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ABSTRACT
Background: The response rate and survival benefit of immunotherapy vary among patients,
implying specific immune status of an individual could be associated with the effect of immuno-
therapy. However, in-depth studies of immune subtypes (ISs), immune landscape and tumour
microenvironment of oesophageal cancer (ESCA) and their clinical implications are less reported.
Methods: We first accessed data from publicly available databases and preprocessed it based
on a standard protocol. Then, ISs were identified by unsupervised learning. Thereafter, the asso-
ciation of these ISs and tumour mutation burden (TMB), biomarkers of chemotherapy-induced
immune response, tumour markers were also assessed. In addition, the immune characteristics,
immune landscape, co-expression network of immune genes, and clinical implications were
visualized and analysed.
Results: We identified three immunoclusters based on immune-associated genes with intra-class
heterogeneity and prognostic value. Cluster-specific associations with TMB, markers of chemo-
therapy-induced immune response, and tumour markers were revealed. A 4-gene signature (risk
score¼�0.16514291�BHLHE22�0.03964046�MXRA8�0.15242778�SLIT2�0.05553572�SPON1)
based on co-expressed genes in the immunoclusters was developed and externally validated.
Conclusions: In summary, we identified clinically relevant immunoclusters in both adenocarcin-
oma and squamous cell carcinoma of oesophagus, revealing the necessity of assessing the com-
plexity and diversity of immune microenvironment for cancer immunotherapy.

ARTICLE HISTORY
Received 18 January 2021
Revised 11 March 2021
Accepted 28 March 2021

KEYWORDS
Immunophenotyping;
immune landscape;
oesophageal cancer tumour
microenvironment;
immunotherapy

Background

Oesophageal cancer (EC) is a common malignant
tumour in the digestive system, ranking sixth and sev-
enth cancer-related deaths in the world [1]. There are
two main histological subtypes of EC, including
oesophageal adenocarcinoma (EAC) and oesophageal
squamous cell carcinoma (ESCC). EAC incidence is
mainly in Caucasian [2], while ESCC is more common
in developing countries, such as China [3]. Surgery,
chemotherapy and radiotherapy alone or in combin-
ation are treatments for EC. However, the estimated
5-year survival rate of EC ranges from 10 to 39.7%
[3–7]. In recent years, immunotherapy for EC has been
reported [8,9], and clinical trials are also underway,
providing novel strategies for improving patient’s
survival with EC. Therefore, the identification of
immune subtypes (ISs) responsible for tumour immune

microenvironment (TIME) of EC is crucial for a better
understanding of a patient’s immune status, which is
associated with the effect of immunotherapy, treat-
ment decision and prognosis prediction of EC.

Tumour microenvironment (TME) refers to the vari-
ous surrounding microenvironment in which tumour
cells exist, including tumour-nourishing blood vessels,
numerous signalling molecules and complex extracel-
lular matrix (ECM) components [10]. Among them, the
composition of immune cells in tumours and the com-
plexity and diversity of the immune environment cre-
ated by them constitute the TIME, affecting the
growth and development of cancer cells. The TIME’s
tumour suppressors are mainly conducted by cytotoxic
T cells (CTL) and natural killer (NK) cells, usually with a
decrease in number. The cells act as tumour pro-
moters by immunosuppressive function include mye-
loid-derived suppressor cells (MDSCs), regulatory T
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cells (Tregs) and tumour-associated macrophages
(TAMs), which are the targets of immunotherapy in
recent years [11]. Therefore, revealing the association
of tumour IS with immune cells is helpful to under-
stand the role of TIME in different cancer subtypes. In
addition, the immune landscape analysis based on the
characteristics of tumour immune cells is a novel
approach to evaluate TIME, but the immune landscape
of oesophagus cancer is unclear. In sum, the associa-
tions of TIME with tumour gene expression and muta-
tion, as well as the impacts of TIME on primary
tumours, chemotherapy, targeted therapy and
immunotherapy, need further investigations.

Due to few reports on immunophenotyping of EC,
this study aimed to identify ISs in EC with clinical value
and its association with tumour mutation burdens
(TMBs), clinical tumour biomarkers, tumour immune
gene expression, infiltrative immune cell composition
and potential immune function (activation and suppres-
sion). By providing an IS with predictive prognosis
value based on TIME in EC, our ISs may also hint at the
direction of improving EC therapeutic effect for
immunotherapy and reasonable combination strategies.

Materials and methods

Data accession and preprocessing

We used the TCGA Genomic Data Commons (https://
portal.gdc.cancer.gov/) to download the RNA-Seq data
of TCGA-ESCA. After preprocessing, 161 samples with
RNA-Seq data were obtained. The GEO data were
downloaded from Gene Expression Omnibus (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53624),
accessing the GSE53624 microarray data with survival
information with a total of 119 samples [12]. The data
preprocessing procedure of TCGA-ESCA were the
removal of (1) normal tissue data, (2) samples with no
survival information, (3) genes with expression level
(TPM) equal to 0 in more than 50% of the samples
and (4) log2 (TPM þ 1) transformation. In terms of
GEO data preprocessing, removal of data from normal
tissue and without survival data was performed. The
mutation data set of TCGA-ESCA was downloaded and
processed by the mutect2 tool, then the patient’s TMB
was calculated.

Identification of immune related genes

Immune-related genes were selected based on (1)
immune cell-specific genes derived from single-cell
RNA-Seq data; (2) genes encoded co-stimulatory and
co-suppressive molecules; (3) genes encoded cytokines

and cytokine receptors; (4) genes involved in antigen
processing and presentation. The expression profiles
of these genes were retrieved from TCGA-ESCA and
GSE53624 dataset.

Identification of immune subtypes and immune
gene modules

We applied consensus clustering by
ConsensusClusterPlus to classify the samples [13]. The
ISs based on 1951 immune-related gene expression
were obtained [14]. We used the PAM algorithm and
the Spearman correlation of 1 as a measurement of
distance, and then each bootstraps process included
80% of the training set patients for 500 times were
performed. The optimal classification was determined
by calculating the consistent matrix and the cumula-
tive distribution function (CDF) estimator. The immune
gene modules were also identified based on the same
setting.

Functional analysis of the immune gene modules

We annotated the biological functions of immune
gene modules by DAVID (v6.8) tool and annotated the
biological processes of the genes in each module by
Gene Ontology. We applied the ANOVA algorithm to
evaluate the association between ISs and 57 previ-
ously reported immune-related molecular and cellular
characteristics [15].

The association of immune subtypes with clinical,
molecular and cellular characteristics

By using the age, gender, T stage, N stage, M stage,
TNM stage and grade of differentiation as the covari-
ates in training set samples against the overall survival
(OS) rate as the endpoint, we applied log-rank test,
univariate and multivariate Cox regression method to
evaluate the prognostic value of ISs. Then in the valid-
ation set, the variance analysis is used to evaluate the
correlation between ISs and various immune-related
molecular and cellular characteristics. The tumour
immune dysfunction and exclusion (TIDE) algorithms
were used to predict TCGA-ESCA patients’ response to
immune checkpoint inhibitors [16].

The immune landscape of oesophagus

Taking the dynamic characteristics of the immune sys-
tem into account, we used graph-based learning
methods for dimensionality reduction analysis. In this
study, we extended this method, which is previously
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used to simulate cancer progression and to define
developmental trajectory analysis for single-cell gene
expression data, to study immune gene expression
profiles [17,18]. This immune landscape analysis
reflects the relationship between patients in a nonlin-
ear manner, which may complement the discrete ISs
defined in the linear Euclidean space.

Construction of immune modules based immune
gene co-expression

Weighted gene co-expression network analysis [19] was
used to identify immune modules potentially associated
with clinical features. By setting a soft threshold power
(b) set at 10 and correlation coefficient R-squared value
>0.85, we applied the topological overlap matrix
method [20] to convert data into a weighted adjacency
matrix. Under dynamic tree cutting with genes in each
module no less than 40, the eigengenes value is used
to cluster the modules. Similar modules were merged
into a new module by height ¼ 0.25, deepSplit ¼ 4
and minModuleSize ¼ 40.

Development and validation of immune gene risk
score

Genes whose correlation coefficient greater than 0.75
in the significant modules were subjected to univari-
ate Cox proportional hazard regression analysis, with
p<.05 as the threshold for gene filtration. Then, we
calculated the risk score of each sample according to
the expression level of the sample, with Z-score nor-
malization. The high-risk group was defined as risk
score greater than zero and low-risk group as that less
than zero, and then the Kaplan–Meier curve was used
to visualize survival outcome.

Statistical analysis

Data processing, visualization and statistical analysis
were done by R 3.6.1 (R Foundation for Statistical
Computing, Vienna, Austria). We used one-way ANOVA
or the Kruskal–Wallis test to compare differences
among different groups, and the Kaplan–Meier analysis
was employed to analyse survival data. In brief, we con-
sidered two-sided p<.05 as statistical significance.

Results

The immune subtypes of oesophagus cancer

According to the Consensus clustering CDF, it can be
observed that clustering reached a stable status when

the k equals 3 (Figure 1(A,B)), resulting in three ISs
(Figure 1(C)). Further prognostic analysis based on
these three ISs, significant prognostic differences
among groups are revealed in Figure 1(D). Overall, IS3
subtypes have a better prognosis, while IS1 subtypes
are worse than others. In addition, by comparing the
relationship among these three molecular subtypes
and age, gender, T stage, N stage, M stage, TNM stage
and grade, we observed that there are significant dis-
tributions in T stage, N stage, TNM stage and grade
differentiation, as shown in Figure 1(E–H). As shown in
Figure S1A–C, there are no significant distributions
among the three ISs regarding M stage, age and gen-
der. For external validation, the same bioinformatic
analysis for molecular typing on the GSE53624 micro-
array data was performed. Consistently, the three ISs
shared similar survival curves with better prognosis in
IS3 (Figure 1(I)). Tumour grades are significantly dis-
tributed in the three ISs, while there is no significant
difference in terms of age, gender, T stage, N stage
and TNM stage (Figure S1D,E and Figure 1(J–L)).

Differences of TMB distribution in the immune
subtypes

With increasing studies supporting TMB as an inde-
pendent predictive biomarker of immunotherapy, the
association of TMB in the three ISs was analysed. As
shown in Figure 2(A), the distribution of TMB in the
three ISs revealed that TMB in IS1 subtype is signifi-
cantly higher than IS2 and IS3. Moreover, the number
of gene mutations in IS1 subtypes was significantly
higher than that of IS1 and IS2, as shown in Figure
2(B). A total of 1278 genes with mutation in all the
subtypes more than three times are listed in Table S1.
Thereafter, 108 significant genes with high-frequency
mutations in each subtype were screened by Chi-
square test at the threshold of p<.05 (Table S2). The
mutation features of the top 10 genes with significant
mutations in each subtype were visualized (Figure
2(C)). Notably, the proportion of NFE2L2 mutations in
IS2 subtypes is significantly higher than those in IS1
and IS3. A previous study found that NFE2L2 gene
mutations are significantly associated with ESCC poor
prognosis [21]. Intriguingly, a large proportion of ESCC
patients (81.2%) was allocated to the IS2 IS.

The features of clinical marker genes in the
immune subtypes

To observe the expression features of the classic
markers of chemotherapy-induced immune responses
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in the three ISs, we retrieved these genes in the
TCGA-ESCA cohort and GSE53624, respectively. In the
TCGA-ESCA cohort, a total of 19 out of 23 genes
(82.6%) were differentially expressed (Figure 3(A)),
while six out of 23 genes in the GSE53624 cohort
were differentially expressed (Figure 3(B)) in each
subtype. In addition, we obtained 47 immune check-
point-related genes from the previous study [22] and
analysed the expression of these genes in our ISs.
Significant differential gene expression of these genes
was found in 28 (60%) in the TCGA-ESCA cohort (28/
47, Figure 3(C)) and GSE53624 cohort (9/47, Figure
3(D)). Based on the TIDE algorithms, it can be
observed that the IS1 subtype was more effective in
immunotherapy than the other two subtypes. In

subsequent gene expression analysis of immune
checkpoint PDCD1in different ISs, the expression of
PDCD1 in IS1 and IS3 was significantly higher than
that of IS2 (Figure S2). These findings suggest that
there are differential expression of chemotherapy-
induced immune response markers and immune
checkpoint-related genes in different ISs, which could
be associated with clinical outcomes.

Next, gene expression profiles of squamous cell car-
cinoma-associated antigen (SCC) and cytokeratin 21-1
(Cyfra21-1) from the TCGA-ESCA cohort and GSE53624
were retrieved, respectively. After assessing gene
expression in each subtype, Cyfra21-1 has a good con-
sistency in terms of differential expression between
two cohorts, while the differential expression in SCC is

Figure 1. The immune subtypes in oesophageal cancer. (A) The CDF curve in TCGA-ESCA cohort samples. (B) The CDF Delta area
curve of TCGA-ESCA cohort sample. (C) The clustering heat map when consensus k¼ 3. (D) The prognosis value of the three sub-
types visualized by K–M curve in TCGA-ESCA cohort. The distribution of the three immune subtypes based on T stage (E), N stage
(F), TNM stage (G) and tumour grade (H) in TCGA-ESCA cohort. (I) The prognosis value of the three subtypes visualized by K–M
curve in GSE63524 cohort. The distribution of the three immune subtypes based on T stage (J), N stage (K), TNM stage (L) and
tumour grade (M) in GSE63524 cohort. The statistical significance of the distribution difference between groups are calculated by
the –log10 (p value).
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relatively poor (Figure 4), suggesting IS1 is a more
independent subtype in oesophagus cancer.

The immune characteristics of immune subtypes
and clinical implication

To study the distribution of immune cell components
in the ISs, 28 immune cell marker genes from a previ-
ous study were analysed [23]. Then, the scores of 28
immune cells in each patient in the TCGA-ESCA cohort
and GSE53624 cohort were determined by the single-
sample GSEA method, respectively. As shown in Figure
5(A), immune cells in the TCGA-ESCA cohort were

mainly divided into four categories. In addition, it can
be observed that most of these immune cell compo-
nents are different in each subtype, such as immature
dendritic cell, CD56bright NK cell, central memory CD4
T cell, effector memory CD4 T cell, effector memory
CD8 T cell were significantly lower in IS1 subtypes
than IS3 subtype (Figure 5(B)). Similarly, the trends
were also observed in the GSE53624 cohort (Figure
5(C,D)), which suggests that the poor prognosis of EC
may be related to the inhibition of immature dendritic
cell, CD56bright NK cell, central memory CD4 T cell,
effector memory CD4 T cell and effector memory CD8
T cell.

Figure 2. The immune subtypes are associated with TMB in oesophageal cancer. (A) The distribution of TMB in the three immune
subtypes. (B) The distribution of the number of gene mutations in the three immune subtypes; the p value is determined by the
rank sum test. (C) The characteristics of the top 10 mutation genes in each subtype.
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To test the association of our ISs with pan-cancer
molecular subtypes, the molecular subtype of EAC in
previous study [15], namely chromosomal instability
(CIN), hypermutation-SNV (HM-SNV) and microsatellite
instability (MSI), were retrieved. In our analysis, a large
proportion of EAC allocated to IS1 ISs (92.2%), while a
large proportion of adenocarcinomas were classified
into the CIN subtype (93.6%). Consistently, the IS1 IS
and the CIN pan-cancer molecular subtypes were of
the worst prognosis among respective molecular
subtypes.

In addition, we also assessed the correlation of our
ISs and 56 pre-defined immune molecular characteris-
tics. With a false discovery rate of less than 0.05, 24
immune-related features were identified (Figure 5(D)).
The most significant immune features of the IS1 sub-
type were Th17 cells, B cells naive, plasma cells, T cells
regulatory Tregs and lymphocytes. Also, some immune
features, such as macrophage regulation, TGF-beta

response, homologous recombination defects, macro-
phages M1, macrophages M2, mast cells resting and
macrophages were significantly higher in IS3 than in
IS1 and IS2.

The immune landscape of ESCA

In this study, the immune landscape of ESCA and the
overall TIME characteristics of each subtype were
portraited (Figure 6(A)). Of note, the components in
the horizontal coordinate were correlated with a var-
iety of immune cells (Figure 6(B)), with the most rele-
vant to NK cell, type 1 T helper cell, MDSC, Treg and
immature B cell. The components in the vertical
ordinate were related to monocyte and type 17 T
helper cell. Moreover, IS1 was distributed at the
opposite ends of the immune landscape, indicating a
significant intra-class heterogeneity in the IS exits.
According to the position of IS1 in the immune

Figure 3. The immune subtypes are associated with immune biomarkers. (A) The expression of classic markers for chemotherapy-
induced immune responses in the TCGA-ESCA cohort. (B) The expression of classic markers for chemotherapy-induced immune
responses in the GSE53624 cohort. (C) Expression of immune checkpoint genes in the TCGA-ESCA cohort. (D) Expression of
immune checkpoint genes in the GSE53624 cohort. The significance is statistically tested by variance analysis.
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landscape map, it could be further divided into two
subtypes (Figure 6(C)), with specific immune expres-
sion patterns, as shown in Figure 6(D). These results
solidified the exitance of ISs with clinical value by
providing different prognostic impacts of each sub-
type based on the immune landscape, as we defined
earlier.

Identification of key immune gene co-expression
modules

Next, we identified the co-expression modules based
on these immune genes for further understanding the

biological function of our ISs. Our samples were clus-
tered by the soft threshold of 10 in the weighted
gene co-expression network analysis, as shown in
Figure 7(A). A scale-free network was reached at
b¼ 10 (Figure 7(B,C)). Finally, a total of seven modules
were obtained (height ¼ 0.25, deepSplit ¼ 4,
minModuleSize ¼ 40, Figure 7(D)). As shown in Figure
7(E), it can be observed that 1951 genes were
assigned to seven co-expression modules. After the
analysis of the distribution of seven modules in our
three immune molecular subtypes, it can be seen that
some co-expression modules are differently distributed
in our three molecular subtypes. In brief, the

Figure 4. The immune subtypes are associated with biomarkers of oesophagus cancer. (A) SCC expression in each immune sub-
type (TCGA-ESCA). (B) Cyfra21-1 expression in each immune subtype (TCGA-ESCA). (C) SCC expression in each immune subtype
(GSE53624). (D) The expression of Cyfra21-1 in each immune subtype (GSE53624).
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co-expression modules of IS1 in the red, green, purple,
black and yellow modules are significantly lower than
IS3, while those in the magenta and pink modules are
significantly higher than IS3. We further analysed the
correlation between each module and the patient’s

age, gender, T stage, N stage, M stage, stage, grade,
and IS1, IS2, IS3 ISs. As shown in Figure 7(G), it can be
seen that the IS1, IS2 and IS3 displayed significant cor-
relations with the pink and black modules,
respectively.

Figure 5. The distribution of immune subtypes in immune subpopulations. (A) The 28 immune cell enrichment score of the
immune subtypes (TCGA-ESCA). (B) The enrichment score of immune cells associated with the prognosis of good and poor sub-
types (TCGA-ESCA). (C) The 28 immune cell enrichment score of the immune subtypes (GSE53624). (D) The enrichment score of
immune cells associated with the prognosis of good and poor subtypes (GSE53624). (E) The intersection of our three immune sub-
types and previous reported molecular subtypes. (F) The distribution of three immune subtypes in 22 immune-related characteris-
tics with significant difference (FDR < 0.05).
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Figure 6. The immune landscape of oesophageal cancer. (A) The immune landscape of oesophageal cancer based on immune
subtypes. (B) The correlation maps of 28 immune cell subgroups and two principal components in the immune landscape. (C) The
immune landscape of oesophageal cancer based on intra-class heterogeneity of immunophenotyping. (D) The distribution of
intra-class immune subtypes in immune cell subgroups. (E) The immune landscape of oesophagus based on immune subtypes
with prognostic value. (F) The prognostic difference based on the locations of samples in the immune landscape of oesophageal
cancer.
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Figure 7. Identification of immune gene co-expression modules. (A) The cluster analysis visualized be dendrogram; analysis of net-
work topology by scale independence (B) and mean connectivity (C). (D) The cluster dendrogram for module visualization in col-
ours. (E) The number of gene in each module. (F) The distribution of each module in immune subtypes. (G) The correlations
between co-expressed modules and clinical features as well as immune molecular subtypes.
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The immune gene modules are associated with
clinical traits

As revealing key modules in the immune cluster, gene
functional analyses were performed for the investiga-
tion of their potentially affected pathways. As shown
in Figure 8(A), the pink module was related to
immune processes such as neutrophil activation and
neutrophil activation involved in immune response,
associated with the first principal component in the
immune landscape (Figure 8(B)). As for the black mod-
ule, an immune-mediated extracellular structure and
matrix organization were indicated (Figure 8(C)), with
a strong correlation with the first principal component
in the immune landscape (Figure 8(D)).

For any potentially translational purpose, gene sig-
nature for prognosis prediction based on genes in
these models is built. The risk score is calculated
by the sum of �0.16514291� BHLHE22 –
0.03964046�MXRA8–0.15242778� SLIT2–0.05553572
� SPON1. As shown in Figure 8(E), the risk score can
separate high-risk groups (n¼ 90) and low-risk groups
(n¼ 71) in the TCGA-ESCA cohort. This model was

independently validated by the clinical data in the
GSE53624 cohort (Figure 8(F)).

Discussion

The immune function in the TME is one of the major
components of tumour constitution [24]. Studies
pointed out that tumour-infiltrating immune cells are
related to the prognosis of cancer patients [25] and
therapeutic effects [26]. However, current researches
mainly focussed on a single cell type [27,28]. Due to
different histological types of tumours, the function of
infiltrating immune cells could also be different. Even
in tumours of the same pathological type, different
tumour patients could have a different proportion of
immune cell subgroups. Nowadays, systematic investi-
gations on the clinically relevant TIME in EC are less
reported. In this study, stable ISs in EC were classified
based on immune-related genes, with independent
validation, different distribution in TNM stage, and
role in prognosis. In addition, the ISs of EC have differ-
ent expression profile of clinical tumour markers,
which are expected to evaluate the patient’s tumour

Figure 8. Function and prognosis analysis of immune gene co-expression module. (A) Gene enrichment analysis of pink module.
(B) Correlation between the pink module and the first principal component in immune landscape. (C) Gene enrichment analysis of
black module. (D) Correlation between the black module and the first principal component in immune landscape. The KM survival
curve for grouping patients based on the expression of signature genes selected in the pink and black modules in TCGA-ESCA
cohort (E) and GSE53624 cohort (F).
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immune status, to understand inconsistent immuno-
therapy responses, and to guide combinational ther-
apy under the dimension of TIME.

The TME contains a large number of ECM and infil-
trating immune cells, but how they interact with each
other is not clear. For example, cancer-associated mac-
rophages are associated with cancer metastasis and
poor prognosis. Studies have shown that TAMs can
induce the epithelial–mesenchymal transition (EMT) by
secretion of chemokine, thereby obtaining higher
migration and invasion ability [29]. Moreover, the TAM
phenotype could also form a positive feedback loop
that mediates breast cancer metastasis [30]. These are
evidence of how immune cells affect ECM. However,
multiple molecular and cytological interactions in a
tumour and even the same immune cells may perform
different functions in different tumour subtypes. This
study provided the IS of EC and revealed key modules
functioning by immune-related genes. We noticed
that the distribution of ISs in functional modules is dif-
ferent. It is worth noting that these functional mod-
ules act on immune-related pathways and act on
various signalling pathways such as the ECM.
Moreover, tumour heterogeneity may promote tumour
evolution and adaptation, thus becoming a major obs-
tacle in tumour treatment [31,32]. Considering the
complex immune function, a more in-depth descrip-
tion of the overall characteristics of the TIME will help
improve the level of individualized precision treat-
ment. We reported for the first time that there is sig-
nificant intra-class heterogeneity in ISs of EC,
conferring different prognostic outcomes. Taken
together, these findings alert the insufficiency of
therapeutic efficacy and prognosis prediction based
on a single immune index.

This study also revealed some key genes in the
immune microenvironment of EC. First, four genes
related to EC prognosis with potential translational
significance were discovered: BHLHE22, MXRA8, SLIT2
and SPON1. Interestingly, SLIT2 expression is downre-
gulated in EC, associating with poor prognosis [33]. A
previous study showed that miR-1179 promotes cell
invasion of ESCC through the SLIT2/ROBO1 axis [34]. In
other cancer types, SPON1 promotes the metastasis of
human osteosarcoma [35], while methylated BHLHE22/
CDO1/CELF4 panel could be used for endometrial can-
cer screening [36]. The association of these genes in
EC worth further validation by basic and clinical stud-
ies. In addition, we found NFE2L2 with high mutation
frequency, which is associated with poor prognosis of
EC [21]. How these genes predispose EC by affecting
the immune microenvironment needs further study.

In summary, we propose a reproducible EC-specific
IS and gene module with translational potential. We
revealed the impact of ISs on molecular and cyto-
logical components in immune system as well as an
intra-class heterogeneity of ISs. Therefore, a compre-
hensive assessment of the ISs in an individual EC sam-
ple is of great significance for understanding the
personalized TIME, eventually assisting and guiding a
more effective personalized immunotherapy.
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