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Abstract

In this work we present a framework for blood cholesterol levels prediction from genotype

data. The predictor is based on an algorithm for cholesterol metabolism simulation available

in literature, implemented and optimized by our group in the R language. The main weak-

ness of the former simulation algorithm was the need of experimental data to simulate muta-

tions in genes altering the cholesterol metabolism. This caveat strongly limited the

application of the model in the clinical practice. In this work we present how this limitation

could be bypassed thanks to an optimization of model parameters based on patient choles-

terol levels retrieved from literature. Prediction performance has been assessed taking into

consideration several scoring indices currently used for performance evaluation of machine

learning methods. Our assessment shows how the optimization phase improved model per-

formance, compared to the original version available in literature.

Introduction

Recent exome-wide association studies [1] started to shed light on the complex genomic archi-

tecture behind the regulation of blood cholesterol levels in humans. Reliable tools to predict

human cholesterol levels from genotype are not available yet. The huge number of genes

involved in the regulation of this trait and the complex interaction with environmental factors

as diet, gender and age make modelling cholesterol levels a difficult task. However, particular

situations exist where a single mutation is related to significant variations of cholesterol levels.

Example are damaging mutations on genes involved in hepatic uptake of Low Density Lipo-

protein (LDL), as the Low Density Lipoprotein Receptor (LDLR) gene, causing familial hyper-

cholesterolemia characterized by elevated levels of LDL and total plasma cholesterol but with

normal concentrations of triglycerides [2]. Other processes involved in cholesterol metabolism

are affected by genetic mutations, with a wide range of phenotypes depending on the gene

involved, like marked High Density Lipoprotein (HDL) cholesterol levels deficiency as seen in

patients affected by Tangier disease [3]. The aim of this work is to test the reliability of a

modelling approach aimed to predict cholesterol levels relying on patient’s genotype data only.

Different tools have been developed for blood lipid levels prediction, some of them are
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regression methods based on a set of variables representing patient genotypes (e.g. presence or

absence of SNPs associated to lipid traits)[4] and phenotype (e.g. Body Mass Index, gender,

age, etc.). These methods require a huge amount of data for training and test, with predictions

having low correlation to lipid profiles [5]. Other research groups have developed tools that

are able to predict a familial hypercholesterolemia phenotype from LDLR missense mutations,

but not the range of blood lipid values [6]. A different strategy is to develop an in silico mathe-

matical model, that represents human cholesterol metabolism, simulate the effect of a muta-

tion and take the response of the model as predicted levels of cholesterol. Effective way to

simulate in silico metabolism are dynamic models. In this kind of simulations, the develop-

ment of the system in time is computed through a set of ordinary differential equations, able to

simulate the variations of chemical species concentration. Several information are required for

the development of these models: interactions between the chemical species involved in the

biological process, kinetic parameters associated to chemical reactions occurring in the system

and its initial state. The simulation of a biological perturbation could be obtained by modifying

model parameters (e.g. decreasing kinetic rates) and observing variations occurring in the sys-

tem [7]. Several in silico models simulating cholesterol metabolism have been proposed so far,

both for human and animal models [8]. A recent review [8] has described a set of published

mathematical models, based on differential equations, which simulate cholesterol metabolism

at different levels. Some of the presented methods were focused on specific reactions, as endo-

cytosis or excretion of lipoproteins by hepatocytes, other attempted to model cholesterol

metabolism at a whole body scale. One of these models, published in literature by van de Pas

and colleagues in 2012 [9], was developed on the basis of genes and related metabolic reactions

that have a relevant role on the control of human cholesterol homeostasis. In this work we

decided to adopt an algorithm based on this mathematical model to predict cholesterol levels.

This choice was motivated by different factors, from one hand this method has passed a valida-

tion process both in the original publication [9] and in a following review by different authors

[8]. On the other hand this model is gene based and computes levels of LDL and HDL choles-

terol induced by a mutation, making it suitable for the prediction of blood lipid levels from

genotype data. This physiologically based kinetic model [9] is based on differential equations,

computing the flow of cholesterol in different body organs. The whole process is regulated by

a set of rates, each one related to a gene that has a key role in cholesterol metabolism. Simula-

tion of mutations effects depends on reducing rates (fmut) estimated from wet lab experiments.

This kind of information is usually not easily accessible, strongly limiting the usability of the

model. In this work we implemented and optimized the framework for blood cholesterol levels

prediction making it able to perform reliable predictions when only patient’s genotype data

are available. The model has been improved through a training phase, in which reducing rates

(fmut) were estimated from phenotype data of patients affected by mutations on key regulatory

genes of cholesterol metabolism. Assessment measures confirmed how the optimized model

presents improved performance, reducing the error between experimental and predicted data,

compared to the original version available in literature [9].

Materials and methods

In silico kinetic model for cholesterol levels prediction

An available in silico kinetic model [9] has been used as basis for predicting plasma cholesterol

concentrations in humans. The kinetic model was developed to simulate cholesterol levels for

a reference man of 70 kg. The model is composed of 8 pools, representing main sites of choles-

terol storage in the human body (Fig 1). These pools can be grouped in 4 main entities corre-

sponding to plasma, intestine, liver and periphery. Each cholesterol pool is modeled by a
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differential equation, composed by a set of rates moving cholesterol from or to a different one.

These pools are connected by 21 kinetic rates, each one representing the main gene responsible

of regulating that specific biochemical reaction (Table 1).

Rates depend on kinetic constants, organ volumes, body weight and pool cholesterol

concentrations. In the original model, all parameters have been computed from data pub-

lished in literature [9]. The model was calibrated to immediately reach a steady state, a sta-

ble equilibrium in which each compartment has a constant cholesterol concentration in

time. To simulate a mutation affecting the activity of a gene, a set of rate reduction parame-

ters (fmut), each one in the interval [0, 1], multiplies the standard rates to represent the effect

of the mutated genes. These values were computed on the basis of experimental data avail-

able in literature. Example is the value of the fmut related to mutations affecting the gene

CYP7A1 involved in byle acid synthesis, where the rate reduction parameter was computed

as the ratio of bile acids contents in the stools of patients carring the mutation over controls

[9].

These kind of perturbations force a re-tuning of the system, moving from the original

steady state to a new one, where blood cholesterol profiles were comparable to the real values

detected in patients affected by that particular mutation.

Fig 1. Conceptual model for pathways and genes determining cholesterol plasma levels used van de Pas and colleagues [9], [10]. Process numbers stand

for: 1, hepatic cholesterol synthesis (DHCR7); 2, peripheral cholesterol synthesis(DHCR7); 3, intestinal cholesterol synthesis (DHCR7); 4, dietary cholesterol

intake (NPC1L1); 5, hepatic uptake of cholesterol from LDL (LDLR,APOB,APOE); 6, VLDL-C secretion (MTTP); 7, peripheral uptake of cholesterol from

LDL (LDLR,APOB,APOE); 8, peripheral cholesterol transport to HDL (ABCA1); 9, HDL-associated cholesterol esterification (LCAT); 10, hepatic HDL-CE

uptake (SCARB1); 11, intestinal chylomicron cholesterol secretion (MTTP); 12, peripheral cholesterol loss; 13, hepatic HDL-FC uptake (MTTP); 14, biliary

cholesterol excretion (ABCG8,NPC1L1); 15, fecal cholesterol excretion; 16, intestinal cholesterol transport to HDL (ABCA1); 17, hepatic cholesterol transport

to HDL (ABCA1); 18, hepatic cholesterol catabolism (CYP7A1); 19, hepatic cholesterol esterification (SOAT2); 20, intestinal cholesterol esterification

(SOAT2); and 21, CE transfer from HDL to LDL (CETP).

https://doi.org/10.1371/journal.pone.0227191.g001

In silico prediction of blood cholesterol levels from genotype data

PLOS ONE | https://doi.org/10.1371/journal.pone.0227191 February 10, 2020 3 / 15

https://doi.org/10.1371/journal.pone.0227191.g001
https://doi.org/10.1371/journal.pone.0227191


Model implementation

The algorithm of the available physiologically based kinetic model [8], was implemented in R

language [11]. The deSolve package [12] was used for solving differential equations.

New fmut values have been obtained thanks to a training procedure exploiting a dataset

composed of cholesterol levels and genotypes of mutated patients (S1 Table). This operation

required the usage of the Levenberg-Marquardt algorithm as implemented in the Minpack.lm
package [13].

The R scripts are publicly available from the GitHub repository at URL: https://github.com/

BioComputingUP/Cholesterol-model

Training phase

To improve performance in predicting genetic mutations’ effect on cholesterol levels, fmut

parameters, each one related to a particular gene mutation and rates of the model, have been

trained on phenotype data of a dataset of patients, retrieved from literature. The Levenberg-

Marquardt minimization method has been used to estimate the fmut parameters able to mini-

mize the difference between predicted and experimentally measured levels of HDL and LDL,

divided by the control, intended as level of cholesterol of the model when no mutation is pres-

ent (Eqs 1 and 2). Exceptions are patients affected by mutations on the DHCR7 genes where

only total cholesterol (TC) levels were found in literature. In this case the difference between

Table 1. Biological process and genes associated to each rate of the model.

rate Biological process gene

1 hepatic cholesterol synthesis DHCR7

2 peripheral cholesterol synthesis DHCR7

3 intestinal cholesterol synthesis DHCR7

4 dietary cholesterol intake NPC1L1

5 hepatic uptake of cholesterol from LDL LDLR, APOB, APOE

6 VLDL-C secretion MTTP

7 peripheral uptake of cholesterol from LDL LDLR, APOB, APOE

8 peripheral cholesterol transport to HDL ABCA

9 HDL-associated cholesterol esterification LCAT

10 hepatic HDL-CE uptake SCARB1

11 intestinal chylomicron cholesterol secretion MTTP

12 peripheral cholesterol loss

13 hepatic HDL-FC uptake MTTP

14 biliary cholesterol excretion ABCG8, NPC1L1

15 fecal cholesterol excretion

16 intestinal cholesterol transport to HDL ABCA1

17 hepatic cholesterol transport to HDL ABCA1

18 hepatic cholesterol catabolism CYP7A1

19 hepatic cholesterol esterification SOAT2

20 intestinal cholesterol esterification SOAT2

21 CE transfer from HDL to LDL CETP

Reaction rates present in the model and the associated biological process they represent, also the main genes involved

in the process are reported [9], [10].

https://doi.org/10.1371/journal.pone.0227191.t001
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real and predicted total cholesterol rate was taken in account (Eq 3).

DHDL ¼
HDLexperimental

HDLcontrol
�
HDLpredicted

HDLcontrol
ð1Þ

DLDL ¼
LDLexperimental

LDLcontrol
�
LDLpredicted

LDLcontrol
ð2Þ

DTC ¼
TCexperimental

TCcontrol
�
TCpredicted

TCcontrol
ð3Þ

The optimized fmut parameters are reported in Table 2. The values of the first column are

the result of a training procedure, which is based on a dataset of patients and regulated by the

sensitivity of the rates involved. This is not true for the fmut based on experimentally deter-

mined variables, since they were computed on the basis of specific molecule concentrations

[9]. The consequence of these two different strategies of parameter estimation is reflected by

the difference between the fmut associated to the same gene in the two columns. Example is the

CYP7A1 gene: the fmut estimated by van de Pas and coauthors is equal to 0.05, as the value of

bile acids in the stools of patients compared to controls. On the contrary, the corresponding

value is higher after an optimization procedure, which has been influenced by the sensitivity of

that rate and the cholesterol levels of the training set elements.

Training set

The training set is represented by a custom dataset of patients affected by single mutations

(either in homozygous or heterozygous form), in one of the key genes regulating cholesterol

metabolism (Fig 2). For each patient the levels of HDL, LDL or total cholesterol and the causa-

tive mutation were extracted from literature (S1 Table). Each gene is covered by a different

number of individuals due to the relative abundance of works in literature (Table 3). Special

cases are the CETP gene, where only information regarding the mean levels of blood choles-

terol were found in literature and the DHCR7 gene, where only the levels of blood total choles-

terol were found. The training set has been divided in two sections (Table 3). The first group is

represented by hypercholesterolemic patients with mutations affecting a set of genes involved

in the development of Autosomal Dominant Hypercholesterolemia [14]: LDLR, APOB and

Table 2. Optimized fmut parameters and related genes.

Gene Reggiani et al fmut van de Pas et al 2012 fmut

LDLR 0.58 0.38

APOB 0.9 0.31

APOB (hom.) 0.55 0.32

ABCA1 0.53 0.41

APOE 0.72 0.45

CETP 0.43 0.65

LCAT 0.48 0.62

LCAT (hom.) 1 0

DHCR7 0 0

CYP7A1 0.81 0.05

Genes represented in the training, test set and related fmut as computed by the optimization procedure or by using

experimental variables, as reported by van de Pas and colleagues[9]

https://doi.org/10.1371/journal.pone.0227191.t002
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APOE genes, represented by reaction 5 and 7 of the model (Table 1). The second part of the

dataset is composed of patients with damaging mutations on 5 different genes: ABCA1, CETP,

LCAT, DHCR7 and CYP7A1 (affected rates are shown in Table 1). Patients of the Autosomal

Dominant Hypercholesterolemia dataset are characterized by high levels of LDL cholesterol,

while the second part of the dataset is composed by different ranges of HDL and LDL, depend-

ing on the gene affected by the mutation (Fig 2).

Fig 2. Training set patients cholesterol levels. Boxplot of HDL and LDL cholesterol levels of the patients composing the training set. From left to right:

cholesterol levels of the model at the steady state, patients affected by Autosomal Dominant Hypercholesterolemia (with high levels of LDL and low HDL)

and patients affected by other disease altering lipoprotein metabolism.

https://doi.org/10.1371/journal.pone.0227191.g002
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Test phase

Prediction performance was tested on a dataset retrieved from literature [9]. The dataset is the

same one used to test performance of the former version of the model. This test set has been

used in order to highlight performance comparison between the versions of the algorithm.

The effect of a genetic mutation was simulated for each individual of the dataset until a steady

state was reached (fixed threshold: 1000 days). Predicted HDL, LDL and total cholesterol were

than compared to experimental data.

Test set

Test set is composed by patients affected by 10 mutations. All mutations affect genes present in

the training set of this work. The first group of mutations maps on the LDLR, APOB and

APOE genes, involved in hepatic cholesterol uptake. Patients affected by this kind of mutations

have high levels of LDL and total cholesterol. Genetic mutations affecting the other genes of

the dataset have different effects on lipid profiles. Mutations on the ABCA1 gene can cause

marked HDL cholesterol levels deficiency as reported for different diseases like hypoalphali-

proproteinemia or Tangier disease [3]. CETP is a protein involved in the transport of choles-

terol esters from HDL to LDL, deficiency of this protein can cause a marked increase of HDL

levels [3]. LCAT is a gene involved in cholesterol esterification in HDL particles, mutation on

this gene can cause LCAT deficiency, characterized by low levels of HDL and LDL cholesterol

[3]. Patients with mutations in heterozygous or homozygous form has been included in the

training set. DHCR7 gene is responsible for the last step of the cholesterol biosynthesis path-

way. Reduced enzyme activity cause low levels of blood cholesterol, as reported in patients

affected by the Smith-Lemli-Opitz syndrome[15]. CYP7A1 gene is involved in cholesterol

catabolism and bile acids synthesis, mutations affecting this gene cause an increase of total,

hepatic cholesterol and a decrease in bile acids secretion [16].

Results and discussion

Performance assessment

The assessment approach used in this work was influenced by the methods used for the evalua-

tion of tools predicting the effect of variants on continuous phenotypes [17]. Model perfor-

mance has been evaluated in terms of distance and correlation, measuring the deviation from

Table 3. Training set composition.

Dataset Gene Patients Mutations type rate

Autosomal Dominant Hypercholesterolemia LDLR 13 9 heterozygous 5, 7

APOB 7 1 heterozygous 5, 7

APOB (hom) 1 1 homozygous 5, 7

APOE 12 2 heterozygous 5, 7

Other disease altering lipoprotein metabolism ABCA1 7 3 6 heterozygous, 1 compound heterozygous 8, 16, 17

CETP 1 1 heterozygous 21

LCAT 17 2 heterozygous 9

LCAT (hom) 7 4 homozygous 9

CYP7A1 2 1 heterozygous 18

Disease, gene, number of patients with a mutation in that gene, number of different mutations, type of mutation (heterozygous, homozygous or compound

heterozygous), rates representing that gene in the model

https://doi.org/10.1371/journal.pone.0227191.t003
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experimental values while assessing model capability to predict a decrease or increase of cho-

lesterol levels. The analysis has been conducted at two levels. In the first part of the assessment,

predictions were evaluated at the level of the single gene to understand if prediction error was

homogeneous or significantly different for some of the mutations. The second part of the

assessment focused on the overall performance of the predictor. In the first phase, the analysis

was focused on assessing model performance in terms of prediction error computed on each

element (i) of the test set: the deviation was evaluated by computing the difference between

predicted and experimental data, in terms of rate of cholesterol levels (CL), for TC, HDL or

LDL, in case and control (Eq 4).

Error ið Þ ¼
CLpredictedðiÞ
CLcontrol

�
CLexperimentalðiÞ

CLexperimental controlðiÞ
ð4Þ

To evaluate the magnitude of the error, compared to real values, this measure (Eq 4) was

divided by the corresponding experimental value and multiplied by 100 (Eq 5).

Error ið Þ% ¼
ErrorðiÞ

CLexperimentalðiÞ
CLexperimental controlðiÞ

� 100 ð5Þ

This analysis was aimed to highlight mutation effects that where under or over-predicted.

In the second part of the assessment, model performance has been evaluated in terms of

correlation and error measures on the whole dataset. Correlation measures used for the assess-

ment were Pearson (r or PCC) and Kendall’s tau (τ or KCC) correlation coefficients (Eqs 6

and 7).

r ¼
n
Pn

i¼1
yi�yi � ð

Pn
i¼1
yiÞð
Pn

i¼1
�yiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½n
Xn

i¼1
y2
i � ð

Pn
i¼1
yiÞ

2
�½n
Xn

i¼1
�y2
i � ð

Pn
i¼1

�yiÞ
2
�

q ð6Þ

t ¼
2

nðn � 1Þ
n
P

i<jsgnðxi � xjÞsgn yi � yj
� �

ð7Þ

The PCC has been used to evaluate the correlation between real and predicted data as con-

tinuous measures, while KCC estimated the conservation of the order of magnitude of the

experimental cholesterol levels in predicted ones.

To better understand the amount of variability described by the model compared to the var-

iability inside the data, the R2 index was used (Eq 8).

R2 ¼ 1 �

P
ðyi � ŷiÞ

2

P
ðyi � �yÞ2

ð8Þ

RMSE (Root Mean Squared Error) has been used to evaluate if the method predicted cho-

lesterol levels with huge deviation from real ones (Eq 9).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
PN

i¼1
ErrorðiÞÞ2

N

s

ð9Þ

The MAE (Mean Absolute Error) has been computed as the mean absolute error between

model predictions and experimental values (Eq 10).

MAE ¼
PN

i¼1
jErrorðiÞj
N

ð10Þ
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A bootstrap procedure has been used to evaluate the robustness of the performance mea-

sures presented in this work: the probability of obtaining the same or better scores with a ran-

dom shuffle of model predictions, as seen in [17], [18]. In particular each index has been

computed 10000 times, considering either the rate of HDL, LDL or total cholesterol of all the

elements of the test set each time, on the vector of model predictions in a random order and

the corresponding vector of experimental values. From the resulting distribution of scores, the

probability (p-value) of obtaining a score greater or equal to the real one was computed. The

only exception was the RMSE index, in this case the probability of obtaining a value lower or

equal to the score computed in the original assessment was calculated. All indices with a p-

value lower than 0.05 were considered as statistically significant.

A sensitivity analysis was performed on a set of rates, corresponding to genes represented

in the test set. The aim of this analysis was to understand the effect of a perturbation of specific

model parameters on the output [7]. In this case, we decreased rates associated to genes repre-

sented in the test set, using a reducing factor [0.1, 1] and measured model cholesterol levels

when a steady state was reached.

Performance assessment on single genes mutations

The first part of the assessment was aimed to understand how the model performs on the sin-

gle mutations represented in the test set. This type of analysis highlighted cases where the

model overestimated or underestimated cholesterol levels, respectively called positive or nega-

tive errors. The error represents the increase or decrease of cholesterol in case relative to con-

trols (Eqs 1, 2 and 3), which is not observed in experimental data. The errors were divided by

real data and converted to percentages as reported in Table 4. The standard deviation of model

predictions, computed as the standard deviation of the predicted cholesterol levels for the ele-

ments of the training set given a mutated gene, has been reported in Table 5. As already intro-

duced, the datasets of patients have been divided in two sections. The first group of elements

of the test set is composed by patients affected by damaging mutations on genes that have a

role in the onset of the Autosomal Dominant Hypercholesterolemia: LDLR, APOB and APOE.

The main effect of simulating these mutations is an increase of blood cholesterol levels of LDL

and decrease of HDL (Table 5), as observed in real cases [19]. The algorithm predicted choles-

terol levels caused by mutations in LDLR and APOB with a reduced error intervals: [-35.3%,

11.5%] for HDL, [-26.2%, -12.9%] for LDL and [-20.5%, -13.7%] for total cholesterol, respect

to the former version of the model. The original model in fact, has shown to drive predictions

towards an overestimation of the mutation effect, as shown by the prediction errors of HDL

[-52%, -30.8%], LDL [35%, 139.7%], and total cholesterol [29.7%, 115.9%]. A particular case is

the one regarding mutations in APOE, where the algorithm strongly underestimated the effect

of damaging mutations on total cholesterol levels. In this case, a higher error has been regis-

tered for our optimized model (-53.1%) compared with the former version (-27.4%). This situ-

ation is mainly related to the fact that the average levels of total cholesterol of patients in the

training set was lower than the one of the test set.

The effect of damaging mutations on the other genes of the test set have been simulated by

reducing different set of rates of the model. The model predicted the effect of ABCA1 muta-

tions as a decrease in HDL levels, but also produced overestimated decrease in LDL levels

(Table 4), which is not usually observed in patients affected by related disease like Hypoalphali-

poproteinemia [3]. CETP is a protein involved in the transport of cholesterol esters from HDL

to LDL, deficiency of this protein can cause a marked increase of HDL levels [3]. In this case,

the model correctly predicted an increase in HDL cholesterol levels, with a bigger error when

optimized fmut was used (Table 4). The LCAT gene is involved in cholesterol esterification in

In silico prediction of blood cholesterol levels from genotype data
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HDL particles, patients with mutations on this gene generally have low levels of HDL and LDL

cholesterol [3]. In this case the model was not able to accurately simulate HDL and LDL levels

in all cases (Table 3). Explanation could be that it was not possible to train the parameter for

patients with a homozygous mutation on the LCAT gene (fmut has been assumed to be equal to

1). DHCR7 gene is involved in cholesterol biosynthesis pathway, mutations reducing related

enzymatic activity cause low levels of blood cholesterol [15]. In all cases the model predicted a

bigger decrease in total cholesterol levels with an error of -171.5%. CYP7A1 gene is involved in

cholesterol catabolism and bile acids synthesis, mutations affecting this gene can cause an

increase of total and hepatic cholesterol [16]. In this case the model generally predicted an

increase of LDL and total cholesterol levels and a decrease in HDL cholesterol. Nevertheless,

CYP7A1 simulations showed an underestimation of LDL and total cholesterol levels (Table 4).

Performance assessment on the overall dataset

The overall assessment highlighted that the training phase increased model performance

(Table 6). Both Pearson and Kendall correlation coefficients show that the use of trained fmut

Table 4. Models predictions percentage error on elements of the test set.

Mutation Gene Predicted van de Pas et al Predicted Reggiani et al

HDL LDL TC HDL LDL TC

1 LDLR -30.83 35.05 29.65 -13.52 -14.82 -13.69

2 APOB -36.7 139.71 115.91 11.53 -26.23 -20.45

3 APOB (hom) -51.96 62.66 49.05 -35.34 -12.89 -15.14

4 ABCA1 147.99 -57.44 -44.77 200.05 -51.25 -35.99

5 APOE NA NA -27.4 NA NA -53.15

6 CETP 12.7 -4.82 -0.72 34.04 -11.53 -0.46

7 LCAT 34.3 -0.66 21.7 39.18 -3.08 20.55

8 LCAT (hom) 679.37 -19.37 10.11 426.32 21.95 29.87

9 DHCR7 NA NA 171.51 NA NA 171.51

10 CYP7A1 -4.42 -42.09 -34.15 1.37 -50.07 -40.81

Mutation numeric ID, gene, HDL, LDL and total cholesterol error (as percentage of experimental value), of predictions based on fmut as reported by van de Pas and

colleagues[9], or trained fmut.

https://doi.org/10.1371/journal.pone.0227191.t004

Table 5. Experimental and predicted cholesterol levels of the test set.

Mutation Gene Experimental value Predicted van de Pas et al Predicted Reggiani et al

HDL LDL TC HDL LDL TC HDL LDL TC

1 LDLR 0.86 2.17 1.85 0.59 2.93 2.4 0.74±0.17 1.85±1.31 1.6±0.97

2 APOB 0.85 1.52 1.36 0.54 3.64 2.94 0.95±0.07 1.12±0.21 1.08±0.14

3 APOB (hom) 1.12 2.24 1.97 0.54 3.64 2.94 0.72 1.95 1.67

4 ABCA1 0.22 1.42 1.07 0.55 0.6 0.59 0.66±0.19 0.69±0.15 0.68±0.16

5 APOE NA NA 2.8 0.65 2.44 2.03 0.84±0.13 1.45±0.57 1.31±0.41

6 CETP 1.1 0.98 1.01 1.24 0.93 1 1.47 0.87 1.01

7 LCAT 0.79 0.97 0.81 1.06 0.96 0.99 1.1±0.16 0.94±0.11 0.98±0.05

8 LCAT (hom) 0.19 0.82 0.77 1.48 0.66 0.85 1 1 1

9 DHCR7 NA NA 0.2 1.13 0.37 0.54 1.13±0.01 0.37±0.04 0.54±0.03

10 CYP7A1 0.97 2.09 1.74 0.93 1.21 1.15 0.98±0.02 1.04±0.06 1.03±0.04

Mutation numeric ID, gene, HDL, LDL and total cholesterol, from wet lab experiments[9], from predictions based on fmut as reported by van de Pas and colleagues[9],

or trained fmut with standard deviation.

https://doi.org/10.1371/journal.pone.0227191.t005
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increased algorithm capability to predict variations on cholesterol levels caused by gene muta-

tions. In particular, HDL levels predicted by the former version of the model have shown nega-

tive correlation with experimental values. The MAE and RMSE index computed on HDL and

total cholesterol levels have been decreased thanks to the training procedure, and the second

index on predicted LDL is one half of the one obtained with the original version of the model.

R2 indices on blood cholesterol levels show an increase in the amount of variability explained

by the model when a training phase is added. The bootstrap procedure has shown that for all

indices computed on HDL levels predictions, model performance was not better than random.

Conclusions

In this work we improved and assessed the performance of an in silico prediction method for

blood cholesterol levels. The addition of a training phase has generally improved model perfor-

mance, as shown in Table 6. Our training phase overcomes the problem of model usability

when no experimental data is available for fmut parameters estimation. The reducing parame-

ters presented by van de Pas and colleagues were computed from variables obtained in wet lab

experiments[9]. This procedure, in contrast with the training methodology we applied in this

work, did not take in account that decreasing different rates by the same factor can lead to

modification of cholesterol profiles with different magnitude. To better understand model

responses to different simulations, we performed a sensitivity analysis on the rates involved in

the test set (Fig 3). This analysis showed that reduction of rate 5 and 7 produced a consistent

decrease of model predicted HDL, while increasing LDL and total cholesterol. The training

procedure has computed fmut on the basis of the difference between experimental levels and

model response to the reduction of selected rates, as previously explained. This procedure

avoid an overestimation of the effect of mutations on the LDLR and APOB genes, as observed

when fmut based on experimental variables were used (Table 4). The use of trained parameters

has decreased prediction error when model was not able to correctly simulate the effect of a

mutated gene on cholesterol levels. In particular rate 9 regulates the flow of cholesterol from

free to esterified form in HDL particles, LCAT gene product activity. The effect of a mutation

on this gene is predicted by the model as an increase of HDL cholesterol while the opposite is

observed in real data (Table 5). In this case the training procedures had hampered in part

model inability to correctly predict HDL and LDL deviations caused by mutations on this gene

by fixing the fmut to 1 in the homozygous case, since the reduction of this parameter was not

able to reduce the difference between experimental and predicted values. A similar behavior

has been observed for the estimation of the reducing CYP7A1 fmut: in this case the trained

parameter (0.81) was greater than the value computed by van de Pas and coauthors (0,

Table 6. Models performances on the whole test set.

Prediction PCC KCC MAE RMSD R2

van de Pas et al predicted HDL ratio -0.22 -0.18 0.4 0.54 0.05

Reggiani et al predicted HDL ratio 0.32 0 0.32 0.4 0.11

van de Pas et al predicted LDL ratio 0.65 0.55 0.77 1.03 0.43

Reggiani et al predicted LDL ratio 0.74 0.5 0.39 0.5 0.55

van de Pas et al predicted TC ratio 0.66 0.63 0.55 0.71 0.43

Reggiani et al predicted TC ratio 0.75 0.69 0.42 0.57 0.56

Cholesterol level and predictor: Pearson Correlation Coefficient, Kendall rank Correlation Coefficient, Root Mean Squared Error, Mean Absolute Error and R-squared

index computed on the test set. Values in bold have a p-value lower than 0.05, computed as the probability of obtaining an index better than the original one in a

distribution of 10000 random scores, generated by a bootstrap procedure.

https://doi.org/10.1371/journal.pone.0227191.t006

In silico prediction of blood cholesterol levels from genotype data

PLOS ONE | https://doi.org/10.1371/journal.pone.0227191 February 10, 2020 11 / 15

https://doi.org/10.1371/journal.pone.0227191.t006
https://doi.org/10.1371/journal.pone.0227191


Table 2), while the difference in predicted cholesterol levels was relatively small (Table 5). This

difference is related both to the low sensitivity of the rate (Fig 3) and the inability to produce a

consistent increase of LDL and Total cholesterol levels, while producing a limited decrease of

HDL as experimentally observed (Table 5).

This model can be considered a valid tool for the study of cholesterol metabolism in silico,

considering the other models currently available [8] and the predictions error: the average rela-

tive deviations between model predictions and experimental data were 49% for HDL-C, 43%

for LDL-C and 36% for total cholesterol [9]. Mathematical models are a simplified representa-

tion of the original system, this from one hand results in a relatively simple tool for making

inference and simulate different experimental conditions in silico. From the other hand, they

don’t represent the selected system completely, hence deviation from real data are expected.

Prediction error in principle could be decreased by increasing the number of parameters, how-

ever this process will increase model complexity and present problems related to parameter

identifiability and fitting to experimental error [20]. Prediction of in silico cholesterol levels is

a complex procedure, the physiologically based in silico cholesterol model optimized in this

review has proven its ability to predict cholesterol levels behavior with reduced error when

only genotype data is available. Given the huge number of genomic loci controlling cholesterol

homeostasis, much of that still unknown, gender-related effects and environmental factors

that affects blood cholesterol levels, the possibility of developing a software able to accurately

predict cholesterol levels seems far from true. Despite these critical points, in this work we con-

sidered patients affected by monogenic dominant diseases only, so we expect that ethnicity

and other factors will have a relatively low contribution on the onset of the phenotype. Nowa-

days genetic assays are increasingly used to support the diagnosis of monogenic diseases affect-

ing blood lipid levels, as Familial Hypercholesterolemia (FH) [19]. Studies have shown that

coronary artery disease risk is higher in carrier of FH mutations compared to those without,

this is likely the consequence of a higher life-long exposure to LDL. In this context our work

could be considered a further step in the process of using genetic tests for the detection and

treatment of patients affected by FH and other genetic disorders affecting blood cholesterol

Fig 3. Model response in terms of HDL, LDL and total blood cholesterol at different values of fmut. The effect of reducing model rates, involved in the test procedure,

on HDL, LDL or total cholesterol levels.

https://doi.org/10.1371/journal.pone.0227191.g003
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levels. Under this perspective we think that our work could be useful to simulate and study the

effect of genetic variants on human cholesterol metabolism, in particular for variants affecting

genes involved in hepatic cholesterol uptake (model rate 5, 7) and FH, as LDLR and APOB,

where the trained model has predicted blood cholesterol levels with little error (Table 4). Fur-

thermore, given the newly developed therapies against molecular targets (such as the anti

PCSK9 monoclonal antibodies) [21] the model could be useful to identify the patients that are

best candidates for treatment. Simulation of drug actions could be another possible application

of the proposed model. It is well known that different genetic backgrounds have a strong effect

on drug activity and in silico prediction methods can have poor performance with patients that

don’t have the same ethnicity of individuals used during the training procedure, as seen in

CAGI Warfarin dosing challenge [22].

In light of these considerations, the physiologically based in silico model of human choles-

terol metabolism, optimized in this work, can be a useful tool for studying the effect of damag-

ing mutation on genes involved in cholesterol homeostasis.
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