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Purpose: To introduce and demonstrate a software library for time-optimal gradient 
waveform optimization with a wide range of applications. The software enables direct 
on-the-fly gradient waveform design on the scanner hardware for multiple vendors.
Methods: The open-source gradient optimization (GrOpt) toolbox was implemented 
in C with both Matlab and Python wrappers. The toolbox enables gradient waveforms 
to be generated based on a set of constraints that define the features and encodings for 
a given acquisition. The GrOpt optimization routine is based on the alternating direc-
tion method of multipliers (ADMM). Additional constraints enable error corrections 
to be added, or patient comfort and safety to be adressed. A range of applications and 
compute speed metrics are analyzed. Finally, the method is implemented and tested 
on scanners from different vendors.
Results: Time-optimal gradient waveforms for different pulse sequences and the 
constraints that define them are shown. Additionally, the ability to add, arbitrary mo-
tion (gradient moment) compensation or limit peripheral nerve stimulation is demon-
strated. There exists a trade-off between computation time and gradient raster time, 
but it was observed that acceptable gradient waveforms could be generated in 1-40 
ms. Gradient waveforms generated and run on the different scanners were function-
ally equivalent, and the images were comparable.
Conclusions: GrOpt is an open source toolbox that enables on-the-fly optimization 
of gradient waveform design, subject to a set of defined constraints. GrOpt was pre-
sented for a range of imaging applications, analyzed in terms of computational com-
plexity, and implemented to run on the scanner for a multi-vendor demonstration.
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1  |   INTRODUCTION

Gradient waveforms for Magnetic Resonance Imaging 
(MRI) have traditionally been designed using a combination 

of analytical and ad hoc methods. These methods work 
well for specific subsets of acquisition types, but usually 
need to be re-derived or re-designed on an application- 
specific basis. Additionally, as more performance or error 
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reduction is required for an acquisition, the analytical solu-
tion can grow to become very specific, difficult to solve, 
or impossible to provide a single optimal solution. The de-
termination of time-optimal gradient waveforms can vary 
widely from application to application, making it difficult 
to be confident in the selection of a waveform generation 
algorithm. Additionally, even when an analytically optimal 
solution is achievable, it may not be used in a sequence due 
to implementation overhead.

An alternative to this style of analytical or ad hoc method-
ology is to generate gradient waveforms via a numerical opti-
mization algorithm. With this approach to gradient waveform 
design, the goal is to define the ideal characteristics of the 
target gradient waveforms and enable algorithmic generation 
of the rasterized gradient waveforms. Previous works have 
demonstrated this type of optimization with a range of solv-
ers and applications, mostly showing the ability to generate 
more time-optimal gradient waveforms than what may have 
been produced with a standard ad hoc implementation. These 
works include general usage optimizations that are primarily 
controlled by gradient moment constraints,1-4 optimizations 
of flow and motion encoding waveforms,5-7 and optimizations 
of diffusion waveforms with different options for the reduc-
tion of coil heating,8 motion based errors,9 eddy current er-
rors,10,11 and errors due to concomitant fields.12-14

These previous works have shown the capabilities of numer-
ical optimization for gradient waveform design, demonstrating 
more time-efficient waveforms, or gradients that can reduce 
artifacts in the resulting images. However, existing work in this 
field has often been difficult to translate to real-world usage 
for multiple reasons. A principal reason is that these methods 
are often not sufficiently fast computationally to generate gra-
dient waveforms on-the-fly (ie, within 10s of milliseconds). 
For most sequences, the optimal gradient waveform is different 
for every unique combination of sequence parameters, such as 
resolution, FOV, bandwidth, and slice orientation. Therefore, 
on-the-fly optimization enables all protocol options to remain 
available as the waveforms can be updated as the user is edit-
ing the sequence on the scanner. Additionally, many previous 
implementations were either closed source, or the source code 
and applications were limited in scope, so their usage was lim-
ited to a small subset of MRI problems.

The goal of this work was to design an open source soft-
ware package that generates time-optimal gradient wave-
forms for a range of MRI protocols by providing a flexible 
set of input constraints to define the gradient waveforms. 
Additionally, constraints are made available that provide a 
framework to reduce imaging artifacts (eg, mitigate eddy 
currents) and increase patient comfort (eg, reduce pe-
ripheral nerve stimulation, PNS). These methods are also 
designed to solve the gradient waveform design problem 
using on-the-fly protocol realization in a clinical setting. 
The software is provided as the open source Gradient 

Optimization (GrOpt) toolbox available at www.github.
com/cmr-group​/gropt.

2  |   METHODS

GrOpt is a software package that takes as input a set of con-
straints that define a pulse sequence, then seeks to find a 
feasible set of gradient waveforms that satisfies those con-
straints. Additional objective functions can be added to the 
procedure, to maximize or minimize features of the output 
gradient waveforms, or to find the gradient waveforms that 
meet the given constraints in the shortest amount of time 
possible. Figure 1 provides an outline of the toolbox opera-
tions, where input constraints are given, and the optimization 
routine seeks a gradient waveform subject to the constraints 
within a specified tolerance. The optimization routines are 
written in C for maximum compatibility on multiple scan-
ner systems, easily compiling to C or C++ directly into se-
quences for vendor specific platforms. Additionally, Matlab 
and Python wrappers are provided for prototyping and visu-
alizing gradient waveforms. An example of the usage with 
the Python wrapper is shown in Figure 2, which shows how a 
diffusion encoding gradient waveform can be designed with 
GrOpt.

2.1  |  Constraints
The GrOpt toolbox uses a set of user-defined constraints to 
meet the targeted purpose of the pulse sequence. The most 
fundamental of these constraints are on gradient hardware and  
gradient zeroth moment 
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that any gradient waveform generated by the optimization are 
within scanner’s hardware limits. The gradient M⃗0 represents 
the gradient area and is used to control the most common 
sequence needs, such as slice selection rewinding, readout 
prewinding, phase encoding, spoiling, and/or gradient 
balancing.

Additional constraints available in the toolbox allow for 
further control of the output gradient waveforms. Constraints 
are available for any higher order gradient moment (
M⃗n,

[
mT msn

m

])
, which allows for full or partial moment 

nulling to reduce error due to motion (such as in flow- 
compensated encodings) or for motion encoding (such as in 
phase-contrast MRI). It is even possible, for example, to de-
sign gradient waveforms with non-zero M⃗1 and nulled M⃗2 for 
velocity-sensitive and acceleration-insensitive encoding.

Minimization and maximization terms may also be added to 
the optimization, allowing for waveforms to be found that are 
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optimized for these terms. For example, GrOpt implements a 
maximization of the diffusion b-value, allowing for the highest 
b-value to be found that fits within a given temporal footprint, 
while adhering to other constraints. Another example is the 
minimization of gradient duty cycle, allowing for waveforms 
to be produced that should result in the minimum possible duty 
cycle for a given set of constraints and sequence timings.

Another included constraint can be placed on eddy currents, 
thereby enabling the effects of any number of eddy current 
time constant responses to be suppressed. This can decrease the 
negative effects of eddy currents on data acquisition, such as 
image distortions in echo planar imaging (EPI). Additionally, 
peripheral nerve stimulation (PNS) can be modeled with var-
ious methods such as Schulte et al15 and Hebrank et al,16 both 
of which are implemented in GrOpt as constraints. This PNS 
constraint allows the maximum gradient slew rate to be used, 
and derated only as necessary for patient comfort and safety. 
Traditionally PNS is handled with a global slew rate derating, 
which can be substantially less time efficient. The GrOpt ap-
proach permits more time-optimal gradient waveform design, 
especially when compared to global slew rate derating. The 
constraints to the software are written in a modular fashion. 
This allows additional constraints to be easily added and ap-
pended to the optimization functions.

Slice obliquity is handled using either a “rotationally 
invariant” approach that derates the hardware limitations 
by 

√
3 and defines logical gradient waveforms compatible 

with all scan plane rotations; or using the “rotationally 
variant” approach that rotates the relevant constraints 
and solves for optimized gradient waveforms to define 
physical gradient waveforms that permit the full hard-
ware limits to be used. An example of this is shown in 
Supporting Information Figure S1. While most sequence 

design problems can be designed on an axis-by-axis basis, 
the software can also optimize all three waveforms simul-
taneously. This is necessary for certain constraints such as 
PNS, which is based on a combination of all three phys-
ical gradient axes to accurately predict and constrain the 
solution.

2.2  |  Optimization

The optimization is initialized with a gradient waveform 
array of ones, with fixed size N and raster time dt determined 
by the user. The formulation of the problem is of the form: 

where f (g⃗) is the objective function and may simply be f (g⃗)=0 
to define the optimization as a feasibility problem. ci(g⃗) rep-
resents the ith constraint, which can take several forms. In most 
cases ci can be represented as a matrix or vector multiplication 
and may have an offset value if the target value of the constraint 
is not zero (ti). bi represents the ith bound on the inequality con-
straint, thereby defining the tolerance of the solution. Smaller 
bounds will give a more precise solution, but may require more 
iterations to converge, introduce non-time-optimal trade-offs, 
or result in the inability to minimize the objective function.

The GrOpt routine is based on the alternating direction 
method of multipliers (ADMM),17 with modifications made 
to handle any number of constraints.18 This allows for quick 
updates of each constraint sub-problem with proximal map-
pings, which is particularly efficient for inequality constraints 

(1)
arg min

g⃗

f (g⃗)

subject to ||ci(g⃗)− ti
||≤bi i=1, … , n

F I G U R E  1   Flow chart showing the general operation of the GrOpt library. After getting user inputs, the optimization routine is run to generate 
acceptable waveforms. If the waveform is not possible, the routine may increase T, or change constraints as allowable to find an acceptable answer. 
Similarly, if a feasible answer is found, the optimization may try to lower T to find a more time optimal answer, as needed
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common to the MRI problems described in this work. To 
speed up the algorithm further, an adaptive relaxation method 
is used, which updates each constraints penalty weight and 
over-relaxation term every two iterations.19,20 Stopping cri-
teria are based on checks of feasibility of each constraint, as 
well as a conventional check on the convergence of the primal 
residual.20 If no feasible solution exists, or cannot be found 
by the optimization, the process is stopped after 20,000 it-
erations. Previous implementations of GrOpt7 used a simi-
lar optimization based on the Chambolle-Pock primal dual 

algorithm21 with a re-weighting scheme used to make sure 
constraints were met when possible. That solver produced 
similar results, but is slightly slower (Figure 5A), and re-
mains an optional solver in the software for comparison and 
backward compatibility with previous works.

The output gradient waveforms from the optimization have 
a fixed duration (T = dt*N). Therefore, to determine time-opti-
mal gradient waveforms an outer optimization is also required. 
Multiple solutions in the software exist to perform this search 
efficiently without requiring much additional compute time. 

F I G U R E  2   Sample usage of the GrOpt library in Python. Parameters for the desired waveform are entered: diffusion b-value maximization, 
hardware constraints, M0 nulling, and the timings related to the diffusion waveform. The optimization returns the desired waveform. The figure 
displays the gradient waveform, the slew rate of the waveform, and M0, M1, and M2 scaled to arbitrary units to compare the moment nulling 
properties
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This is done by searching different temporal durations (T) in a 
multi-threaded fashion and performing the initial search of T 
with higher dt to solve quickly, and using those high-dt wave-
forms to warm start the target dt final optimization.

2.3  |  Usage

The GrOpt toolbox is run by first specifying the maximum 
gradient amplitude (G⃗max) and maximum slew rate (S⃗max). 
A fixed gradient duration (T = N*dt) is required, so T and 
either dt or N must be entered as input. In practice, the user 
defines dt as either the scanner gradient raster time, or an 
integer multiple of it for easier interpolation. However, in 
this work N is used to investigate computational complexity 
more directly. Any number of gradient moment (M⃗n) con-
straints can then be added. The gradient moment constraints 
can limit the gradient moment of the entire waveform or 
any portion of the waveform. The latter is applicable when 
a discrete time-optimal gradient is needed within a larger 
waveform, for example, when designing a spoiler gradient 
after readout. Fixed gradient waveform intervals can also be 
pre-defined, such as with slice select gradients and readout 
gradients which are typically known a priori. Importantly, 
in these examples it is only necessary to define the gradi-
ent flat top (not the ramps). The optimization will find the 
time-optimal way to connect these flat top gradients to the 
adjacent gradients. This avoids ramping gradient waveforms 
to zero unnecessarily, which costs time. These constraints 
are designed primarily for the gradients outside of the slice 
select and readout gradients, though constraints could be 
written to better design these gradients as well. Figure 2 
shows an example use case of designing asymmetric diffu-
sion gradients, where the code is shown to create constraints 
and generate a waveform. Figure 3 gives a conceptual over-
view of how waveforms can be defined purely based on 
hardware and moment constraints. Figure 4 shows an ex-
ample of a gradient duty cycle minimizing waveform with a 
resultant gradient waveform shape that may not be obvious 
from conventional design approaches. The design target was 
a flow compensated phase encode gradient with a minimi-
zation term on gradient duty cycle 

�

Duty Cycle =
∑N

i=0
G2

i

NGmax

�
.  

Compared to simply derating gradient amplitude, GrOpt 
generates a waveform with the same temporal footprint and 
moments, but less gradient duty cycle.

2.4  |  Computational complexity analysis

Compute times were tested for a range of pulse sequence 
applications using a range of gradient waveform con-
straints. Execution times were measured while running the 

optimization routines in C, on a standard desktop computer 
(Intel Core i7-7700k) by averaging the duration of 100 in-
dividual calls to the optimization function. The operation is 
single threaded and uses minimal memory (<10 Mb).

2.4.1  |  Diffusion

Diffusion encoding gradient waveforms were optimized to 
eliminate gradient dead time (as can occur in spin echo EPI 
Diffusion Weighted Imaging (DWI) and reduce TE for higher 
SNR. The compute time was investigated relative to the 
choice of specified waveform discretization (N) and the type 
of gradient moment nulling (M2, M1 and/or M0). Compute 
times for designing time-optimal diffusion encoding gradient 
waveforms for a range of constraints on eddy current nulling 
were investigated. The eddy current constraints included no 
nulling and nulling of eddy current time constant λ = 80 ms 
and nulling multiple time constants λ = 40, 80 ms.

2.4.2  |  Phase contrast

Compute times for designing time-optimal phase-contrast 
MRI slice-selection and flow encoding gradients were also 
calculated. This gradient waveform design problem used a 
fixed and flat slice-select gradient (excluding intermediate 
gradient ramps), and all other gradients were designed with 
GrOpt. The effect of including a PNS constraint was also 
evaluated.15

2.5  |  Residual moments

Defining acceptable thresholds for residual gradient mo-
ments is important when using optimization approaches. 
These residual moments need to be specified as a tolerance 
in the optimization. The optimization ends when the gradi-
ent waveform meets the target gradient moments, within 
a small residual moment tolerance. The choice of residual 
effects compute time, where a larger residual moment re-
quires fewer iterations to reach an acceptable solution. 
However, a too large residual moment can cause imaging 
artifacts. Numerical simulations were performed to analyze 
the impact of residual gradient moments (due to non-zero 
convergence criteria) on intravoxel phase dispersion.22 The 
simulation evaluated the effect of small M0, M1, and M2 
residuals on data accuracy and apparent diffusion coeffi-
cient (ADC) in diffusion sequence. Additionally, the com-
putational time in relation to the allowed residual moment 
was measured for a motion compensated diffusion gradi-
ent waveform, with different amounts of allowed residual 
moments.



      |  3239LOECHER et al.

2.6  |  Imaging experiments

In order to demonstrate multi-vendor feasibility, GrOpt was 
integrated directly into diffusion pulse sequences for two 
vendor platforms (GE EPIC DV26.0R01 and Siemens IDEA 

VE11C) using their respective pulse sequence programing 
environments. The GE pulse sequence was also developed 
using the KS Foundation abstraction layer ( www.ksfou​ndati​
onepic.org).23 Both sequences filled in all of the diffusion 
gradients with waveforms generated by GrOpt, while using 

F I G U R E  3   A depiction of waveforms can be generated with constraints. Blue line represents gradients that the toolbox is generating via 
optimization, and red lines represent fixed slice select and readout gradients that were inputted as fixed into the toolbox. The top row shows the 
design of a simple bSSFP TR and moment constraints required. Bottom row shows the design of a fast spin echo train with flow compensated slice 
selects. The FSE echo train designed was shorter than a reference product sequence, despite the waveforms being able to be optimized analytically
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their respective conventional RF and EPI readout waveforms. 
The optimization was able to be run in real-time on the scan-
ner, allowing for protocol parameters to be changed and the 
waveforms to update in a completely integrated manner. This 
means that waveforms are able to be regenerated as imaging 
protcol changes are made that effect the optimization, such as 
changing resolution. The number of calls to the GrOpt func-
tion was recorded within the sequence.

Both sequences were used to acquire brain images in a sin-
gle volunteer with IRB-approved consent. The images were 
acquired with a 3T GE (MR750, GE Healthcare, Milwaukee, 
Wisconsin) and a 3T Siemens (Skyra, Siemens, Erlangen, 
Germany) using the GrOpt toolbox to design optimized 
diffusion encoding gradient waveforms for a scan protocol 
using 2.5 mm3 in-plane resolution, no parallel imaging, a 
full Fourier acquisition, and b-value = 1000 mm2∕s for a six- 
direction tensor diffusion encoding scheme. The waveforms 
and images were compared qualitatively.

3  |   RESULTS

3.1  |  Computational complexity analysis

Figure 5 shows compute times for a range of fixed N and 
various combinations of gradient moment nulling and eddy 
current time constant nulling. Figure 5B shows the results of 
a comparison of compute time with N, as well as the impact 
of motion compensation on the computation times. Similar 

compute times are seen for all levels of motion compensa-
tion, with small increases for additional motion constraints. 
Computation complexity ranged from (n0.90) to (n1.32).  
Figure 5C shows example gradient waveforms with dif-
ferent N and demonstrates that using smaller values can 
lead to <1  ms longer gradient waveforms for the same b-
value. Figure 5D expands on this and shows the minimum 
TE needed to achieve b-value = 1000 mm2/s. It is seen that 
for N = 64 the TEs were within 1ms of the shortest TE and 
with N = 128 the TEs were within 0.5 ms of the shortest TE. 
Figure 5E demonstrates the differences in compute times for 
a range of N and different eddy current nulling constraints for 
an M0 = 0 diffusion encoding gradient waveform.

Figure 6 shows several results for the GrOpt optimization 
of a phase-contrast sequence with and without a PNS con-
straint. Figure 6A shows the compute time in relation to N, 
where without a PNS constraint the computation complex-
ity was (n1.50) and with the PNS constraint the complexity 
was (n2.32). In all cases the choice of N had no effect on the 
minimum T required to meet the constraints (T = 3.42 ms 
for PNS constrained and T = 4.14 ms for the slew-rate der-
ated). Figure 6B shows the waveforms that were generated, 
and Figure 6C shows the PNS estimate for each waveform.

3.2  |  Residual moments

Figure 7 compares simulated ADC values for a range of 
residual moments. A ≤5% increase in the measured ADC 

F I G U R E  4   A flow compensated readout prewinding gradient with M0 = 11.74
mTms

m
 and M1 = 0

mTms
2

m
. A, Shows the fastest possible waveform. 

B, Shows the same waveform, but with Gmax derated to control the gradient duty cycle. C, Shows a GrOpt waveform with the same temporal 
footprint as (B), but created with a duty cycle minimization
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was observed when the residual M0 was on the order of 
10−2mT∕m × ms, or the residual M1 is on the order of 
10−4 mT∕m × ms2, or the residual M2 is on the order of 
10−5 mT∕m × ms3 (isocontour of Figure 7A-C). Figure 7D 
shows the impact of the allowed residual moment on compu-
tation time, where the compute time increased with smaller 
residual moments. As the moment constraining operation re-
mained the same, this difference in compute time is due to an 
increased number of iterations required (Figure 7E).

3.3  |  Imaging experiments

Figure 8 shows the GrOpt optimized diffusion encoding gra-
dient waveforms as designed on each vendor’s scanner and 
the resultant diffusion encoded magnitude image for the same 

volunteer. The gradient waveforms show some differences 
due to differences in the RF pulse durations and differences 
in the EPI readouts implemented by each vendor. GrOpt ac-
counts for these differences, to generate the time-optimal gra-
dient waveforms in both cases. The resultant images are well 
matched qualitatively. For reference, during typical modifica-
tion of protocol parameters (resolution, FOV, and undersam-
pling factor), the GrOpt library was called about 100 times. 
When designing a sequence from scratch and changing most 
protocol parameters, the library was called about 400 times.

4  |   DISCUSSION

The GrOpt toolbox can generate waveforms for a variety 
of applications with computational speeds that allow for 

F I G U R E  5   A, shows the compute time of diffusion gradient waveforms in relation to the number of computed gradient points. B, Shows the 
actual output waveforms from N = 512 and N = 64. C, Shows the TE that would be achieved for a given N. D, Shows the compute times in relation 
to N with M0 compensation and different eddy current nulling options
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on-the-fly usage on the scanner. The toolbox can lead to 
rapid development of gradient waveform designs, and allows 
for cross-vendor use. Computational times for various real-
world scenarios were investigated and it was seen that nearly 
time-optimal waveforms could be generated in 1-50 ms de-
pending on the application. This represents a 100-1000x in-
crease in compute time compared to values reported in the 
literature.

The analysis of diffusion encoding waveform compute 
time in relation to N, the number of moment constraints, and 
the number of eddy current constraints showed that diffusion 
gradient waveforms can be computed within 1 ms of optimal 
timings with N > 64. With N in the range of 64-128 this cor-
responds to gradient raster times of dt = 400-800 ms. The 
numerical simulations provided insight into the allowable 
moment residual that should be used to balance image ac-
curacy and compute times. These settings allowed for dif-
fusion gradient waveforms to be generated in approximately 
10-50 ms.

The analysis of PC-MRI encoding gradient waveforms 
demonstrated that the choice of gradient raster time had 
very little effect on the minimum achievable gradient dura-
tion with N > 32. For typical encoding gradients of duration 

1-10 ms, this corresponds to a gradient raster time dt = 10-
300  ms. These parameters allowed for the GrOpt toolbox 
to compute gradient waveforms within about 1-10 ms. This 
choice of gradient size (N) and raster time (dt) may need to 
be adjusted for longer gradients waveforms that encompass 
multiple sets of encodings, such a multiecho turbo-spin echo 
sequence.

With the addition of multiple constraints on the gradi-
ent waveform design problem, the convexity of the solution 
space becomes difficult to prove. Initial tests to investigate 
this question showed that randomized starts all produced the 
same waveform,24 however this is not a complete proof of 
convexity. Additionally, multiple works have shown that the 
ADMM style solvers used in this software package can, in 
many cases, be robust to solving non-convex problems, and 
will converge to the global minimum of the problem.25-27 The 
question of whether a waveform is truly time-optimal is dif-
ficult to answer. Brute-force approaches to the problem are 
computationally very expensive, particularly when arbitrarily 
shaped gradient waveforms are considered, and when more 
complicated measures such as eddy current response and 
PNS are introduced. Nevertheless, the GrOpt toolbox will 
produced the fastest possible gradient waveforms that it can 

F I G U R E  6   Flow gradient waveforms with M1 = 11.74
mTms

2

m
 corresponding to Venc = 100

cm

s
, Gmax = 80

mT

m
, and Smax = 200

T

ms
. A, shows the 

compute time of a flow gradient waveform in relation to the number of computed gradient points, with and without a PNS constraint. B, Shows the 
waveforms with and without the PNS constraint. C, shows plots of the PNS of both output waveforms
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find in its search, and at this point no waveform was seen that 
was not time-optimal to our knowledge.

Using GrOpt in individual sequences can involve using 
the toolbox to create the entire TR, or to generate specific 
blocks of a sequence interleaved with traditional designs. 
With the fast compute times, re-designing waveforms on 

the scanner as the protocol is edited is feasible, with lit-
tle addition latency in the user interface. The total time to 
design the gradient waveforms with GrOpt may include a 
search for the optimal timings, which typically requires 
multiple optimizations. GrOpt accelerates the outer-loop 
search using: (a) a coarse-to-fine dt to quickly refine the 

F I G U R E  8   Waveforms and magnitude images from the imaging experiments. Actual waveforms are plotted as exported from their respective 
Programing environments. Non-relevant/proprietary elements of the waveform are blocked out

F I G U R E  7   Numerical simulations showing the impact on measured ADC arising from intravoxel phase dispersion (signal loss) as a function 
of residual M0 and pixel size (A), residual M1 and intravoxel velocity gradients (B), and residual M2 and intravoxel acceleration gradients (C). ADC’ 
values that vary ≤5% compared to the simulated ADC (3 × 10−3mm2∕s) and b-value (1000 mm2∕s), are outlined in red. The compute time (D) and 
number of iterations (E) both increase with an increasing residual moment tolerance, which arises to due stricter moment convergence criteria
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initial gradient waveform timing; and (b) a multi-threaded 
search for a feasible T. The search time can be further re-
duced by storing pre-computed waveforms to warm start 
the optimization, particularly for protocols that are fre-
quently modified within a narrow range of parameters.

Future work for the GrOpt toolbox includes adding more 
constraint options to the package. This may enable limiting 
concomitant field terms, attenuating acoustic noise, or fur-
ther constraints on gradient heating limits. Additionally, the 
GrOpt toolbox has not been used to optimize readout trajec-
tories or slice-select gradients, which would allow for even 
more control over the optimization of entire sequence.

5  |   CONCLUSION

GrOpt is open source toolbox that enables on-the-fly optimi-
zation of gradient waveform design subject to a set of defined 
constraints. GrOpt was presented for a range of imaging ap-
plications, analyzed in terms of computational complexity, 
and implemented to run on the scanner for a multi-vendor 
demonstration.
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FIGURE S1 An overview of the methods for handling 
slice obliquity in GrOpt. “Logical coordinates” refer to the 
readout, phase encode, slice select directions. “Physical 
coordinates” refer to the fixed x, y, z directions of the scan-
ner gradient system. A, Shows the specific (example) con-
straints used to create a 2D bSSFP sequence. B, Example 
rotation matrix that transforms from logical coordinates to 
physical coordinates (in this case a 45

◦ rotation around the 
y-axis). C, Pulse sequence timing diagram used to define 

the constraint intervals. D, Gradient waveforms generated 
with Gmax and Smax derated by a “rotationally invariant” 
factor of 

√
3, which permits all rotations to remain within 

the full Gmax and Smax. E, An example where the full Gmax 
and Smax were used, which produces a feasible waveform 
in logical coordinates, but after rotation Gmax is exceeded 
(red arrow), making the waveform infeasible. F, An exam-
ple where the full Gmax and Smax were used, and the wave-
form was solved directly in the physical coordinate system 
by applying the rotation matrix to the constraints. This al-
lows for the full hardware limits to be used. The TRs for D, 
E, and F, are 6.30 ms (feasible), 5.50 ms (infeasible) and 
5.70 ms (feasible)
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