s

and tested individual beetles over three consecutive days. Similar to our previous cue conflict experiments,

the beetles were able to maintain their bearings each day when the cues were kept in their original posi-

tions (mGSD: � 1+G23+, 9+G41+, and � 4+G44+ for day one, two, and three, respectively; p< 0:001, Ray-

leigh tests, n = 14, see Figure S3). However, upon changing the azimuthal position of the wind by 120�, the
individual change in bearing differed across the three days (n = 14, see Figure 2D). This shows that the

apparent new bearing taken by beetles at a 60+ solar elevation is not consistent over days.

The results from this three day experiment reinforce the idea that a weighted integration is taking place as

both cues must be considered to generate the variability we see in the mean vector (see Figure 2D); if this

were a winner-take-all (or biased winner-take-all), we would not expect to see any beetles in the lower left-

hand quadrant. Furthermore, the inconsistency in population response suggests an additional source of

noise in the integration process. A potential explanation for this noise would be individual variation or

‘‘preference’’. A very small (random) individual bias could cause an increase in spread in the population

of responses where cue weights are near equal (see STAR Methods, Integration models; Results and Dis-

cussion, Modeling).

The weight given to a sun cue and a wind cue is dictated by their relative reliability

In previous experiments, the reliability of the ersatz sun was altered. Here, the wind speed was reduced

to 1.25 m=s to study the effect of decreased wind reliability on the relative weighting of the sun and

wind cues. We again employed the previously described cue conflict assay at solar elevations 60+, 75+,

and 86+.

At solar elevations of 60+ and 75+, the directional changes of the wind current had no effect on the beetles’

orientation behavior, regardless of conflict angle (mGSD: for conflicts 0+, 60+, and 120+: 12+G46+, � 25+G

46+, and 1+G51+ for 60+ elevation (n = 17), � 24+G55+, � 11+G33+, and 1+G58+ for 75+ elevation (n =

15); p< 0:01, Rayleigh tests, see Figure 2). However, at an 86+ solar elevation, the beetles changed their

bearings in accordance to the azimuthal shift of the wind (mGSD: 17+G51+, 68+G35+, and 143+G 48+;

p = 0:023, p< 0:01 and p = 0:013, with increasing conflict, Rayleigh tests, n = 8, see Figure 2). These find-

ings stand in contrast to the behavior observed in the presence of a 2.5 m=s wind current at the same solar

elevations (recall, at a wind speed of 2:5m=s and solar elevation of 75+ the beetles attributed a higher
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relative weight to the wind). These results further reinforce the conclusion that relative reliability dictates

the weight given to each individual cue.

Behavior indicating a weighted integration strategy

In all, our behavioral results show that the dung beetle compass is dynamic and that relative cue reliability

dictates which cue is favored; this occurs as a continuous integration process, rather than a winner-take-all.

The cue which is perceived to be less noisy, and thusmore reliable, is predominantly used to guide straight-

line orientation. This holds true until the relative reliabilities are similar and the beetles initially appear to be

unable to utilize the provided cues for orientation. However, when investigating individual precision, we

found that beetles were able to maintain their apparent new bearing, as well as recover their initial bearing

when the cues were returned to their original positions. Furthermore, individual orientation behavior

differed across three days. Together, these results suggest that the observed randomness is an effect of

a weighted integration strategy, but the integration may be inconsistent across days. To attempt to char-

acterize the integration strategy, we performed simulations to experiment with different strategies and

weight relationships.

Modeling

Cue integration studies typically compare winner-take-all (WTA) to ‘‘optimal’’ cue integration, defined as

the linear weighted arithmetic mean, WAM (Ernst and Banks, 2002; Ernst and Bülthoff, 2004), or the cir-

cular weighted vector sum, WVS (Murray and Morgenstern, 2010). Previous work on dung beetles has

assumed WTA (Dacke et al., 2019) but, as already noted, several aspects of our current results do not

appear to match what this model would predict. Some studies on ant behavior have been taken to

demonstrate WAM (Legge et al., 2014; Sun et al., 2018; Wystrach et al., 2015), but WAM is inappropriate

for circular inputs. Instead, cue integration in the circular domain can be represented by a weighted vec-

tor sum (STAR Methods, Integration models), for which the optimal weights (which minimize the variance

of the combined cue) are given by the concentrations of the von Mises noise distributions which charac-

terize each cue. WVS has been used in a model of ant navigation (Hoinville and Wehner, 2018), and has

the interesting property that it can resemble WAM at small conflicts and WTA at large conflicts (see Fig-

ure S6). This has inspired us to consider two further alternatives. The first is a ‘‘non-optimal weighted’’

vector sum (NVS) which exaggerates the pseudo-WTA region of the WVS, such that the stronger cue usu-

ally dominates the response but both contribute, unlike true WTA. The second is a biased (non-optimal

weighted) vector sum (BVS), which simulates small individual biases toward one or the other cue, creating

a variety of behavior when the cues are near-equally balanced. Illustrative model outputs for the same

input distributions are given in Figure 3. For completeness, we compare all five models (WTA, WAM,

WVS, NVS, and BVS, defined explicitly in STAR Methods, Integration models) to the behavioral data

to calculate their relative likelihoods. The results are given in Table 1.

Our modeling results indicate that all circular models (WVS, NVS, and BVS) better account for our behav-

ioral data than the classically considered WAM and WTA. The extremely similar outcomes between WTA

and WVS were unexpected, but it is likely that these models both account for different portions of the data

(i.e. they are equally bad at capturing the full range of behavior). The non-optimal circular model (NVS),

which takes advantage of the pseudo-WTA property of a circular integration model (a vector sum, see

STAR Methods, Integration models), performs substantially better than either optimal circular integration

or a winner-take-all as this model should capture the small influence of the secondary cue. Finally, the in-

clusion of individual bias in BVS increases the population-level noise where cue weights are near equal,

which should capture the behavioral variability at the critical elevation conditions (60+ elevation, 2.5 m=

s wind speed), leading to the best overall fit.

The key take-away from our simulations is that a weighted circular model best accounts for the data. WVS,

NVS, and BVS make different behavioral predictions. WVS predicts mostly intermediate courses with the

more reliable cue dominating at large conflicts. NVS predicts the more reliable cue will dominate most

of the time with intermediate courses where cue weights are similar. Finally, BVS predicts mostly domi-

nance, with some intermediate courses where cue weights are similar, and increased population variance

where they are near equal. Despite their differences, these three models use the same basic vector sum

(WTA can also be represented as an extreme case of NVS with very large a, see STAR Methods, Integration

models). They differ only in how their weights are computed.
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To tie our results to physiology, the neural circuitry in the insect central complex appears to provide an ideal

substrate for performing a vector sum calculation. In the insect brain, head direction is maintained by a

ring-attractor circuit (Seelig and Jayaraman, 2015; Kim et al., 2017; Heinze, 2017). This circuit is fed by

the ring neurons, which seem to cluster into groups which are sensitive to different orientation cues (Okubo

et al., 2020; Hardcastle et al., 2021). The two layers are linked by plastic all-to-all connections—every ring

neuron connects to every compass (head direction) neuron (Kim et al., 2019; Fisher et al., 2019)—which

should allow the network to learn relationships between different cues, forming a single integrated snap-

shot for orientation. In beetles, the relationship between the different available cues could be learned dur-

ing the dung beetle ‘‘dance’’ (Baird et al., 2012), which is thought to be the point at which their orientation

snapshot is taken (el Jundi et al., 2016). Similar neural models of angular cue integration have been pro-

posed by Page et al. (2014) and Jeffery et al. (2016) in rodents, and Sun et al. (2018) in insects. Interestingly,

Sun et al. (2018) implement WAM within a ring-attractor model and observe a strategy switch (where the

output switches from WAM to WTA), which looks strikingly similar to the integration curves shown by Mur-

ray and Morgenstern (2010) (Figure S6, Right). Working with rodents, Knight et al. (2014) also note a
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Figure 3. An illustration of the different model outcomes for two sets of input samples

Top row: The two sample distributions used as input to the models. Each cue is described by a noise distribution which is

sampled to generate behavior. The noise distributions are vonMises with kBlue = 2:05, kGreen = 2, mGreen = 0, and mBlue ˛
f0+; 60+; 120+g (columns). Weights are computed from ks. BVS (Biased Vector Sum): Noise is added to the weights (vector

magnitudes) which are then passed through an adjustment function. This strategy can generate different outputs for the

same inputs due to the added noise. NVS (Non-optimal Vector Sum): Weights are adjusted and then the vectors are

summed.WVS (Weighted Vector Sum): Angular samples are converted to vectors and then summed.WTA (Winner-take-

all): Weights are compared and the cue with the greatest weight wins complete influence. WAM (Weighted Arithmetic

Mean): A simple weighted average of the angles. For model definitions, please see STAR Methods, Integration models.
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‘‘switch’’ between apparently optimal integration behavior and cue selection behavior and finally, Sjolund

et al. (2018) note similar results for spatial (distance and direction) cue integration in humans. Not only is a

weighted circular model a likely candidate for cue integration in our case and in ants (Hoinville andWehner,

2018), but the orientation center of the insect brain would seem to be well suited to encode the underlying

vector sum. Overall behavior is then governed by the weights used, which need not be consistent across

different species.

In summary, our behavioral data point to a weighted integration of wind and solar cues. Subsequent

computer modeling suggests that the integration is most likely a form of vector summation, which seems

to be well encoded by the insect head direction circuit. Vector summation can produce a variety of

different integration outcomes depending on the weights used; a neural circuit which supports vector

summation could produce different behavior depending on how an agent computes these weights.

Thus, a single core model (vector summation) with different peripheral processing stages (weight-adjust-

ment and/or bias etc.) may explain a wide range of cue integration behaviors across different insect spe-

cies, despite the highly conserved neuroanatomy.

Limitations of the study

To fully isolate the orientation cues in question (sun and wind cues), we performed our experiments in an

indoor setup which allowed us to control all possible cue parameters. Consequently, the indoor setup is

limited in its representation of the real world. One major constraint of our behavioral setup is motion

parallax, which becomes more severe at higher solar elevations.

The modeling is based on beetle exit angles which do not fully characterize the strategy in use by the bee-

tles (especially with the aforementioned motion parallax). Modeling based on full tracks for each individual

would be more informative but these data are not practically available. This means that applications of the

specific model instances presented are limited.
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Table 1. Cross-model comparison results in order of likelihood/fit

Model Parameters Log likelihood ratio AIC ratio BIC ratio

BVS 2 0.00000 1.000000 1.000000

NVS 1 �17.21685 1.007461 1.006451

WVS 0 �50.45796 1.022295 1.020260

WTA 0 �50.73313 1.022421 1.020386

WAM 0 �199.68191 1.090951 1.088779

All circular models (WVS, NVS, and BVS) outperform the weighted arithmetic mean (WAM). Non-optimal weighted circular

models (NVS and BVS) do better than both the statistically optimal WVS and previously hypothesized WTA. As parameter

counts are small, the Akaike information criterion (AIC) and Bayesian information criterion (BIC) do not sufficiently penalize

either BVS or NVS to affect the order of the results. Likelihoods are best at 0 and decrease as models become less likely.

The AIC and BIC ratios are best at 1 and increase as goodness-of-fit decreases.
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Further questions should be directed to and will be answered by the lead contact, Elin Dirlik (elin.dirlik@

biol.lu.se).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Behavioral data have been deposited at Zenodo (hosted on GitHub) and are publicly available as of the

date of publication. DOIs are listed in the key resources table.

d All original code has been deposited at Zenodo (hosted on GitHub) and is publicly available as of the

date of publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethical statement

All applicable international, national and institutional guidelines for the care and use of animals were fol-

lowed. Animal care was in accordance with the EU Directive 2010/63/EU and the South African National

Standard for The Care and Use of Animals for Scientific Purposes.

Animal collection and experimental sites

Ball rolling dung beetles of the species Kheper lamarcki were collected using dung baited pit-fall traps at

Stonehenge game farm, South Africa (26.39� S, 24.32� E) during November 2019, as well as February and

November 2020. Behavioural experiments were conducted indoors at Bergsig Eco Estate game farm near

Bela Bela and at University of the Witwatersrand, South Africa, as well as at Lund University, Sweden. Bee-

tles were kept in plastic containers filled with sand and provided with fresh dung 2–4 times per week.

METHOD DETAILS

Experimental setup

The setup consisted of an artificial sky constructed of two metal arches crossed over to create a hemisphere

(1.5m radius). Each archwas linedwith 141 LEDs (520 nm, DotStar; Adafruit Industries, NewYork, USA) approx-

imately 1.3� apart. A single LED served as an ersatz sun with an intensity of 231011photons=cm2=sec as

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Exit angles/behavioral data This study Zenodo: 10.5281/zenodo.5724225

Model simulated data This study Zenodo: 10.5281/zenodo.5724225

Experimental models: Organisms/strains

Diurnal Kheper lamarcki Wild caught MacLeay, 1821

Software and algorithms

Python Open source Version 3.8.10

Oriana Kovach Computing services, UK Version 3.21

Other

Handycam Sony, Japan FDR-AX53

ll
OPEN ACCESS

iScience 25, 105207, October 21, 2022 11

iScience
Article

mailto:elin.dirlik@biol.lu.se
mailto:elin.dirlik@biol.lu.se
http://10.5281/zenodo.5724225
http://10.5281/zenodo.5724225


measured from the centre of the setup at a height of about 7 cm (corresponding to the height of a beetle on

top of its dung ball) using a spectrometer (QE65000; Ocean Optics). Serving as wind cues, four wind genera-

tors were positioned on the floor 1.3m from the centre of the setup. The first wind generator was aligned with

one of the LED-lined arches and the remaining three were placed at an angle of 60�, 120� and 180� relative to

the first. Each wind generator was constructed from three fans (PFR0912XHEE, 4.50A; Delta Electronics Inc.,

Taipei City, Taiwan) separated by 0.25 m and was powered by a Mean Well RSP-320-12, 26.7A power supply.

Measures of wind speeds were obtained by the use of a hot wire anemometer (HHF-SD1; Omega) placed 7 cm

above the centre of the arena (see Figure S4). A sand-painted circular arena (0.3 m radius) was placed in the

centre of the setup, with the arena perimeter labelled from 0 to 355� in 5� increments and with 0� aligned with

magnetic north. To control solar elevation and wind speed, custom-built software was used with an Arduino

Uno (experiments conducted in South Africa), or a Raspberry Pi 4 Model B (experiments conducted in Swe-

den). All experiments were filmed from above using a Sony camera (FDRAX53 Handycam) or a Raspberry Pi

camera (Camera Module 2 NoIR), supported by infrared illumination (B07DDJ1YDB, 1A; eecoo, Shenzhen,

China). To eliminate unwanted cues, the setup was placed inside a tent made out of blackout cloth (see

Figure S1).

Behavioural experiments

Throughout each experimental day beetles were temporarily kept in shallow bins containing fresh dung

and given time to construct dung balls. During behavioural experiments, each beetle was placed alongside

its dung ball in the centre of the circular arena (semi-randomly in one of four cardinal directions). Following

its characteristic orientation dance, the beetle was allowed to roll to the perimeter where its exit bearing

was recorded. The beetle and its ball were then placed back into the centre of the arena and the procedure

was repeated a number of times that depended on the experimental question (see below). In total, each

beetle took between 5 and 15 min to complete an experimental series, after which it was put away for

the day. The same beetle was never testedmore than once for each experiment and if it performed another

experimental series this was always carried out on a different day.

Reliability of sun and wind cues

We used orientation precision of ball rolling beetles as a proxy for reliability under different cue conditions

with the assumption that more reliable cues would lead to greater precision and vice versa. Orientation

precision under an ersatz sun was tested at elevations of 5�, 20�, 45�, 60�, 75�, 80�, 82�, 84�, 86�, 88�, or
90�. For every elevation, 20 beetles were tested. Each individual was marked to ensure that it was only

used once per elevation. Each beetle was placed in the center of the arena and allowed to exit from it

five times. Following this, the azimuth of the ersatz sun was shifted by 180� and the beetle exited the arena

an additional five times.

The same procedure was used to test the beetles’ ability to perform straight-line orientation at wind speeds

of 0.5, 0.8, 1.0, 1.5, 1.9, 2.5, 3.0 and 4.0 m=s, with the direction of the wind current shifted by 180� after five
exits. For every wind speed 20 beetles were tested and each individual was marked to ensure that it was

only tested once per wind speed. To sustain the beetles’ motivation in the presence of wind, this experi-

ment was performed with an ersatz sun positioned in zenith.

Cue conflict between an ersatz sun and wind

Cue conflict experiments. Based on the results gathered from the reliability experiments described

above, a cue conflict experiment was conducted using an ersatz sun at elevations of 45�, 60�, 75�, and
86� in the presence of a wind current of 2.5 m=s. In a separate cue conflict assay, solar elevations of 60�,
75� and 86� were presented together with a wind speed of 1.25m=s. All conflicts were achieved by shifting

the azimuthal direction of the wind current while keeping the ersatz sun stationary.

Each beetle exited the arena a total of eight times: three times with the directional information from the

ersatz sun and wind current in congruence, once with a conflict of 60+ (or 120+), once with the cues in their

original position (congruent), once with a conflict of 120+ (or 60+, respectively), and finally two exits with the

cues returned to their original positions (congruent). The purpose of the repeated congruent exits was to

ensure that the beetles strived to adhere to the same bearing throughout its experimental series (see STAR

Methods, Quantification and statistical analysis - Cue conflict between an ersatz sun and wind). The order in

which the conflicts were presented was pseudo-randomised. Thus, each beetle performed both test con-

ditions where the azimuthal directional information of the two cues were put in conflict by 60� or 120�
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between two consecutive rolls, as well as a control condition where the directional information remained

unchanged (0� conflict).

Further cue conflicts at 60� elevation. The same cue conflict assay (congruent (33) - 60�/120� conflict -
congruent - 120�/60� conflict - congruent (32)) was replicated in another experimental series. These

spanned over three days with the ersatz sun at an elevation of 60� and the wind speed set to 2.5 m= s.

Each day, data was collected from the same population of individually marked beetles.

Individual precision. Individual precision was studied at an elevation of 60� and a wind speed of 2.5m= s.

In this experimental setting, the beetles exited the arena a total of 36 times: ten times with an ersatz sun and

a wind current in congruence, ten times with a conflict of 60+ (or 120+), three times with the cues in their

original positions, ten times with a conflict of 120+ (or 60+, respectively), and finally three times with the

cues returned to their original positions.

Simulation overview

The software performs a simplified simulation of the cue conflict paradigm above. We are interested in the

change in the value of an integration of two angular inputs with von Mises noise. We define a von Mises

distribution for each cue (using the precision data described in STAR Methods, Behavioural experiments

- Reliability of sun and wind cues) and an angle is sampled from each. We then compute the integration

of these angles when the cues are aligned (their distributions have the same mean), and when the cues

are in conflict (the distributions have different means). The difference between the two integrations is

the change in the integration, which can be interpreted as a change in bearing. We compared five different

cue integration models and assessed their ability to produce our behavioral data by comparing how likely

the data would be under any candidate model (see STAR Methods, Evaluation process).

Simulated cue representation

In order to capture sensory noise in a circular context, cues are treated as independent von Mises random

variables (Murray and Morgenstern, 2010). The von Mises probability density function is given by:

fVMðx;m; kÞ =
ekcosðx�mÞ

2pI0ðkÞ (Equation 1)

where m is the mean angle of the distribution, k is the concentration (equivalent to s� 2 for the normal dis-

tribution, often called ‘‘reliability’’ (Ernst and Bülthoff, 2004; Murray and Morgenstern, 2010)), and I0ðaÞ is
the modified Bessel function of the first kind of order zero (Batschelet, 1981; Murray and Morgenstern,

2010). This is analogous to using normal distributions to simulate Gaussian noise when working with linear

data (e.g. time taken by an animal to exit an arena), rather than angular data (e.g. angle at which the animal

exits the arena). To sample from these distributions we need to estimate parameters mWind , kWind , mLight ,

kLight , such that the distributions fLightðx;mLight ; kLightÞ and fWindðx;mWind ; kWindÞ are those which can produce

simulations which match the observed behavior under light (an ersatz sun) or wind respectively.

The estimates for the means are the input azimuths of each cue; it is reasonable to assume that the average

perceived cue position is the true cue position. The concentration parameter estimates can be approxi-

mated from the mean vector length of a random sample from a parent distribution (Mardia and Jupp,

2009). The best available proxy for such a random sample is the data collected to examine the reliability

of sun and wind cues (see Results and Discussion, Reliability of ersatz sun and wind cues). We tried tomodel

the reliability data using linear and split-linear fits respectively (performed using SciPy curve-fitting utilities

(Virtanen et al., 2020)); these fits can be seen in Figure 1. However, if we try to approximate the k-values from

these directly the resultant populations are less precise than they should be; to fix this, we included small

additive constants which augment the mean vector lengths, improving the final k approximation with

respect to the observed data. The final estimators are:

RWind = ð0:11s + 0:43Þ+ cWind (Equation 2)

RLight =

� ð�0:074+ 0:80Þ+ cLight ; if 4% 75+;
ð�1:264+ 2:31Þ+ cLight otherwise:

(Equation 3)
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where s is wind speed, 4 is light elevation with additive constants cLight = 0:135, and cWind = 0:133. cLight
and cWind were tuned by hand.

We can now estimate an augmented mean vector length R for any sensible light elevation or wind speed

which we can use to approximate bk, from Mardia and Jupp (2009) (pg. 85, 86):

bkz
8>>>>>>>><>>>>>>>>:

2R +R3 +
5

6
R5; if R <0:53

1

2ð1 � RÞ � ð1 � RÞ2 � ð1 � RÞ3; if RR0:85

� 0:4+ 1:39R +
0:43

ð1 � RÞ; otherwise

(Equation 4)

The quality of this approximation can be seen in Figure S7; the approximation is slightly faster to compute,

saving some time when running larger simulations. We can test the k-values by simulating the precision

experiments used to estimate them. Including the additive corrections, this method allows us to simulate

beetle populations which approximately match real beetles under single-cue conditions.

Integration models

With the above cue representation, we compared five different simple models to evaluate how likely they

are to have produced the experimental data. Each integration is computed twice per simulated individual;

once for the initial condition and once for the conflict condition.

Winner-take-all (WTA)

Under winner-take-all, we compute weights for each cue and the integration is simply the cue azimuth of

the cue with the greatest weight. Weights and integration are given by:

WWind)kWind (Equation 5)

WLight)kLight (Equation 6)

IWTA =

�
qWind if WWind >WLight ;

qLight otherwise:
(Equation 7)

Note we do not check the case where cues have equal weights because this never occurs. In such an

instance you could break the tie randomly.

Weighted arithmetic mean (WAM)

WAM is the standard (statistically optimal) weighted average model which arises throughout cue integration

literature (Ernst andBanks, 2002; Ernst andBülthoff, 2004; Knill and Pouget, 2004). Aweighted arithmeticmean

is not appropriate for angular or otherwise cyclic inputs (Batschelet, 1981; Murray and Morgenstern, 2010); a

standard example in circular statistics is to consider the average of 0+ and 360+. If we assume equal weights,

then Equation 10 will give 180+ where we would expect 0+. However, this method has previously been used in

the context of directional cue integration in ants (Sun et al., 2018;Wystrach et al., 2015), humans (Alais and Burr,

2004), and monkeys (Fetsch et al., 2012). Furthermore, direction and distance can often be mixed and dis-

cussed generally as ‘spatial’ cues (Cheng et al., 2007; Nardini et al., 2008; Sjolund et al., 2018) which can

lead to difficulty when interpreting integration across two different domains. Thus, due to its widespread

application, we included WAM in our comparison. The weights and integration are given by:

WWind)kWind

��
kWind + kLight

�
(Equation 8)

WLight)kLight
��

kWind + kLight
�

(Equation 9)

IWAM = WWindqWind +WLightqLight (Equation 10)

Weighted vector sum (WVS)

This method (due toMurray andMorgenstern (2010)) is derived from a Bayesian integration of angular cues

with von Mises noise. Its function is best understood by considering a vector sum heuristic; if we interpret
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each cue as a polar vector, say l = ðqLight ;WLightÞ andw = ðqWind ;WWindÞ, then Equation 13 gives the angular
component of l +w (Murray and Morgenstern, 2010). This method has been used previously to model the

integration of Path Integration and Landmark Guidance cues in ants (Hoinville and Wehner, 2018). The

weights are:

WWind)kWind

��
kWind + kLight

�
(Equation 11)

WLight)kLight
��

kWind + kLight
�

(Equation 12)

The final integration is:

IWVS = qWind + atan2
�
sin
�
qLight � qWind

�
;
�
WWind

�
WLight

�
+ cos

�
qLight � qWind

��
(Equation 13)

So long as WWind=WLight = kWind=kLight , this integration is considered optimal (Murray and Morgenstern,

2010; Hoinville and Wehner, 2018). The following methods are variations on this vector sum which differ

only in how the weights are computed (i.e. the magnitude components of the vector arguments).

Non-optimal weighted sum (NVS)

Here we compute the normalised weights as in WAM and WVS, then pass them through a sigmoid adjust-

ment function g. The adjustment function has the effect of minimising the area in weight-space where both

cues have a significant impact on the integration (see Figure S5). Thus, both cues are still considered but it is

quite easy for one to dominate the integration resulting in pseudo-WTA behavior. This is distinguished

from a true WTA by the fact that increasing cue conflict could still have an effect on overall population

spread (as both cues are generally considered, even if one has very little weight).

WWind)g
�
kWind

� �
kWind + kLight

�
; a
�

(Equation 14)

WLight)g
�
kLight

� �
kWind + kLight

�
; a
�

(Equation 15)

where:

gðx; aÞ =
1

1+ e� aðx� 0:5Þ (Equation 16)

with a = 53 determined as most likely (see STARMethods, Evaluation process; Figure S8). The final integra-

tion is given by Equation 13.

Biased non-optimal weighted sum (BVS)

Our final model introduces small individual biases which give each individual a random preference for the

wind or the ersatz sun. These biases are drawn from a very narrow Gaussian distribution (s2Bias = 0:000303)

with m = 0. As such, we expect that most individuals have no bias. In biological terms, this could be thought

of as a weak preference based on prior experience; such a preference would only become apparent where

cues are very close in weight. The weights are now computed as:

WWind)g
��
kWind

� �
kWind + kLight

� � b
�
; a
�

(Equation 17)

WLight)g
��
kLight

� �
kWind + kLight

�
+ b

�
; a
�

(Equation 18)

where b � Nð0;sBias = 0:017.Þ is the bias for this individual. Note that the same bias is used on both the

initial and conflict steps. Again, the final integration is given by Equation 13.

Evaluation process

To evaluate the different models, we used each to generate large simulated populations (nsim = 1; 000; 000)

under each set of conflict conditions (for each model, the same vonMises random samples were used to mini-

mise the effect of random sampling when comparing models). These populations can be interpreted as prob-

ability mass functions (grouped into 5+ bins and then normalised) and used to assess how likely each model is

to have produced the experimental data above.We cannot simply fit vonMises distributions to our data as: (1)

the integration of two von Mises distributions does not necessarily produce a von Mises distribution (our

models do not necessarily produce von Mises distributions) (Murray and Morgenstern, 2010), and (2) three

of our test conditions did not produce significantly oriented populations (Figure 2B, 60� elevation/120� con-
flict, and Figure 2D Day 1 and Day 3) meaning we cannot assume they are von Mises.
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Formally, given data for a set of conditions c, and a model M we want to know:

PðMjcÞfPðcjMÞPðMÞ (Equation 19)

PðMjcÞfPðcjMÞ (Equation 20)

as PðMÞ is assumed to be uniform. We have 21 different conditions, each of which is conditionally indepen-

dent, thus:

PðcjMÞ =
Y21
j = 1

P
�
cj
��M� (Equation 21)

lnðPðcjMÞÞ = ln

 Y21
j = 1

P
�
cj
��M�! (Equation 22)

=
X21
j = 1

ln
�
P
�
cj
��M�� (Equation 23)

For each condition cj , each data-point is also conditionally independent. By the same reasoning:

ln
�
P
�
cj
��M�� =

Xn
i = 1

lnðPðdijMÞÞ (Equation 24)

Pðdi jMÞ is drawn from the p.m.f. generated for the model M (i.e. the likelihood of data point di occurring

givenmodelM). Themodel with the greatest log likelihood wins. The results in Table 1 are presented as log

likelihood ratios given by:

LR = ln

�
PðcjMÞ
Pðcj bMÞ

�
= ln½PðcjMÞ� � ln½Pðcj bMÞ�

(Equation 25)

where PðcjMÞ is the (proportional measure of) likelihood of a model with respect to the data and Pðcj bMÞ is
the likelihood of the maximally likely model. The maximally likely model gets a score of 0 and scores

decrease as candidates become less likely. Akaike Information Criterion (AIC) ratios are also given to

compare model fit while penalising parameter counts:

AIC Ratio =
AICðMÞ
AICð bMÞ

(Equation 26)

with

AICðMÞ = 2k � 2lnðPðcjMÞÞ (Equation 27)

where k is the number of parameters in themodelM. The best AIC ratio score is 1 and scores will increase as

fit worsens.

As the AIC did not affect the order of our results, we also examined the Bayesian Information Criterion (BIC)

as this more heavily penalises large parameter counts. The BIC is defined as:

BICðMÞ = klnðnÞ � 2lnðPðcjMÞÞ (Equation 28)

with n = 564 being the total number of samples against which each model is evaluated (over all conflict con-

ditions), and k the number of parameters in themodelM. These are also reported as ratios in Table 1, given by:

BIC Ratio =
BICðMÞ
BICð bMÞ

(Equation 29)

with M and bM as above.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of circular data was carried out in Oriana 3.21 (Kovach Computing Services, Anglesey, UK) and all

presented bearings are shown as mGCircular Standard Deviation ðSDÞ. All statistical details may be found
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in the results and discussion. The n-numbers indicate number of individual beetles tested at each experi-

mental condition.

Reliability of sun and wind cues

To investigate (i) the beetles’ orientation precision and, (ii) their directional preferences in the presence of a

single cue, the ten exit bearings recorded for each beetle were normalised to the azimuthal position of the

orientation cue. Beetles whose normalised exits were not significantly different from a uniform distribution

(p% 0:05, Rayleigh test) were deemed unable to orient and thus excluded from analysis for tactic behavior.

For each experimental group, i.e. elevation of the ersatz sun (except for 90� elevation) or wind speed, Ray-

leigh tests were conducted on the population of mean bearings. We define menotaxis as mean bearings

taken at any angle with respect to the cue (uniform distribution), while a population showing a directional

preference towards or away from a directional cue is defined as performing taxis. Orientation precision was

then investigated for the experimental groups that performed menotaxis (i.e. beetles that were able to use

the sun and wind stimuli as compass cues).

This was done by calculating the mean vector length (R) from the normalised bearings of each beetle,

including the individuals that were previously excluded. The R-value extends from 0 to 1, where a higher

value suggests greater precision.

Cue conflict between an ersatz sun and wind

To study the effect of cue reliability on the integration and weighting of directional information given by an

ersatz sun and wind in conflict, an exclusion criterion was implemented. The criterion stated that, if the six

headings were not significantly different from a uniform distribution when the two cues were in their orig-

inal positions (congruent) (pR 0:1, Rayleigh test, see Figure S2 for justification), then the beetle was elim-

inated from further analysis. This ensured that the remaining beetles were able to return to their original

heading consistently and thus able to orient.

Changes in heading direction were calculated using the angular difference between two consecutive exits

(see Figure 2). For changes in heading at the 0� cue conflict, the angular difference was calculated between

the first and second exit where the directional information of the two cues remained unchanged

(congruent). For changes in heading at a 60� and 120� cue conflict the difference was calculated between

an exit where the cues were in congruence and the following exit where the wind cue had been shifted. The

population mean change in heading, together with Rayleigh tests (pR 0:05), were used to determine the

behavioural response to the azimuthal shift of the wind. This was carried out for all conflict conditions.

To determine individual precision when presented with a conflict between an ersatz sun at a 60� elevation
and a 2.5m=swind current, the ten bearings recorded at each conflict were tested for uniformity (pR 0:05,

Rayleigh test).
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