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Introduction
Sleep is an essential physiological process required for the sur-
vival and well-being. However, to date, the biological functions 
of sleep is understood fully are. Humans spend about one third 
of their life in sleeping.1 Sleep plays key roles in maintaining 
cellular homeostasis, energy conservation, metabolic waste 
clearance, and regulating immune functions.2 Quality sleep 
improves cognitive performance, vigilance, and psychological 
conditions.3 In humans, sleep has 2 phases: non-rapid eye 
movement (NREM); and rapid eye movement (REM). NREM 
sleep consists of: stage 1 (lightest phase of sleep and lasts for 
1-5 minutes); stage 2 (characterized by sleep spindles and sin-
gle long delta waves); stage 3 and 4 (Slow-Wave Sleep).4 
NREM sleep is followed by REM sleep, which is distinguished 
by irregular eye movements, decline of muscle tone, tendency 
to dream and transmission of low-voltage brain waves, versus 
the non-REM phase.5 By limiting neuronal oxidative damage, 
apoptosis, alterations in neural and cytoskeleton proteins, both 
NREM and REM sleep types are neuroprotective.6 NREM 
disruption is found to contribute to hippocampal dependent 
memory decline.7 However, because of the lifestyle modifica-
tions and night shift work schedules, the prevalence of REM 
sleep disruption is higher than NREM,8,9 as a result it has been 
linked to early ageing and in the progression of most of the 
neurodegenerative diseases (Figure 1).

Sleep disorders have become a global and increasing health 
concern. Millions of people worldwide suffer from sleep 

deprivation, sleep apnea and insomnia on daily basis.11,12 The 
prevalence of insufficient sleep time and sleep deprivation (SD) 
has increased.13 SD is frequently experienced because of medi-
cal conditions, sleep disorders, work pressure, social and domes-
tic responsibilities and lifestyle (eg, shift work, prolonged work 
hours, stress, and social media).14 Inadequate sleep or frag-
mented sleep alters the biochemical and physiological func-
tions and has been strongly linked to neurodegenerative,15 
metabolic,16 cardiovascular,17 and autoimmune diseases.18 
REM SD has deleterious effects on general health. While it 
affects most of the organs, it has a major impact on various 
regions of brain like hippocampus, cortex, striatum, hypothala-
mus, etc and affect their functions.15 REM SD has a major 
impact on brain development, cognitive functions, and long 
term potentiation.19,20 This has been confirmed by several 
studies that sleep deprivation induces apoptosis and oxidative 
stress in different regions of rat brain.21 Oxidative stress is 
known to be associated with the development of neurodegen-
erative diseases as the brain is more vulnerable to reactive oxy-
gen species (ROS) due to the high consumption of oxygen and 
lesser antioxidants defence.22 While chronic sleep deprivation 
in young, healthy volunteers increases appetite and energy con-
sumption, activates immune system and sympathetic tone; it 
decreases parasympathetic tone.23,24 Increased blood pressure, 
cortisol levels, and blood glucose levels are reported to be asso-
ciated with chronic sleep restricted individuals.25,26 Sleep 
restores the brain energy during active waking27 and clears the 
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metabolic waste from the central nervous system by regulating 
glymphatic system.28 Preclinical and clinical studies have 
shown that SD alters glymphatic clearance and results in the 
deposition of toxins like amyloid β (Aβ), α-synuclein and other 
aberrant proteins in brain.29-34 Interestingly, chronic SD also 
disrupts blood brain barrier cohesion and alters its permeabil-
ity.35 The combination of increased blood-brain barrier perme-
ability and reduced glymphatic clearance due to SD, predisposes 
neurodegenerative processes.35,36 Increased metabolic waste 
has been attributed to the impairment in brain function and 
development of diseases.37-40 Thus, sleep disorder or SD 
impairs biochemical and behavioral function in brain and 
evolve as risk factor for neurological disorders

Sleep Deprivation, Tryptophan, and Kynurenine 
Pathway
The essential amino acid tryptophan (TRP) is catabolised via 2 
distinct biochemical pathways: (1) the serotonin pathway (5%) 
and (2) the kynurenine pathway (KP) (the majority, 95%).41 The 
kynurenine pathway is a major regulator of the immune 
response.42 Tryptophan is converted to kynurenine by 1 of 3 rate-
limiting enzymes: indoleamine-2,3-dioxygenase-1 (IDO1), or 
indoleamine-2,3-di-oxygenase-2 like protein (IDO2), or trypto-
phan 2,3-dioxygenase (TDO). TDO is highly expressed in the 
liver and is activated in response to corticosteroid stress hormones, 
while IDO1 expression is activated by inflammatory stimuli such 
as Interferon gamma (IFN-γ), Tumor necrosis factor alpha 
(TNF-α), amyloid beta, etc.43 Sleep is important for maintaining 
inflammatory homeostatic functions and its loss is linked to the 
alterations in the immune response. Inflammation activates the 
kynurenine pathway, leading to increased production of 3-hydrox-
ykynurenine (3HK) and quinolinic acid (QUIN), major neuro-
toxic metabolites. Under physiological conditions, 40% of the 
kynurenine is produced within the brain, and 60% is taken up 
from the periphery through the blood brain barrier.44 SD triggers 
the activation of TDO through the increase of the stress hor-
mone, corticosterone, via hypothalamic-pituitary-adrenal (HPA) 
axis and IDO1 through inflammatory signalling (TNF-α, 

IFN-γ) leading to the catabolism of tryptophan.19,45,46 This 
increased production of kynurenine metabolites alters various 
neurotransmitter systems within the cortical and striatal 
regions.47-49 Kynurenine metabolites reduce dopamine levels in 
substantia nigra and in the striatum,48,50 acetylcholine in the cor-
tex,51,52 and gamma aminobutyric acid (GABA) in rat striatum 
and cortex of rat brains.47,53 Dysregulation of kynurenine metab-
olism associated with SD is known to impact cognitive function 
and to promote the development and progression of neurodegen-
eration.41,54,55 In rat model of chronic sleep deprivation, trypto-
phan (TRP) and kynurenine (KYN) are increased in plasma.56,57 
These peripheral tryptophan and kynurenine are taken up into 
the brain and used as extra substrate resulting in an overproduc-
tion of Kynurenic acid (KYNA) in the presynaptic neurons of 
hypothalamus, hippocampus, and cerebral cortex in SD rats.55 
SD alters the immune response resulting in increased levels of 
inflammatory mediators such as Interleukin 6 (IL-6), TNF-α, 
IFN-γ, and C-reactive protein (CRP).58-62 Increase in inflamma-
tory mediators activate IDO which metabolizes tryptophan to 
kynurenine (Figure 2). Increase in KYN/TRP ratio infers 
increased expression of IDO. KYN is further metabolized to 
3-hydroxykynurenine (3HK) by kynurenine monooxygenase 
(KMO), an enzyme also found up regulated in inflammatory 
conditions.63 Further, this leads to an increased production of the 
excitotoxin, quinolinic acid, by macrophages and activated micro-
glia.64-66 Imbalance between neurotoxic and neuroprotective and 
immune-modulator kynurenine pathway metabolites have been 
reported in many neurodegenerative diseases such as Alzheimer’s 
disease (AD), Parkinson’s disease (PD), Multiple sclerosis (MS), 
Amyotrophic lateral sclerosis (ALS), Huntington disease 
(HD).43,67-71 Increased kynurenine levels or catabolic enzyme 
activity are not the only mechanisms that determine the forma-
tion of KYNA in the brain. Accumulation of pro-oxidant factors 
after sleep deprivation also promotes non-enzymatic degradation 
of kynurenine to KYNA, which is a stable metabolite, and the 
enzymes responsible for its breakdown are absent in human.72,73 
This data indicates that sleep loss is associated with higher levels 
of inflammation and kynurenine metabolism is increasingly 
linked with inflammation and neurodegeneration.

Sleep Deprivation and Kynurenic Acid
Kynurenic acid is mainly produced by astrocytes within the 
central nervous system.74 Nanomolar levels of KYNA meas-
ured in the brain and cerebrospinal fluid of patients with schiz-
ophrenia.75,76 Animal studies have also shown an increased 
level of KYNA producing cognitive deficits,77 impairing audi-
tory sensory gating78 and reduction in the dopaminergic and 
glutamatergic neurotransmission.48,79 KYNA has been shown 
to prevent the excitotoxicity induced neurodegeneration when 
administered at lower concentrations exogenously.71 However, 
the central nervous system (CNS) concentration required to 
produce neuroprotection is still not clear.80 Dysfunctional 
KMO activity may directly increase KYNA level and this is 
recorded in the cerebrospinal fluid (CSF)81 and post-mortem 

Figure 1. Stages of sleep. Sleep is composed of 2 phases: Rapid Eye 

Movement sleep (REM), and the Non-REM sleep (NREM). The NREM 

phase consists of 4 stages: Stage 1, which is transition from being awake 

to falling asleep; Stage 2, the period of light sleep during which the eyes 

movements stop, Stages 3 and 4, which are also called Slow Wave Sleep 

(SWS) (Reproduced with permission from Bernard10).
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brains of patients with schizophrenia and bipolar disorder.76,82 
The impact of a change in KYNA levels on cognitive function 
has been extensively studied as it blocks N-methyl-d-aspartate 
(NMDA) and affects human cortical development,83 desensi-
tizes α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA) receptors84 and inhibits α7 nicotinic acetylcholine 
(α7nACh) receptors.85 Increased KYNA levels in the brain are 
associated with increased cognitive deficits, whereas decreased 
KYNA levels, have been reported to improve learning and 

memory because they impair both glutamatergic and choliner-
gic transmission.86,87 An increase in the levels of KYNA in the 
presynaptic area inhibits extra synaptic NMDA receptors, nic-
otinic acetylcholine receptors and AMPA receptor-mediated 
currents.44,84,88 This results in cognitive decline and long term 
potentiation in rodents.89 At nanomolar concentrations, 
KYNA disrupts hippocampus-based memory in rodents.86,87 A 
decrease in the brain KYNA by pharmacological interventions, 
ameliorated the cognitive functions in rats.87 KYNA alters 

Figure 2. Relationship between sleep deprivation, hypothalamic-pituitary-adrenal (HPA) axis and tryptophan metabolism.
Abbreviations: IDO1, indoleamine-2,3-dioxygenase; IDO2, indoleamine-2,3-di-oxygenase-like protein; IFN-γ, interferon gamma; IL-1β, interleukin-1β; IL-6, interleukin-6; 
HPA, hypothalamic-pituitary-adrenal; KATs, kynurenine aminotransferases; KMO, kynurenine monooxygenase; TDO, tryptophan 2,3-dioxygenase; TNF-α, tumor necrosis 
factor-α.
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acetylcholine and glutamate which are critically involved in 
learning and memory, sleep dependent synaptic plasticity, and 
regulation of circadian rhythm.90-93 Also, increased KYNA 
level restrains dopamine release into the synaptic cleft.48 
Elevated levels of KYNA in the brainstem, cortex, and hip-
pocampus have been found to impair contextual memory and 
disrupt the sleep wake cycle in rodents.94 Exogenous adminis-
tration of KYNA was shown to impair rat performance in the 
behavioral paradigms like open-field, and Morris water-maze 
tests.86,95 Decline in glutamate levels have been associated with 
age related cognitive decline.96 Recently it was found that sleep 
deprivation impacts the hippocampal and cortical levels of 
KYNA in sex dependent manner.19 Increased levels of KYNA 
in hippocampus was found in male rats after sleep deprivation 
results in cognitive decline whereas female SD rats didn’t show 
any impairment in memory.19,94 This indicates that sex hor-
mones also play an important role in the metabolism of trypto-
phan. Further, 96 hours SD in rats showed to suppresses 
neurogenesis in dentate gyrus region of hippocampus, which 
has been attributed to the accumulation of KYNA in the hip-
pocampus.97,98 These evidences strengthen the correlation 
between increased levels of KYNA and sleep deprivation which 
might promote the progression of neurodegenerative diseases.

Sleep Deprivation and Serotonin
Tryptophan is the unique precursor for the biosynthesis of 
serotonin and melatonin which both play key regulating roles 
on the sleep-wake cycle. Melatonin and its analogs have been 
used for the treatment of various sleep disorders for many 
years.99-101 Serotonergic system is susceptible to SD. For exam-
ple, SD for 1 night exerts an immediate but short-lived antide-
pressant effect which may be due to a transient increase in 
dopamine and serotonin metabolites.102,103 Levels of extracel-
lular serotonin are highest during waking, lower in slow-wave 
sleep and lowest in REM sleep in all regions of brain including 
the hippocampus and cortex.103,104 This effect is, however, short 
lasting. SD stimulates the suprachiasmatic nucleus (SCN) and 
stimulates the release of serotonin in hamster.105 Toru et  al 
reported an increase in the levels of 5-hydroxyindoleacetic acid 
(5-HIAA), the precursor of serotonin in the dorsal raphe 
nucleus and thalamus of 24 hour SD rats.106 Also, total SD 
increases the mean firing rate of serotonergic neurons in the 
dorsal raphe nucleus in cats.107 Chronic sleep restriction desen-
sitizes Serotonin1A receptors,108 inactivation of Serotonin1A 
receptors alters synaptic plasticity and impairs learning and 
memory.109 In contrast, Bjorvatn et al, reported that 8 hours SD 
does not increase the levels of extracellular serotonin in hip-
pocampus or cortex.110

Sleep Deprivation and Melatonin
Melatonin is the main hormone secreted by pineal gland hav-
ing a critical role in circadian rhythm.111 Melatonin is synthe-
sized from serotonin via acetylation in the presence of enzyme 
N-acetyl transferase (NAT). The activity of NAT at pineal 

gland is dependent on the noradrenergic input received from 
nervi conarii. Increase in the activity of nervi conarii initiated 
by the suprachiasmatic nucleus of the hypothalamus stimulates 
the synthesis of melatonin during night time.112 Day time mel-
atonin levels are low. Optimal levels of melatonin is a powerful 
free-radical scavenger and combats oxidative stress.113 
Melatonin improves sleep efficacy114 and enhances long term 
memory.115 Decrease in melatonin have been related to insom-
nia and sleep disorders in elderly people.116 Total sleep depriva-
tion for 72 hours in mice decreases plasma melatonin level 
which results in increased expression of inflammatory cytokines 
and reduced antioxidants.117 Similarly, a decrease in melatonin 
production was observed in patients suffering from insom-
nia.116 Chronic decrease in melatonin was found in night time 
shift workers.118 In a clinical study, it was found that melatonin 
excretion increases in healthy males subjected to sleep depriva-
tion by exposing them to white light.119 Exogenous adminis-
tration of melatonin inhibits inflammatory mediators and 
increase the reduced glutathione levels in locus coeruleus 
nucleus in sleep deprived mice,120 reduces oxidative stress and 
improves memory consolidation in SD rats.121 Melatonin has 
also been found to be efficacious for sleep disorders in children 
with autism.122 Oral administration of melatonin has also 
shown to improve the sleep quality and increase the antioxi-
dant capacity in patients with fibromyalgia.123 These data indi-
cate the involvement of sleep deprivation in the metabolism of 
the melatonin which results in activation of inflammatory 
mediators and memory consolidation.

Sleep Deprivation and Hypothalamic-Pituitary-
Adrenal Axis
Hypothalamic-pituitary-adrenal axis is responsible for regula-
tion of the physiological response to stress.124,125 Stress stimuli 
induce the release of corticotropin-releasing hormone (CRH) 
from the paraventricular nucleus region of the hypothalamus. 
CRH triggers the release of adrenocorticotropic hormone 
(ACTH) from the pituitary gland. ACTH stimulates the adre-
nal cortex to release glucocorticoids (cortisol in humans, corti-
costerone in animals).126,127 Sleep plays a key role in modulating 
stress reactivity of the HPA axis.128 Preclinical and clinical 
studies have confirmed that the potential mechanism by which 
SD modulates the HPA axis is by increasing the levels of glu-
cocorticoids.129-132 An increase in the levels of cortisol have 
been found in children with lower sleep efficiency133,134 and in 
healthy SD adults.130 Similarly, higher levels of glucocorticoids 
have been found in sleep deprived rodents and healthy young 
females.135-137 Higher levels of glucocorticoids in humans138 
and animals139 during SD have an impact on KP metabolism.46 
Increased corticosterone increases KP metabolism and leads to 
mass production of neurotoxic metabolites KYNA, 3HK and 
QUIN in brain and periphery.140,141 Stress influences KP 
metabolism by activation of the key enzyme TDO.142 Stress in 
pregnancy not only affects the development of the fetal brain 
but also increase the risk of offspring developing psychiatric 
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disorders such as schizophrenia and depression143 which may 
be attributed to increase in the levels of KYNA.75 This sleep 
deprivation activates HPA axis and increased levels of the stress 
hormones play a crucial role in neurodegeneration by increas-
ing the neurotoxic metabolites.

Conclusion
Sleep regulates the immune and endocrine systems, helps to 
encounter deleterious stimuli, improves central nervous system 
functioning and reduces the metabolic wastes. It has an essential 
role in learning and memory and synaptic plasticity formation. 
Sleep deprivation precipitates neurodegenerative diseases such 
as AD, PD, HD, and motor neuron diseases. Tryptophan is 
metabolized by majorly via kynurenine pathway. However inad-
equate sleep or sleep deprivation increases the expression of key 
enzymes such as TDO and IDO resulting in increased levels of 
KP metabolites such as KYNA, 3HK, and quinolinic acid which 
participate in the progression of neurodegenerative diseases. 
Exogenous administration of melatonin reduces the neuroin-
flammation and improves memory consolidation. Also, IDO1, 
and TDO enzymes can be potential targets in correcting sleep 
disorders and sleep deprivation induced neurodegeneration.
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