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Introduction

Orofacial clefts (OFC) are the most common congenital
malformations in the orofacial region causing a significant
personal and social encumbrance.1–3 The etiology remains
complex involving multiple genetic and environmental
factors along with gene–environment interactions.4–7

Children born with clefts may have difficulties in sucking,
speech, hearing, and unaesthetic facial features due to the
anatomical deformities.8,9 OFCs generally require surgical
reconstruction of the lip and palate at different stages
from birth to adulthood,10 and their rehabilitation
involves a multidisciplinary approach such as, pediatric
care, speech and hearing therapy, dental and orthodontic
treatment, genetic counseling, and other mental health
therapy.11,12

Epidemiology

The prevalence of OFCs ranges from 1 in 700 to 1,000 new-
borns worldwide13 and include cleft lip only (CLO), cleft
palate only (CPO), and cleft lip and palate (CLP).14 They may
occur as unilateral or bilateral, complete, or incomplete, and
may involve the lip only, the palate only, or both.15

The prevalence of OFC varies according to geographical
location, ethnicity, race, gender and socioeconomic sta-
tus,16–19 Asians have the highest prevalence rate (1:500),
the intermediate prevalence in Europeans (1:1000), and
lowest in Africans (1:2500).20–22 In India, the incidence of
clefts is around 1:800 to 1:1000, and three infants are born
with some type of cleft every hour.23 These differences
appear to persist even after migration, suggesting that
they are mediated by genetic, rather than environmental
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Abstract Orofacial clefts (OFCs) are the most common congenital birth defects in humans and
immediately recognized at birth. The etiology remains complex and poorly understood
and seems to result frommultiple genetic and environmental factors along with gene–
environment interactions. It can be classified into syndromic (30%) and nonsyndromic
(70%) clefts. Nonsyndromic OFCs include clefts without any additional physical or
cognitive deficits. Recently, various genetic approaches, such as genome-wide associ-
ation studies (GWAS), candidate gene association studies, and linkage analysis, have
identified multiple genes involved in the etiology of OFCs.
This article provides an insight into the multiple genes involved in the etiology of OFCs.
Identification of specific genetic causes of clefts helps in a better understanding of the
molecular pathogenesis of OFC. In the near future, it helps to provide a more accurate
diagnosis, genetic counseling, personalized medicine for better clinical care, and
prevention of OFCs.
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factors.24 Overall, 70% of the OFCs are nonsyndromic (NS)
and occur as isolated caseswithout any additional physical or
cognitive deficits. In contrast, 30% of clefts are syndromic and
are associated with a few other developmental anomalies.25

The frequency of occurrence of OFC differs with regard to
gender and side of clefting. Cleft lip ismore common inmales
at a 2:1 male to female ratio, whereas a cleft palate is more
common in females.26 Approximately 90% of OFCs are uni-
lateral with primarily left-sided involvement.27

Development of Cleft Lip and Palate

The development of lip and palate begins during the fourth
weekof gestationwheremigrating neural crest cells combine
with mesodermal cells to establish facial primordia which
consist of five different processes (medial nasal, lateral nasal,
frontonasal, maxillary, and mandibular processes) derived
from thefirst pharyngeal arch.28Once facial prominences are
formed, the nasal placodes invaginate to form the medial
nasal process (MNP) and lateral nasal process (LNP). The
maxillary processes initially growmedially, pushing the LNP
toward the upper side. During the sixth and seventhweeks of
gestation fusion of maxillary processes with each other and
also with lateral and MNPs takes place to form upper lip and
primary palate.29 Defect in fusion or failure in the growth of
these processes results in clefts involving the upper lip,
alveolus, and/ or primary palate.

The secondary palate begins to develop in the seventh
week of embryogenesis; the maxillary processes initially
outgrow as palatal shelves which move toward each other
vertically. After proper growth they settle at a horizontal
position above the tongue which entails much extracellular
remodeling.30,31 The palatal shelves then fuse in the midline
both anteriorly and posteriorly like a zipper that forms a
midline epithelial seam (MES). The disintegration of MES is
required to maintain palatal confluency, which may involve
apoptosis, epithelial-mesenchymal transition (EMT), and cell
migration.32 Effective fusion of the secondary palate results
in complete separation of the oral and nasal cavities. Cleft
palate can result from failure at any of the steps, including
palatal shelves elevation, cell migration, or fusion.

In summary, a variety of cellular mechanisms such as cell
proliferation, cellmigration, cell growth, cell fusion, apoptosis,
EMT, and extracellular remodeling are involved in a coordinat-
ed manner during the development of lip and palate. There-
fore, disruption in the gene/s involved in these processes
during lip and palate development may lead to an OFC.

Glimpse into the History of Genetic Etiology
of Orofacial Clefts

Although the familiarity of OFC has long been noted, Fogh-
Andersen was the first to provide the evidence for genetic
factors contributing to the etiology of CLP from family-based
studies where it was observed that the siblings of CLP patients
had an increased frequency of cleft lip with or without cleft
palate.33 This observationwas further confirmedby studies on
the familial distribution of congenital clefts of the lip and

palate,34 and Dr. Clark Fraser published a review paper
highlighting the conclusions of a workshop on CLP sponsored
by theNational of Institutes of Health of the United States, and
he mentioned the etiology is indeed multifactorial.35 Later,
more evidence in favor of contribution of genetic factors to the
etiology of CLP accrued from segregation analysis36 and twin
studies37,38 where the monozygotic twins showed high prev-
alence rate (40%) than the dizygotic twins (4%).

Role of Genetic Factors in the Etiology of
Orofacial Clefts

The etiology of OFCs involves genetic factors, environmental
influences, and gene–environment interactions, all contrib-
uting to its susceptibility. Scientific literature evidence sug-
gests that environmental factors such as maternal tobacco
smoking and alcohol consumption, antiepileptic medica-
tions, maternal folate deficiency, infections, consanguinity,
and geographical location are risk factors for NS cleft lip and
palate (NSCLP).39–42

Advances in genetics and molecular biology techniques
have discovered multiple genes and loci associated with CLP.
This article provides an overview of the genes implicated in
the etiology of NSCLP. Identification of specific genetic
variation contributing to NSCLP has led to an increase in
our understanding of the molecular pathogenesis of OFC.

Genes Involved in the Etiology of
Nonsyndromic Orofacial Clefts

Special AT-Rich Sequence-Binding Protein
Special AT-rich sequence-binding protein (SATB2) is a DNA
binding proteinwhich bindswith nuclearmatrix attachment
regions. It is involved in transcription regulation and chro-
matin remodeling process. In an animal study, mouse SATB2
is strongly expressed in the developing cleft palate and is
similar to the human SATB2 protein.43 The identification of
SATB2 gene responsible for the craniofacial dysmorphologies
associated with deletions and translocations at 2q32-q33,
only one region of the genome has been significantly associ-
ated with the development of isolated cleft palate.44 Glass
syndrome characterized by cleft palate, gum hyperplasia,
slight micrognathia, generalized osteoporosis, and mental
retardation reported from Thai patient,45 was caused by
SATB2 gene mutation. Recently, using salivary miRNAs
showed that the SATB2 genes are involved in the develop-
ment of the cleft palate and lip development.46 ►Table 1

provides the list of genes involved in the etiology of NS OFC in
humans.

B-Cell Leukemia/Lymphoma 3
B-cell leukemia/lymphoma 3 (BCL3) is a proto-oncogene,
acts as a transcriptional co-activator through NF-kappa-B
target genes and located on 19q13.2. BCL3 gene has also
shown a strong association with NS orofacial clefts
(NSOCs).47 A case-parent trio study showed BCL3 influence
risk of CL/P through a parent-of-origin effect with the excess
maternal transmission.48 Several studies in different
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populations have implicated the role of BCL3 in development
of NSCL/P. It was found that BCL3 contributes to the regula-
tion of cell proliferation, and cell cycle regulation can cause a
disturbance in facial formation.49 A study also reported BCL3
contribution in angiogenesis-related genes in the etiology of
CLP.50 However, no association of BCL3 gene with NSCLP was
found in multigenerational families of Indian population.51

Distal-Less Homeobox 4
Distal-Less Homeobox 4 (DLX4) belongs to DLX gene family
containing a homeobox transcription factor which plays an
important role in craniofacial development and palatogen-
esis. It is located on chromosome 17q21.33 and causes
orofacial cleft 15 (OFC15) and cleft lip/palate. In an animal
study, the DLX genes caused cleft palate showing the impor-
tance of these genes in craniofacial morphogenesis.52

Whole-exome sequencing study in a Hispanic mother and
son with bilateral CLP confirmed the DLX4 as a potential
cause of oral clefts.53–55 Recently, a study showed that none
of the distal-less 4 (DLX4) gene SNPs were associated with
NSOCs, so it should be interpreted with a caution in the
etiology of nonsyndromic orofacial clefts.56

Paired Box Gene 9
Paired BoxGene 9 (PAX9) is amember of the paired box (PAX)
family of transcription factors and contains a paired box
domain, an octapeptide, and a paired-type homeodomain. It
plays a critical role during neural crest and fetal develop-
ment. PAX9 is located on chromosome 14q13.3, consists of
five exons, and associatedwith the formation of the teeth and
palate.57,58 Tooth agenesis and the formation of a cleft palate
in PAX9-deficient mice have been reported.59

Schuffenhauer et al, first reported the role of PAX9 in a
patient presented with bilateral CLP.60 A linkage analysis of
PAX9 gene in two large families and four unrelated families
showed that the hypodontia primarily involving molars,
suggested that the mutant PAX9 protein acquires functional
defects in DNA binding, as well as the loss of function of PAX9
resulting in haploinsufficiency during the morphogenesis of
the dentition and the subsequent tooth agenesis.61,62 Several
studies identifiedmutations at PAX9may increase the risk of
NS cleft lip with or without palate.63–66

A combined genome-wide association study (GWAS) used
unmixedNS CPO andNS CLO subtypes suggested that PAX9 is
a strong genetic factor for NS CPO in the Chinese population.
Mutation analysis of PAX9 SNPs rs12885612 and rs12881248
revealed that PAX9 is a promising susceptible gene forNS CLO
in Western Han Chinese population.5,6

Netrin 1 (NTN1)
The netrin 1 (OMIM: 601614) located on chromosome 17p13.1
is a family of laminin-related secreted proteins. Its functions
include axon guidance and cellmigration in the central nervous
system, angiogenesis, and semicircular canal formation.

NTN1 is expressed at high levels in cells that will come
together to form a fusion plate, a prerequisite for the forma-
tion of semicircular canals. In netrin 1 mutant mice, fusion
plate formation is severely affected, and it stimulates prolif-
eration of the periotic mesenchymal cells which then push
the epithelial cell walls together to form the fusion plate.67,68

It affects the development of the craniofacial region and has
been shown to play a vital role in regulating cell migration
during embryogenesis, and it is also expressed in the medial
edges and oral sides of the palatal shelves.69

Table 1 Genes involved in the etiology of nonsyndromic orofacial clefts in humans

Gene Gene symbol Loci OMIM Evidence References

Special AT-rich sequence-binding protein SATB2 2q33.1 608148 M 43,46

B-cell leukemia/lymphoma 3 BCL3 19q13.32 109560 LD, L 47,49

Distal-less homeobox 4 DLX4 17q21.33 601911 M 53,55,56

Paired box gene 9 PAX9 14q13.3 167416 L, GWAS 6,60,62,64

Netrin 1 NTN1 17p13.1 601614 GWAS 70,71

T-box transcription factor 22 TBX22 Xq21.1 300307 M, LD 75,77,79

Poliovirus receptor like-1 PVRL1 11q23.3 600644 M, LD,GWAS 81,83,85

Cleft lip and palate associated transmembrane protein 1 CLPTM1 19q13.32 604783 M, L, LD 89,90

MAF bZIP transcription factor B MAFB 20q12 608968 GWAS 98,101

Fibroblast growth factor receptor 1 FGFR1 8p11.23 136350 M, D 102,103

Transcription factor AP2-α TFAP2A 6p24.3 107580 D, L 104

S-glutathione transferase T1 GSTT1 22q11.2 600436 LD 108,109

Receptor-like tyrosine kinase RYK 3q22.2 600524 M 110,111

Gamma-aminobutyric acid receptor, Beta-3 GABRB3 15q12 137192 GWAS 112

ATP-binding cassette, subfamily A, member 4 ABCA4 1p22.1 601691 GWAS 115,117,118

Abbreviations: D, deletions; GWAS, genome-wide association studies; L, linkage; LD, linkage disequilibrium; M, mutations; OMIM, Online Mendelian
Inheritance in Man.
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A GWAS included 1,409 case-parent trios by several
research groups with samples of Asian or European ancestry
from Europe, the United States, China, and the Philippines
found NTN1 role in the etiology of NSCLP.70 A case–control
study of NTN1, identified SNP (rs9788972) as a risk locus for
NSOCs susceptibility in a northern Chinese population.71

T-Box Transcription Factor 22
The T-box 22 (TBX22) gene encodes transcription factors
involved in the regulation of developmental processes and
plays a major role in human palatogenesis. It contains eight
coding exons. TBX22 cause X-linked cleft palate and is
characterized by isolated cleft palate and ankyloglossia.72

It is expressed in the developing palatal shelves and at the
base of the tongue prior to elevation to a horizontal position
above the tongue.73

Genome-wide linkage analysis showed the association of
TBX22 role in the development of NSCLP.74 In addition,
mutations in TBX22 were found in individuals with isolated
CPO.75–77 It plays a significant role in tooth and upper lip
development and causes hypodontia and cleft lip.78 DNA
methylation study suggests that cleft palate-susceptible gene
Tbx22 is associated with gene expression and might be
responsible for the developmental failure of palatal fusion,
eventually resulting in the formation of cleft palate.79

Poliovirus Receptor-Like 1
Poliovirus receptor-like 1 (PVRL1), also known as NECTIN1
(nectin cell adhesion molecule 1) belongs to the nectin
subfamily of immunoglobulin-like adhesion molecules that
involve cell–cell adhesion. It plays a vital role in the organi-
zation of adherens junctions and tight junctions in epithelial
and endothelial cells.80 During the developmental process,
the palatal shelves and palatal epithelium come in close
contact and fuse together. PVRL1 plays a major role in these
developments during palatogenesis and genetic variations
reported to have a significant relationshipwith CLP. Diseases
associated with PVRL1 include cleft lip/palate-ectodermal
dysplasia syndrome (CLPED) and herpes simplex.

In animal experiments, PVRL1 expressed at the medial
edge epithelium of the palatal shelves and the skin surface
epithelium locations that corresponded to the clinical phe-
notypes of CLPED and in humans, mutations of the PVRL1
gene resulting CLPED in families from Israel and Brazil.81

Interestingly, heterozygous mutation of PVRL1 (W185X)
associated with NSCLP in northern Venezuela82,83 and two
novel variants of the PVRL1 gene were identified in Turkish
NSCLP patients.84 In an experimental animal studies, PVRL1
expressed at the medial edge epithelium of the palatal
shelves and the skin surface epithelium locations that cor-
responded to the clinical phenotypes of CLPED and in
humans, mutations of the PVRL1 genes caused CLPED in
Israel and Brazilian population.85–88

Cleft Lip and Palate-Associated Transmembrane
Protein 1
Cleft lip and palate-associated transmembrane protein 1
(CLPTM1) is a multipass transmembrane protein that regulates

GABA-A receptors (e.g., GABRA1) and modulates inhibitory
synaptic strength. It is locatedonchromosome19q13.3andplays
arole inT-celldevelopment.MutationofCLPTM1genessuggested
that a regulatory element in this gene region get affected and
which is responsible for the development of orofacial clefts.89,90

However, some studies contradict the role of CLPTM1 in the
etiologyofNSCL/Pasnoevidenceofanassociationwithoral clefts
was found among the SNPs of CLPTM1 selected for testing in
Japanese and Irish population.91,92

MAF bZIP Transcription Factor B
The MAF bZIP Transcription Factor B (MAFB) gene encodes a
basic leucine zipper (bZIP) transcription factor that plays an
important role in the regulation of lineage-specific hemato-
poiesis. It is located on chromosome 20q11.2, consists of a
single exon and spans approximately 3 kb.93 In a mouse
study, MAFB was expressed in the palatal shelves and the
medial edge epithelia (or MEE) during palatal fusion.94

Mutations in the MAFB gene reported causing multicentric
carpotarsal osteolysis syndrome and Duane retraction syn-
drome 3 with or without deafness.95,96

Several GWAS in European and Asian populations identi-
fied the role of MAFB in NS CLP.97,98 Different systematic
review and meta-analyses confirmed that the MAFB gene
SNP (rs13041247) is associated with NSCL/P risk in different
population; however, this association is not significant in
East Asian or Caucasian populations,99,100whereas, the SNPs
rs17820943 and rs6072081 of MAFB found to be associated
with NSCLP in an East Asian population.101

Other Candidate Genes
A variety of genetic approaches have identified several genes
located on different chromosomes, contributing to etiology
of NSCLP. Advances in genetics and molecular biology tech-
niques have led the way to the discovery of genetic variation
involved in NSCLP. Genes such as FGFR1, TFAP2A, GSTT1,
receptor-like tyrosine kinase (RYK), and ABCA4 have also
been found to be associated with NSCLP.

Riley et al assessed the genes involved in the fibroblast
growth factor (FGF) signaling pathway and identified the
functional impairment in the FGFR1 gene in NSCLP families
and suggested that the FGF signaling pathway may contribute
to as much as 3 to 5% of NS cleft lip or palate.102 Xu et al
reported mutations of the FGFR1 gene in Chinese Kallmann
syndrome males with cleft lip/palate.103 TFAP2A located on
6p24 region has been associatedwith orofacial clefting. Davies
et al reported a patient with cleft palate, microretrognathia,
frontal bossing, hypertelorism, flat, broad nasal bridge, low set
ears, and developmental delay.104 However, it was found that
there was no significant association between TFAP2A and
NSCLP in this northern Chinese105 and Indian population.106

S-glutathione transferase T1 (GSTT1) play an important role in
the detoxification and secretion of smoking byproducts and
deficiency of this enzyme may cause a greater risk of NSCLP if
the individuals were exposed to smoking byproducts during
pregnancy.107,108 Hozyasz et al suggested that homozygous
deletion of GSTT1 inmother genomemight increase the risk of
having a child with NSCLP.109
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Further, mutations in the RYK gene were also found to be
associated with orofacial clefting.110,111 Significant linkage
disequilibrium between Gamma-aminobutyric acid recep-
tor, Beta-3 (GABRB3), and CLP was reported by Scapoli et al
and this finding in humans is in agreement with previously
reported data obtained with the murine model.112 In addi-
tion, Baroni et al and Carter et al reported the association of
GABRB3 with oral clefts in different populations.113,114 ATP-
binding cassette, subfamily A, member 4 (ABCA4) encodes an
ATP-binding cassette transporter. Several linkages and
GWAS showed the role of ABCA4 in NSCLP with stronger
evidence among Asian samples. ABCA4 is known to cause the
autosomal-recessive retinal degenerative disease Stargardt’s
disease. A GWAS and a case-parent trio approach by Beaty
et al identifiedABCA4 gene associationwithNSCLP115,116 and
several other studies also reported a potential role of ABCA4
in the etiology of CL/P in Brazilian and northern Chinese Han
population.117,118

Conclusion

Genetic studies provide insight into the multiple genes in-
volved in the etiologyofOFCs. Identificationof specific genetic
causes ofclefts helps for better understandingof themolecular
pathogenesis of OFC. In the near future, it helps to provide a
more accurate diagnosis, genetic counseling, personalized
medicine for better clinical care and prevention of OFCs.
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