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The genomic landscape of metastatic castration-
resistant prostate cancers reveals multiple distinct
genotypes with potential clinical impact
Lisanne F. van Dessel1,21, Job van Riet1,2,3,21, Minke Smits4, Yanyun Zhu5,6, Paul Hamberg7,

Michiel S. van der Heijden8,9,10, Andries M. Bergman5,10, Inge M. van Oort11, Ronald de Wit1, Emile E. Voest6,8,10,

Neeltje Steeghs8,10, Takafumi N. Yamaguchi12, Julie Livingstone 12, Paul C. Boutros 12,13,14,15,16,17,

John W.M. Martens 1,8, Stefan Sleijfer1,8, Edwin Cuppen18,19, Wilbert Zwart5,6,20,

Harmen J.G. van de Werken 2,3, Niven Mehra 4,22 & Martijn P. Lolkema 1,8,22*

Metastatic castration-resistant prostate cancer (mCRPC) has a highly complex genomic

landscape. With the recent development of novel treatments, accurate stratification strate-

gies are needed. Here we present the whole-genome sequencing (WGS) analysis of fresh-

frozen metastatic biopsies from 197 mCRPC patients. Using unsupervised clustering based on

genomic features, we define eight distinct genomic clusters. We observe potentially clinically

relevant genotypes, including microsatellite instability (MSI), homologous recombination

deficiency (HRD) enriched with genomic deletions and BRCA2 aberrations, a tandem dupli-

cation genotype associated with CDK12−/− and a chromothripsis-enriched subgroup. Our

data suggests that stratification on WGS characteristics may improve identification of MSI,

CDK12−/− and HRD patients. From WGS and ChIP-seq data, we show the potential relevance

of recurrent alterations in non-coding regions identified with WGS and highlight the central

role of AR signaling in tumor progression. These data underline the potential value of using

WGS to accurately stratify mCRPC patients into clinically actionable subgroups.
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Prostate cancer is known to be a notoriously heterogeneous
disease and the genetic basis for this interpatient hetero-
geneity is poorly understood1,2. The ongoing development

of new therapies for metastatic prostate cancer that target
molecularly defined subgroups further increases the need for
accurate patient classification and stratification3–5. Analysis of
whole-exome sequencing data of metastatic prostate cancer
tumors revealed that 65% of patients had actionable targets in
non-androgen receptor related pathways, including PI3K, Wnt,
and DNA repair6. Several targeted agents involved in these
pathways, including mTOR/AKT pathway inhibitors7 and PARP
inhibitors8, are currently in various phases of development and
the first clinical trials show promising results. Therefore, patients
with metastatic prostate cancer could benefit from better strati-
fication to select the most appropriate therapeutic option. More
extensive analysis using whole-genome sequencing (WGS)-based
classification of tumors may be useful to improve selection of
patients for different targeted therapies. The comprehensive
nature of WGS has many advantages, including the detection of
mutational patterns, as proven by the successful treatment of
patients with high-tumor mutational burden with immune check-
point blockade therapy9–12. Moreover, WGS unlike exome
sequencing, can detect structural variants and aberrations in non-
coding regions, both important features of prostate cancer.

The stratification of prostate cancer patients, based on differences
in the mutational landscape of their tumors, has mainly focused on
mutually exclusive mutations, copy-number alterations, or distinct
patterns in RNA-sequencing caused by the abundant TMPRSS2-
ERG fusion, which is recurrent in 50% of primary prostate
tumors6,13–18. More recently, WGS of metastatic prostate cancer
tumors demonstrated that structural variants arise from specific
alterations such as CDK12−/− and BRCA2−/− genotypes, and are
strongly associated with genome-wide events such as large tandem
duplications or small genomic deletions, respectively19–23. Advances
in WGS analysis and interpretation have revealed rearrangement
signatures in breast cancer relating to disease stage, homologous
recombination deficiency (HRD), and BRCA1/BRCA2 defects based
on size and type of structural variant22,24. Thus, WGS enables the
identification of patterns of DNA aberrations (i.e., genomic scars)
that may profoundly improve classification of tumors that share a
common etiology, if performed in a sufficiently powered dataset.

In this study, we analyzed the WGS data obtained from 197
metastatic castration-resistant prostate cancer (mCRPC) patients.
We describe the complete genomic landscape of mCRPC, including
tumor specific single- and multi-nucleotide variants (SNVs and
MNVs), small insertions and deletions (InDels), copy-number
alterations (CNAs), mutational signatures, kataegis, chromothripsis,
and structural variants (SVs). Next, we compared the mutational
frequency of the detected driver genes and genomic subgroups with
an unmatched WGS cohort of primary prostate cancer (n= 210),
consisting of exclusively of Gleason score 6–7 tumors15,25. We
investigated the presence of possible driver genes by analyzing genes
with enriched (non-synonymous) mutational burdens and recur-
rent or high-level copy-number alterations26,27. By utilizing various
basic genomic features reflecting genomic instability and employing
unsupervised clustering, we were able to define eight distinct
genomic subgroups of mCRPC patients. We combined our geno-
mic findings with AR, FOXA1, and H3K27me ChIP-seq data, and
confirmed that important regulators of AR-mediated signaling are
located in non-coding regions with open chromatin and highlight
the central role of AR signaling in tumor progression.

Results
Characteristics of the mCRPC cohort and sequencing
approach. We analyzed fresh-frozen metastatic tumor samples and

matched blood samples from 197 castration-resistant prostate
cancer patients using WGS generating to date the largest WGS
dataset for mCRPC (Fig. 1a). Clinical details on biopsy site, age, and
previous treatments of the included patients are described in Fig. 1b,
c and Supplementary Table 2. WGS data was sequenced to a mean
coverage of 104X in tumor tissues and 38X in peripheral blood
(Supplementary Fig. 1a). The median estimated tumor cell purity
using in silico analysis of our WGS data was 62% (range: 16–96%;
Supplementary Fig. 1b). Tumor cell purity correlated weakly with
the frequency of called SNVs (Spearman correlation; rho= 0.2; p=
0.005), InDels (Spearman correlation; rho= 0.35; p < 0.001), MNVs
(Spearman correlation; rho= 0.25; p < 0.001) and structural var-
iants (Spearman correlation; rho= 0.22; p= 0.002; Supplementary
Fig. 1c).

Landscape of mutational and structural variants in mCRPC.
The median tumor mutational burden (TMB) at the genomic
level (SNVs and InDels per Mbp) was 2.7 in our mCRPC cohort,
including 14 patients with high TMB (>10). We found a median
of 6621 SNVs (IQR: 5048–9109), 1008 small InDels (IQR:
739–1364), 55 MNVs (IQR: 34–86) and 224 SVs (IQR: 149–370)
per patient (Supplementary Fig. 2a–c). We observed a highly
complex genomic landscape consisting of multiple driver muta-
tions and structural variants in our cohort.

We confirmed that known driver genes of prostate cancer were
enriched for non-synonymous mutations (Fig. 2 and Supple-
mentary Fig. 2e)13,15,28. In total, we detected 11 genes enriched
with non-synonymous mutations: TP53, AR, FOXA1, SPOP,
PTEN, ZMYM3, CDK12, ZFP36L2, PIK3CA, and APC. ATM was
mutated in 11 samples, but after multiple-testing correction
appeared not to be enriched.

Our copy-number analysis revealed distinct amplified genomic
regions, including 8q and Xq and deleted regions including 8p, 10q,
13q, and 17p (Supplementary Fig. 2d). Well-known prostate cancer
driver genes8,16, such as AR, PTEN, TP53, and RB1, are located in
these regions. In addition to large-scale chromosomal copy-number
alterations, we could identify narrow genomic regions with
recurrent copy-number alterations across samples, which could
reveal important prostate cancer driver genes (Supplementary data
file 1).

TMPRSS2-ERG gene fusions were the most common fusions in
our cohort (n= 84 out of 197; 42.6%) and were the majority
of ETS family fusions (n= 84 out of 95; 88.4%; Fig. 2 and
Supplementary Fig. 3). This is comparable to primary prostate
cancer, where ETS fusions are found in approximately 50% of
tumors13,15. The predominant break point was located upstream
of the second exon of ERG, which preserves its ETS-domain in
the resulting fusion gene.

In 42 patients (21.3%), we observed regional hypermutation
(kataegis; Fig. 2 and Supplementary Fig. 4). In addition, we did not
observe novel mutational signatures specific for metastatic disease
or possible pre-treatment histories (Supplementary Fig. 5)29.

To further investigate whether our description of the genome-
wide mutational burden and observed alterations in drivers and/or
subtype-specific genes in mCRPC were metastatic specific, we
compared our data against an unmatched WGS cohort of primary
prostate cancer (n= 210)15,25, consisting of Gleason score 6–7
disease. Comparison of the median genome-wide TMB (SNVs and
InDels per Mbp) revealed that the TMB was roughly 3.8 times
higher in mCRPC (Fig. 3a) and the frequency of structural variants
was also higher between disease stages (Fig. 3b), increasing as
disease progresses. Analysis on selected driver and subtype-specific
genes showed that the mutational frequency of several genes (AR,
TP53, MYC, ZMYM3, PTEN, PTPRD, ZFP36L2, ADAM15,
MARCOD2, BRIP1, APC, KMT2C, CCAR2, NKX3-1, C8orf58, and
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RYBP) was significantly altered (q ≤ 0.05) between the primary and
metastatic cohorts (Fig. 3c–e). All genes for which we observed
significant differences in mutational frequency, based on coding
mutations, were enriched in mCRPC (Fig. 3d). We did not identify
genomic features that were specific for the metastatic setting,
beyond androgen deprivation therapy-specific aberrations revolving
AR (no aberrations in hormone-sensitive setting versus 137
aberrations in castration-resistant setting). We cannot exclude from
these data that matched sample analysis or larger scale analysis
could reveal such aberrations.

We next determined whether previous treatments affect the
mutational landscape. Using treatment history information, we
grouped prior secondary anti-hormonal therapy, taxane-based
chemotherapy and systemic radionucleotide therapy into differ-
ent groups (Supplementary Fig. 6). This analysis did not reveal
systematic biases due to pre-treatment in aberrations, such as
TMB, kataegis, chromothripsis, ETS fusions, or somatically
altered genes (Supplementary data file 1).

The role of the AR-pathway in mCRPC. Focusing on the AR-
pathway revealed that aberrant AR signaling occurred in 80% of
our patients. In 57.3% of patients both AR and the AR-enhancer
(~66.13Mb on chromosome X; located about 629 kbp upstream
of the AR gene20) were affected (Fig. 4a). In an additional 6.6%
and 14.7% of tumors only AR gene alterations or AR-enhancer
amplification occurred, respectively. The percentage of mCRPC
patients with the exclusive AR-enhancer amplification (29 out of
197; 14.7%) versus exclusively AR-locus amplification (13 out of
197; 6.6%) is similar to previous observations, which showed 21
out of 94 CRPC patients (10.3%) with exclusively AR-enhancer
amplification versus 4 out of 94 CRPC patients (4.3%) with
exclusively AR-locus amplification20. Concurrent amplification of

the AR gene and the AR-enhancer was not necessarily of equal
magnitude, which resulted in differences in copy number
enrichment of these loci (Fig. 4b).

To date, no AR ChIP-seq data has been reported in human
mCRPC samples and evidence of increased functional activity of the
amplified enhancer thus far is based on cell line models30. To
resolve this, we performed AR ChIP-seq on two selected mCRPC
patient samples with AR-enhancer amplification based on WGS
data. As controls we used two prostate cancer cell-lines (LNCaP and
VCaP) and three independent primary prostate cancer samples that
did not harbor copy-number alterations at this locus (Supplemen-
tary Fig. 7)31. We observed active enhancer regions (H3K27ac) in
the castration-resistant setting, co-occupied by AR and FOXA1, at
the amplified AR-enhancer. This is substantially stronger when
compared to the hormone-sensitive primary prostate cancer
samples without somatic amplifications (Fig. 4c and Supplementary
Fig. 7). Furthermore, a recurrent focal amplification in a non-
coding region was observed at 8q24.21 near PCAT1. This locus
bears similar epigenetic characteristics to the AR-enhancer with
regard to H3K27ac and, to a lesser extent, binding of AR and/or
FOXA1 in the mCRPC setting (Fig. 4d and Supplementary Fig. 7).

WGS-based stratification defines genomic subgroups in
mCRPC. Our comprehensive WGS data and large sample size
enabled us to perform unsupervised clustering on several WGS
characteristics to identify genomic scars that can define subgroups
of mCRPC patients. We clustered our genomic data using the total
number of SVs, relative frequency of SV category (translocations,
inversions, insertions, tandem duplications, and deletions), genome-
wide TMB encompassing SNV, InDels and MNV, and tumor
ploidy. Prior to clustering, we subdivided tandem duplications
and deletions into two major categories based on the respective
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Fig. 1 Overview of study design and patient cohort (n= 197). a Flowchart of patient inclusion. From the CPCT-02 cohort, patients with metastatic prostate
cancer were selected. Patients were excluded if data from metastatic samples were not available and if clinical data indicated that patients had hormone-
sensitive or neuro-endocrine prostate cancer or unknown disease status at the time of analysis. b Overview of the biopsy sites. Number of biopsies per
metastatic site analyzed with WGS. c Age of patients at biopsy. Bee-swarm boxplot with notch of the patient age distribution. Boxplot depicts the upper
and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are shown
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genomic size of the aberration (smaller and larger than 100 kbp)
since previous studies revealed distinctions based on similar
thresholds for these structural variants in relation to specific-
mutated genes19–21,32. Similarly, we observed a difference in
genomic size and number in our subgroups of mCRPC patients
(Supplementary Fig. 8).

This analysis defined eight distinct subgroups (Figs. 5, 6 and
Supplementary Figs. 8–11): (A) microsatellite instability (MSI)
signature with high TMB and association with mismatch repair
deficiency; (B) tandem duplication (>100 kbp) phenotype associated
with biallelic CDK12 inactivation; (D) homologous recombination
deficiency (HRD) features with many deletions (>100 kbp) and
association with (somatic) mutations in BRCAness-associated genes;
this was supported by high HR-deficiency scores (CHORD;
Supplementary Figs. 8 and 9); (F) chromothripsis; C, E, G, H);
non-significant genomic signature without any currently known
biological association. Table 1 summarizes the key features of each
subgroup.

Clusters A and B represent previously identified genomic
subgroups (MSI and CDK12−/−)6,19,21,33. In cluster B, only two
patients were allocated to this subgroup without a specific
somatic mutation in the identifying gene. The well-known mismatch
repair genes: MLH1, MSH2, and MSH6 are among the cluster-
specific-mutated genes in cluster A (Fig. 6a). Twelve out of these
thirteen patients had at least one inactivating alteration in one of
these genes (Fig. 6b). Interestingly, cluster B (CDK12−/−) harbors
two patients without non-synonymous CDK12 mutation or copy-
number alteration; the cause of their tandem duplication phenotype
is currently unknown (Fig. 6b). Cluster D shows significant features
of HRD, specifically biallelic BRCA2 inactivation (Supplementary
Fig. 12), mainly mutational signature 3, enrichment of deletions
(<100 kbp) and is supported by high HR-deficiency scores
(CHORD) (Supplementary Figs. 8 and 9)22,34. Remarkably, seven
out of twenty-two patients did not have a biallelic BRCA2
inactivation. However, four of these patients showed at least one
(deleterious) aberration in other BRCAness-related genes (Fig. 6b)35.
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Fig. 2 mCRPC shows multiple recurrent somatic alterations affecting several oncogenic pathways. Based on dN/dS (q≤ 0.1) and GISTIC2 focal peak (q≤
0.1) criteria, we show the genes and focal genomic foci that are recurrently mutated, amplified, or deleted in our mCRPC cohort of 197 patients. The upper
track (top bar plot) displays the number of genomic mutations per Mbp (TMB) per SNV (blue), InDel (yellow), and MNV (orange) category in coding
regions (square-root scale). Samples are sorted based on mutual-exclusivity of the depicted genes and foci. The heatmap displays the type of mutation(s)
per sample; (light-)green or (light-)red backgrounds depict copy-number aberrations while the inner square depicts the type of (coding) mutation(s).
Relative proportions of mutational categories (coding mutations [SNV, InDels, and MNV] (yellow), SV (blue), deep amplifications [high-level
amplifications resulting in many additional copies] (green), and deep deletions [high-level losses resulting in (near) homozygous losses] (red)) per gene
and foci are shown in the bar plot next to the heatmap. Narrow GISTIC2 peaks covering≤ 3 genes were reduced to gene-level rows if one of these genes is
present in the dN/dS (q≤ 0.1) analysis or is a known oncogene or tumor-suppressor. For GISTIC2 peaks covering multiple genes, only deep amplifications
and deep deletions are shown. Recurrent aberrant focal genomic foci in gene deserts are annotated with their nearest gene. Significance scores (–1*log10
(q)) of the dN/dS and GISTIC2 analysis are shown on the outer-right bar plots; bars in the GISTIC2 significance plot are colored red if these foci were
detected as a recurrent focal deletion and green if detected as a recurrent focal gain. Per sample, the presence of (predicted) ETS fusions (green),
chromothripsis (light pink), kataegis (red), CHORD prediction score (HR-deficiency) (pink gradient), MSI status (dark blue), and biopsy location are shown
as bottom tracks
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Cluster F was enriched for chromothripsis events, however we could
not reproduce a previous finding, suggesting chromothripsis was
associated with inversions and p53 inactivation in prostate cancer21.
Apart from the chromothripsis events, no clear gene aberration was
associated with this cluster (Fig. 6b). In the remaining patients, there

were no distinct genomic signatures or biologic rationale for patient
clustering (cluster C, E, G, H). In cluster C, conjoint aberrations of
BRCA1 and TP53 were observed in one patient with a high HR-
deficiency prediction score (CHORD), which is known to lead to a
small tandem duplication phenotype (<100 kbp)32. Two other
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patients within cluster C displayed a weak CHORD scoring
associated with HR-deficiency, however no additional definitive
evidence was found for a BRCA1 loss-of-function mutation within
these patients.

In addition to our unsupervised clustering approach, we
clustered our samples using the clustering scheme proposed by

TCGA (Supplementary Fig. 13a), which defines seven clusters
based on coding mutations and copy-number aberrations in
SPOP, FOXA1, IDH1, and ETS family gene fusions (and
overexpression) per promiscuous partner (ERG, ETV1, ETV4,
and FLI1)13. Unfortunately, we currently lack matched mRNA-
sequencing data in our cohort and therefore cannot observe

Fig. 3 Comparison of the mutational landscape between primary prostate cancer and mCRPC. a Tumor mutational burden (SNVs and InDels per Mbp)
from a primary prostate cancer (n= 210) and the CPTC-02 mCRPC cohort (n= 197). Bee-swarm boxplot with notch of the tumor mutational burden.
Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points
outside the IQR are shown. Statistical significance was tested with Wilcoxon rank-sum test and p≤ 0.001 is indicated as ***. b Frequency of structural
variant events from an unmatched cohort of primary prostate cancer (n= 210) and the CPTC-02 mCRPC cohort (n= 197). Boxplot depicts the upper and
lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are shown.
Statistical significance was tested with Wilcoxon rank-sum test and p≤ 0.001 is indicated as ***. c Comparison of the mutational frequencies for driver
genes detected by dN/dS and/or GISTIC2, or subtype-specific genes, enriched in mCRPC relative to primary prostate cancer or vice-versa. The difference
in relative mutational frequency is shown on the x-axis and the adjusted p-value (two-sided Fisher’s Exact Test with BH correction) is shown on the y-axis.
Size of the dot is proportional to the absolute difference in mutational frequency between both the cohorts. Symbols of genes with p-values below 0.05 are
depicted in black and additional genes-of-interests are highlighted in gray. The general genomic foci of the gene and absolute number of samples with an
aberration per cohort in primary prostate cancer and mCRPC, respectively, is shown below the gene symbol. This analysis was performed on coding
mutations, gains and deletions per gene. d Same as in c but using only coding mutations. e Overview of the mutational categories (coding mutations
[yellow], deletions [red] and amplifications [green]) of the driver genes detected by dN/dS and/or GISTIC2, or subtype-specific genes, enriched in mCRPC
relative to primary prostate cancer (q≤ 0.05). For each gene the frequency in primary prostate cancer is displayed followed by the frequency in mCRPC
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Fig. 4WGS reveals novel insight into the various (non-coding) aberrations affecting AR regulation. aMutational overview of top recurrently mutated genes
affecting AR regulation and their putative enhancer foci (as detected by GISTIC2). The first track represents the number of genomic mutations per Mbp
(TMB) per SNV (blue), InDels (yellow), and MNV (orange) category genome-wide (square-root scale). Samples are sorted based on mutual-exclusivity of
the depicted genes and foci. The heatmap displays the type of mutation(s) per sample, (light-)green or (light-)red backgrounds depict copy-number
aberrations while the inner square depicts the type of (coding) mutation(s). Relative proportions of mutational categories (coding mutations [SNV, InDels
and MNV] (yellow), SV (blue), deep amplifications (green), and deep deletions (red)) per gene and foci are shown in the bar plot next to the heatmap. The
presence of chromothripsis (light pink), kataegis (red), CHORD prediction score (HR-deficiency) (pink gradient), MSI status (dark blue), and biopsy
location are shown as bottom tracks. b Overview of the copy-number deviations between putative enhancer and gene regions for AR and MYC. Samples
were categorized as enhancer- (blue) or gene- (red) enriched if enhancer-to-gene ratio deviated >1 studentized residual (residual in standard deviation
units) from a 1:1 ratio. c Copy number and ChIP-seq profiles surrounding the AR and PCAT1/MYC gene loci (with 1.25 additional Mbp up-/downstream).
The upper panel displays the selected genomic window and the overlapping genes. The first and second track display the aggregated mean copy number
(per 0.1 Mbp window) of the enhancer- and gene-enriched samples, respectively. These profiles identify distinct amplified regions (indicated by red
asterisk) in proximity to the respective gene bodies. The 3th to 8th tracks represent AR ChIP-seq profiles (median read-coverage per 0.1 Mbp windows) in
two mCRPC patients (# 3 and 4), LNCaP (# 5) and LNCaP with R1881 treatment (# 6), VCaP (# 7) and bicalutamide-resistant VCaP (# 8). The 9th to 11th
tracks represent FOXA1 ChIP-seq profiles (median read-coverage per 0.1 Mbp windows) in two mCRPC patients (#9 and 10) and LNCaP with R1881
treatment (# 11). The 12th to 14th tracks represent H3K27ac ChIP-seq profiles (median read-coverage per 0.1 Mbp windows) in two mCRPC patients (# 12
and 13) and LNCaP with R1881 treatment (# 14) reflecting active enhancer regions. ChIP-seq peaks (MACS/MACS2; q < 0.01) are shown as black lines per
respective sample
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overexpression of fused ETS family members, which restricted us
to only characterize the genomic breaks of these promiscuous
partners. Without incorporation of ETS family overexpression,
this proposed clustering scheme categorizes 61% of mCRPC into

these seven groups versus 68% of the original cohort containing
primary prostate cancer described by TCGA (Supplementary
Fig. 13b)13. There was no significant correlation between the
TCGA clustering scheme and our defined genomic subtypes such
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as MSI, BRCAness or CDK12−/−. In addition, we did not detect
statistical enrichment or depletion (q ≤ 0.05) between these
supervised clusters and additional-mutated genes, kataegis and
chromothripsis, only the known enrichment of homozygous
CHD1 deletions in the SPOP-cluster was observed13.

Performing unsupervised clustering and principal component
analysis on the primary prostate cancer and metastatic cohorts
revealed no striking primary-only genomic subgroup nor did we
detect the presence of the mCRPC-derived genomic subgroups in
the primary prostate cancer cohort (Supplementary Fig. 14). This
could reflect the absence of CDK12 mutations and the presence of
only three sporadic BRCA2-mutated samples (1%) in the primary
prostate cancer cohort. Furthermore, only one sample (1%) with
MSI-like and high TMB (>10), respectively, was observed in the
primary cancer cohort. Indeed, there is a striking difference in the
mutational load between both disease settings.

Discussion
We performed WGS of metastatic tumor biopsies and matched-
normal blood obtained from 197 patients with mCRPC to pro-
vide an overview of the genomic landscape of mCRPC. The size
of our cohort enables classification of patients into distinct disease
subgroups using unsupervised clustering. Our data suggest that
classification of patients using genomic events, as detected by
WGS, improves patient stratification, specifically for clinically
actionable subgroups such as BRCA-deficient and MSI patients.
Furthermore, we confirm the central role of AR signaling in
mCRPC that mediates its effect through regulators located in
non-coding regions and the apparent difference in primary versus
metastatic prostate cancers.

The classification of patients using WGS has the advantage of
being, in theory, more precise in determining genomically defined
subgroups in prostate cancer compared to analyses using targeted
panels consisting of a limited number of genes, or exome
sequencing. The identification of subgroups based on pre-
dominant phenotypic characteristics encompassing genomic sig-
natures may be clinically relevant and our clustering analysis
refines patient classification. In cluster A, we observed a high
TMB, which has been associated in other tumor types with a high
sensitivity to immune check-point inhibitors9,11,12. Clinical trials
using pembrolizumab in selected mCRPC patients are underway
(KEYNOTE-028, KEYNOTE-199)36,37. Interestingly, in both
cluster B and cluster D, we identified patients that did not have
the defining biallelic CDK12 or BRCA2 (somatic) mutation. Such
patients might be deemed false-negatives when using FDA-
approved assays (BRCAnalysis™ and FoundationFocus™), cur-
rently used in breast cancer diagnosis and based on the presence
of BRCA1/2 mutations, to predict response to poly(ADP-ribose)
polymerase (PARP) inhibitors and/or platinum compounds. The
first clinical trials combining PARP inhibitors with AR-targeted
therapies in mCRPC show promising results8. Thus, WGS-based
stratification may improve the patient classification of DNA
repair-deficient tumors as it uses the genome-wide scars caused
by defective DNA repair to identify tumors that have these
deficiencies.

The use of WGS also allowed us to gain more insight into
the role of non-coding regions of the genome in prostate cancer.
We confirmed the amplification of a recently reported AR-
enhancer20,21,30. In line with the cell line-based observations,
we show AR binding at these mCRPC-specific enhancer
regions, providing the first clinical indication that AR-enhancer
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Fig. 6 Distinct genomic phenotypes in mCRPC are enriched by mutually exclusive aberrations in key pathways. a Cluster-specific enrichment of mutated
genes (multiple colors), chromothripsis (light pink), and structural variants (light blue) (Fisher’s Exact Test with BH correction; q≤ 0.05). Percentages to
the left of the black line represent the relative mutational frequency in mCRPC samples, which are not present in the respective cluster, while the
percentages to the right of the black line represent the relative mutational frequency present in the samples from the tested cluster. b Genomic overview
with biologically relevant genes in the clusters A, B, D, and F with mutational enrichment of genes or large-scale events. The first track represents the
number of genomic mutations per Mbp (TMB) per SNV (blue), InDels (yellow), and MNV (orange) category genome-wide (square-root scale). The
second track represents the absolute number of unique structural variants (green) per sample. The third track represents the relative frequency per
structural variant category. Tandem duplications and deletions are subdivided into >100 kbp and <100 kbp categories. The fourth track represents relative
genome-wide ploidy status, ranging from 0 to ≥7 copies. The fifth track represents the relative contribution to mutational signatures (COSMIC)
summarized per proposed etiology. The sixth track displays somatic mutations in the relevant genes found in at least one cluster. The lower tracks
represent presence of ETS fusions (green), chromothripsis (pink), kataegis (red), CHORD prediction scores (HR-deficiency) (pink gradient), and MSI status
(blue) based on a threshold of MSI characteristics
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amplification also increases AR signaling in mCRPC tumors.
These findings are supported by previous studies demonstrating
that this amplification ultimately resulted in significantly ele-
vated expression of AR itself20,21,30. Furthermore, we confirm a
recurrent focal amplification near PCAT1, which shows robust
chromatin binding for AR in mCRPC samples, providing clin-
ical proof-of-concept of a functional enhancer that is also active
and AR-bound in cell line models. Recent research elucidated to
the functional importance of this region in regulating MYC
expression in prostate cancer, which could highlight a putative
role of this somatically acquired amplification31. However, the
WGS and ChIP-seq data presented here are not conclusive in
elucidating the definitive role of this amplified region in reg-
ulating MYC expression and further mechanistic studies are
needed to establish a potential link to MYC regulation.

In addition, PCAT1 is a long non-coding RNA, which is known
to be upregulated in prostate cancer and negatively regulates
BRCA2 expression while positively affectingMYC expression38,39.
Combining our WGS approach with AR, FOXA1, and H3K27ac
ChIP-seq data, we identify non-coding regions affecting both AR
itself, and possibly MYC, through AR-enhancer amplification as a
potential mechanism contributing to castration resistance.

A potential pitfall of our clustering analysis is the selection of
features used; for this we made a number of assumptions based
on the literature and distribution of the structural variants within
our cohort19–21,32. As the input of features and weights for
clustering analysis are inherent to the clustering outcome, we
performed additional clustering analyses using various combi-
nations of these features and applied alternative approaches but
did not detect striking differences compared to the current
approach. Another potential pitfall of the employed hierarchical
clustering scheme is that patients are only attributed to a single
cluster. An example of this can be seen in cluster A where a
patient is grouped based on its predominant genotype (MSI) and
associated mutations in MMR-related genes (MLH1, POLE,
POLD3, and BLM), but this sample also displays an increased
number of structural variants and increased ploidy status and
harbors a pathogenic BRCA2 mutation. However, it is missing the
characteristic number of genomic deletions (<100 kbp) and
BRCA mutational signature associated with BRCA2−/− samples
that define cluster D. Despite these pitfalls we conclude that
unbiased clustering contributes towards improved classification
of patients.

The CPCT-02 study was designed to examine the correlation of
genomic data with treatment outcome after biopsy at varying
stages of disease. Our cohort contains patients with highly vari-
able pre-treatment history and since the treatments for mCRPC
patients nowadays significantly impacts overall survival, the
prognosis of patients differs greatly. Therefore, correlation
between genomic data and clinical endpoints, such as survival is
inherently flawed due to the very heterogeneous nature of the
patient population. Moreover, our analysis comparing primary
and metastatic samples shows a significant increase in the num-
ber of genomic aberrations with advancing disease, meaning that
the difference in timing of the biopsies may bias the prognostic
value of the data. In future studies, we plan to gather all known
clinically defined prognostic information and determine whether
the genomic subtypes increase the ability to predict outcome.
Unfortunately, some clinical parameters with prognostic impor-
tance such as ethnicity will not be available due to ethical reg-
ulations. Moreover, we will increase the sample size, in order to
correlate genomic features to clinical parameters to better deter-
mine whether the subtypes we identified are stable over time.
Therefore, we are currently unable to present meaningful corre-
lations between clinical endpoints and the clusters we identified.
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Overall, we show the added value of WGS-based unsupervised
clustering in identifying patients with genomic scars who are
eligible for specific therapies. Since our clustering method does
not rely on one specific genetic mutation we are able to classify
patients even when WGS (or our methodology) does not find
conclusive evidence for (biallelic) mutations in the proposed
gene-of-interest. Further research should validate clinical
response and outcome on specific therapies in matched sub-
groups. This study also shows that a large population of mCRPC
patients do not fall into an as-of-yet clinically relevant or biolo-
gically clear genotype and further research can help elucidate the
oncogenic driver events and provide new therapeutic options.

Methods
Patient cohort and study procedures. Patients with metastatic prostate cancer
were recruited under the study protocol (NCT01855477) of the Center for Per-
sonalized Cancer Treatment (CPCT). This consortium consists of 41 hospitals in
The Netherlands (Supplementary Table 1). This CPCT-02 protocol was approved
by the medical ethical committee (METC) of the University Medical Center
Utrecht and was conducted in accordance with the Declaration of Helsinki.
Patients were eligible for inclusion if the following criteria were met: (1) age ≥ 18
years; (2) locally advanced or metastatic solid tumor; (3) indication for new line of
systemic treatment with registered anti-cancer agents; (4) safe biopsy according to
the intervening physician. For the current study, patients were included for biopsy
between 03 May 2016 and 28 May 2018. Data were excluded of patients with the
following characteristics: (1) hormone-sensitive prostate cancer; (2) neuro-
endocrine prostate cancer (as assessed by routine diagnostics); (3) unknown disease
status; (4) prostate biopsy (Fig. 1a). All patients provided written informed consent
before any study procedure. The study procedures consisted of the collection of
matched peripheral blood samples for reference DNA and image-guided percu-
taneous biopsy of a single metastatic lesion. Soft tissue lesions were biopsied
preferentially over bone lesions. The clinical data provided by CPCT have been
locked at 1st of July 2018.

Collection and sequencing of samples. Blood samples were collected in CellSave
preservative tubes (Menarini-Silicon Biosystems, Huntington Valley, PA, USA) and
shipped by room temperature to the central sequencing facility at the Hartwig
Medical Foundation40. Tumor samples were fresh-frozen in liquid nitrogen directly
after the procedure and send to a central pathology tissue facility. Tumor cellularity
was estimated by assessing a hematoxylin-eosin (HE) stained 6 micron thick sec-
tion. Subsequently, 25 sections of 20 micron were collected for DNA isolation.
DNA was isolated with an automated workflow (QiaSymphony) using the DSP
DNA Midi kit for blood and QiaSymphony DSP DNA Mini kit for tumor samples
according to the manufacturer’s protocol (Qiagen). DNA concentration was
measured by Qubit™ fluorometric quantitation (Invitrogen, Life Technologies,
Carlsbad, CA, USA). DNA libraries for Illumina sequencing were generated from
50 to100 ng of genomic DNA using standard protocols (Illumina, San Diego, CA,
USA) and subsequently whole-genome sequenced in a HiSeq X Ten system using
the paired-end sequencing protocol (2 × 150 bp). Whole-genome alignment
(GRCh37), somatic variants (SNV, InDel (max. 50 bp), MNV), structural variant
and copy number calling and in silico tumor cell percentage estimation were
performed in a uniform manner as detailed by Priestley et al.40. Mean read cov-
erages of reference and tumor BAM were calculated using Picard Tools (v1.141;
CollectWgsMetrics) based on GRCh3741.

Additional annotation of somatic variants and heuristic filtering. In addition,
heuristic filtering removed somatic SNV, InDel, and MNV variants based on the
following criteria: (1) minimal alternative reads observations ≤ 3; (2) gnomAD exome
(ALL) allele frequency ≥ 0.001 (corresponding to ~62 gnomAD individuals); and (3)
gnomAD genome (ALL) ≥0.005 (~75 gnomAD individuals)42. gnomAD database
v2.0.2 was used. Per gene overlapping a genomic variant, the most deleterious
mutation was used to annotate the overlapping gene. Structural variants, with BAF
≥0.1, were further annotated by retrieving overlapping and nearest up- and down-
stream annotations using custom R scripts based on GRCh37 canonical UCSC
promoter and gene annotations with respect to their respective up- or downstream
orientation (if known)43. Only potential fusions with only two different gene-partners
were considered (e.g., TMPRSS2-ERG); structural variants with both breakpoints
falling within the same gene were simply annotated as structural variant mutations.
Fusion annotation from the COSMIC (v85), CGI and CIVIC databases were used to
assess known fusions44–46. The COSMIC (v85), OncoKB (July 12, 2018), CIVIC (July
26, 2018), CGI (July 26, 2018) and the list from Martincorena et al.26 (dN/dS) were
used to classify known oncogenic or cancer-associated genes44–46.

Ploidy and copy-number analysis. Ploidy and copy-number (CN) analysis was
performed by a custom pipeline as detailed by Priestley et al.40. Briefly, this pipeline
combines B-allele frequency (BAF), read depth, and structural variants to estimate

the purity and CN profile of a tumor sample. Recurrent focal and broad CN
alterations were identified by GISTIC2.0 (v2.0.23)27. GISTIC2.0 was run with the
following parameters: (a) genegistic 1; (b) gcm extreme; (c) maxseg 4000; (d) broad
1; (e) brlen 0.98; (f) conf 0.95; (g) rx 0; (h) cap 3; (i) saveseg 0; (j) armpeel 1; (k)
smallmem 0; (l) res 0.01; (m) ta 0.1; (n) td 0.1; (o) savedata 0; (p) savegene 1; (q)
gvt 0.1. Categorization of shallow and deep CN aberration per gene was based on
thresholded GISTIC2 calls. Focal peaks detected by GISTIC2 were re-annotated,
based on overlapping genomic coordinates, using custom R scripts and UCSC gene
annotations. GISTIC2 peaks were annotated with all overlapping canonical UCSC
genes within the wide peak limits. If a GISTIC2 peak overlapped with ≤3 genes, the
most-likely targeted gene was selected based on oncogenic or tumor-suppressor
annotation in the COSMIC (v85), OncoKB (July 12, 2018), CIVIC (July 26, 2018),
and CGI (July 26, 2018) lists26,44–46. Peaks in gene deserts were annotated with
their nearest gene.

Estimation of tumor mutational burden. The mutation rate per megabase (Mbp)
of genomic DNA was calculated as the total genome-wide amount of SNV, MNV,
and InDels divided over the total amount of callable nucleotides (ACTG) in the
human reference genome (hg19) FASTA sequence file:

TMBgenomic ¼
SNVg þMNVg þ InDelsg

� �

2858674662
106

� � ð1Þ

The mutation rate per Mbp of coding mutations was calculated as the amount
of coding SNV, MNV, and InDels divided over the summed lengths of distinct
non-overlapping coding regions, as determined on the subset of protein-coding
and fully supported (TSL= 21) transcripts in GenCode v28 (hg19)47:

TMBcoding ¼
SNVc þMNVc þ InDelscð Þ

28711682
106

� � ð2Þ

MSI and HR-deficiency prediction. HR-deficiency/BRCAness was estimated
using the CHORD classifier (Nguyen, van Hoeck and Cuppen, manuscript in
preparation). This classifier was based on the HRDetect48 algorithm, however,
redesigned to improve its performance beyond primary BC. The binary prediction
score (ranging from 0 to 1) was used to indicate BRCAness level within a sample.
To elucidate the potential target gene(s) in the HR-deficient samples (Fig. 4), we
used the list of BRCAness genes from Lord et al.35.

MSI status was determined based on the following criteria: if a sample
contained >11,436 genomic InDels (max. 50 bp, with repeat-stretches of ≥4 bases,
repeat length sequence between 2 and 4, or if these InDels consist of a single repeat
sequence, which repeats ≥5 times), the sample was designated as MSI40.

Detection of (onco-)genes under selective pressure. To detect (onco-)genes
under tumor-evolutionary mutational selection, we employed a Poisson-based dN/
dS model (192 rate parameters; under the full trinucleotide model) by the R
package dndscv (v0.0.0.9)26. Briefly, this model tests the normalized ratio of non-
synonymous (missense, nonsense, and splicing) over background (synonymous)
mutations while correcting for sequence composition and mutational signatures. A
global q-value ≤ 0.1 (with and without taking InDels into consideration) was used
to identify statistically significant (novel) driver genes.

Identification of hypermutated foci (kataegis). Putative kataegis events were
detected using a dynamic programming algorithm, which determines a globally
optimal fit of a piecewise constant expression profile along genomic coordinates as
described by Huber et al.49 and implemented in the tilingarray R package (v1.56.0).
Only SNVs were used in detecting kataegis. Each chromosome was assessed
separately and the maximum number of segmental breakpoints was based on a
maximum of five consecutive SNVs (max. 5000 segments per chromosome). Fitting
was performed on log10-transformed intermutational distances. Per segment, it was
assessed if the mean intermutational distance was ≤2000 bp and at least five SNVs
were used in the generation of the segment. A single sample with >200 distinct
observed events was set to zero observed events as this sample was found to be
hypermutated throughout the entire genome rather than locally. Kataegis was
visualized using the R package karyoploteR (v1.4.1)50.

Mutational signatures analysis. Mutational signatures analysis was performed
using the MutationalPatterns R package (v1.4.2)51. The 30 consensus mutational
signatures, as established by Alexandrov et. al, (matrix Sij; i= 96; number of tri-
nucleotide motifs; j= 30; number of signatures) were downloaded from COSMIC
(as visited on 23-05-2018)29. Mutations (SNVs) were categorized according to their
respective trinucleotide context (hg19) into a mutational spectrum matrix Mij (i=
96; number of trinucleotide contexts; j= 196; number of samples) and subse-
quently, per sample a constrained linear combination of the thirty consensus
mutational signatures was constructed using non-negative least squares regression
implemented in the R package pracma (v1.9.3).

Between two and 15 custom signatures were assessed using the NMF package
(v0.21.0) with 1000 iterations52. By comparing the cophenetic correlation
coefficient, residual sum of squares and silhouette, we opted to generate five custom
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signatures. Custom signatures were correlated to existing (COSMIC) signatures
using cosine similarity.

Detection of chromothripsis-like events. Rounded absolute copy number
(excluded Y chromosome) and structural variants (BAF ≥ 0.1) were used in the
detection of chromothripsis-like events by the Shatterseek software (v0.4) using
default parameters53. As a precise standardized definition of chromothripsis has
not yet been fully established, and as per the author’s instruction, we performed
visual inspection of reported chromothripsis-like events after dynamically adapting
criteria thresholds (taking the recommended thresholds into consideration). We
opted to use the following criteria: (a) Total number of intrachromosomal struc-
tural variants involved in the event ≥25; (b) max. number of oscillating CN seg-
ments (two states) ≥7 or max. number of oscillating CN segments (three states)
≥14; (c) Total size of chromothripsis event ≥20Mbp; (d) Satisfying the test of equal
distribution of SV types (p > 0.05); and (e) Satisfying the test of non-random SV
distribution within the cluster region or chromosome (p ≤ 0.05).

Unsupervised clustering of mCRPC WGS characteristics. Samples were clus-
tered using the Euclidian distance of the Pearson correlation coefficient (1 – r) and
Ward. D hierarchical clustering based on five basic whole-genome characteristics;
number of mutations per genomic Mbp (SNV, InDel, and MNV), mean genome-
wide ploidy, number of structural variants and the relative frequencies of structural
variant categories (inversions, tandem duplications (larger and smaller than
100 kbp), deletions (larger and smaller than 100 kbp), insertions and inter-
chromosomal translocations). Data was scaled but not centered (root mean square)
prior to calculating Pearson correlation coefficients. After clustering, optimal leaf
ordering (OLO) was performed using the seriation package (v1.2.3)54. The elbow
method was employed to determine optimal number of discriminating clusters
(Supplementary Fig. 10) using the factoextra package (v1.0.5). Bootstrapping was
performed using the pvclust package (v2.0) with 5000 iterations.

Cluster-specific enrichment of aberrant genes (either through SV, deep copy-
number alteration, or coding SNV/InDel/MNV), kataegis, chromothripsis,
GISTIC2 peaks, and predicted fusions between clusters was tested using a two-
sided Fisher’s Exact Test and Benjamini–Hochberg correction.

A principal component analysis (with scaling and centering) using the prcomp
R package55 was performed on the chosen genomic features and cos2 values for
each feature per principal component were retrieved to determine the importance
of each feature per respective principal component.

To test the robustness of our clustering, we performed unsupervised clustering,
and also other techniques, using various combinations of structural variants and
clustering mechanisms as a surrogate for different genome-instability metrics but
this analysis did not reveal any striking new clusters.

Supervised clustering based on mutually exclusive aberrations. Samples were
sorted on mutual-exclusivity of SPOP, FOXA1, and IDH1 coding mutations and
copy-number aberrations and ETS family gene fusions (and overexpression) per
promiscuous partner (ERG, ETV1, ETV4, and FLI1) as defined in primary prostate
cancer13. Supplementary Table S1A of the article “The Molecular Taxonomy of
Primary Prostate Cancer”13 was used to determine the relative frequency and
mutational types of each of the respective primary prostate cancer within the
TCGA cohort. In addition, as the TCGA cohort did not denote high-level/deep
amplifications, we did not incorporate these either in this analysis.

Correlation of the detection rate of genomic aberrations versus tumor cell
percentages. Absolute counts of SNV, InDels, MNV and SV were correlated to the
in silico estimated tumor cell percentage using Spearman’s correlation coefficient.

Correlation of pre-treatment history with detected aberrations and WGS
characteristics. Pre-treatment history of patients was summarized into ten groups:

1. Only chemo-treatment (with radio-nucleotides).
2. Only chemo-treatment (without radio-nucleotides).
3. Only radio-nucleotides.
4. Only secondary anti-hormonal therapy (with radio-nucleotides).
5. Only secondary anti-hormonal therapy (without radio-nucleotides).
6. Secondary anti-hormonal therapy+ one chemo-treatment (with radio-

nucleotides)
7. Secondary anti-hormonal therapy+ two chemo-treatment (with radio-

nucleotides)
8. Secondary anti-hormonal therapy+ one chemo-treatment (without radio-

nucleotides)
9. Secondary anti-hormonal therapy+ two chemo-treatment (without radio-

nucleotides)
10. No additional treatment after androgen deprivation therapy.

Association with mutated genes, presence of chromothripsis, presence of
kataegis, MSI-status, and genomic subtypes was tested with a two-sided Fisher's
exact test with Benjamini–Hochberg correction.

ChIP-seq experimental set-up and analysis. ChIP-seq cell culturing: VCaP cells
were incubated in RPMI medium in additional with 10% fetal bovine serum (FBS).
Bicalutamide-resistant VCaP cells (VCaP-Bic) were cultured in RPMI medium
supplemented with 10% dextran charcoal-stripped bovine serum (DCC) and 10-
6M bicalutamide. VCaP cells were hormone deprived in RPMI medium with 10%
DCC for 3 days before the ChIP-seq experiment.

ChIP-seq and peak calling analysis: For both cell and tissue ChIPs, 5 µg of
antibody and 50 µg of magnetic protein A or G beads (10008D or 10009D, Thermo
Fisher Scientific) were used per IP. The following antibodies were used: Foxa1/2
(M-20, sc-6554 Santa Cruz Biotechnology), AR (N-20, sc-816 Santa Cruz
Biotechnology), and H3K27ac (39133, Active Motif). ChIP-seq was performed as
described previously56. In brief, fresh-frozen tissue was cryosectioned into
30 micron thick slices and stored at −80 °C till processing. Samples were fixed
using 2 mM DSG (20593; Thermo Fisher Scientific) in solution A (50 mM Hepes-
KOH, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA) while rotating for 25 min at
room temperature, followed by the addition of 1% formaldehyde and another 20
min incubation at room temperature. The reaction was quenched by adding a
surplus of glycine. Subsequently, tissue sections were pelleted and washed with cold
PBS. Tissue was disrupted using a motorized pellet pestle (Sigma-Aldrich) to
disrupt the tissue in cold PBS and obtain a cell suspension, after which the nuclei
were isolated and the chromatin was sheared. During immunoprecipitation,
human control RNA (4307281; Thermo Fisher Scientific) and recombinant
Histone 2B (M2505S; New England Biolabs) were added as carriers, as described
previously57.

Immunoprecipitated DNA was processed for sequencing using standard
protocols and sequenced on an Illumina HiSeq 2500 with 65 bp single end reads.
Sequenced samples were aligned to the reference human genome (Ensembl release
55: Homo sapiens GRCh 37.55) using Burrows-Wheeler Aligner (BWA, v0.5.10)58,
reads with a mapping quality >20 were used for further downstream analysis.

For the tissues, peak calling was performed using MACS259 with option
--nomodel. In addition, peaks were called against matched input using DFilter60 in
the refine setting with a bandwidth of 50 and a kernel size of 30. Only peaks that
were shared between the two algorithms were considered.

For the cell lines, peaks were obtained with MACS (v1.4; p ≤ 10−7).
The AR and FOXA1 ChIP-seq data for LNCAP with/-out R1881 was obtained

from GSE9468261. The H3K27ac ChIP-seq data for LNCAP was obtained from
GSE11473756.

Determining enrichment of enhancer to gene ratios: Absolute copy-numbers
segments overlapping the gene loci and putative enhancer region (as detected by
GISTIC2; focal amplification peaks with a width <5000 bp) were retrieved per
sample. If regions overlapped multiple distinct copy-number segments, the
maximum copy-number value of the overlapping segments was used to
represent the region. Samples with gene-to-enhancer ratios deviating
>1 studentized residual from equal 1:1 gene-to-enhancer ratios (linear model:
log2(copy number of enhancer) – log2(copy number of gene locus) ~ 0) were
categorized as gene or enhancer enriched. Based on the direction of the ratio,
samples were either denoted as enhancer (if positive ratio) or gene (if negative
ratio) enriched.

Comparison of unmatched primary prostate cancer and mCRPC. Mutational
frequencies of the drivers (dN/dS and or GISTIC2) and subtype-specific genes were
compared to a separate (unmatched) cohort of primary prostate cancer (n= 210)
focusing on Gleason score (GS) of 3+ 3, 3+ 4, or 4+ 3, as described by Fraser
et al.15 and Espiritu et al.25. Briefly, whole-genome sequencing reads were mapped
to the human reference genome (GRCh37) using BWA58 (v0.5.7) and downstream
analysis was performed using Strelka62 (v.1.0.12) for mutational calling using a
matched-normal design (SNVs and InDels), copy-number alterations were esti-
mated with TITAN63 (v1.11.0), and SNP array data as described in Espiritu et al.25

with Delly64 (v0.5.5 and v0.7.8) was used for detecting structural variants (trans-
locations, inversions, tandem duplications, and deletions). Large insertion calls and
overall ploidy was not available for the primary prostate cancer cohort.

Tumor mutational burden (TMB) was calculated by dividing the number of
SNVs and InDels by the total amount of callable bases in the human reference
genome (GRCh37), identical to Eq. 1. MNV calls were not available for the primary
prostate cancer cohort.

Multiple aberrations per gene within a sample were summarized as a single
mutational event, e.g., a deletion and mutation in PTEN would only count for a
single mutation in the sample. Only non-synonymous mutations and gains/
deletions overlapping with coding regions were used. Statistically significant
differences in mutational frequencies were calculated using a two-sided Fisher’s
Exact test with Benjamini–Hochberg correction.

The primary prostate cancer dataset was clustered together with the mCRPC
cohort using the Euclidian distance of the Pearson correlation coefficient (1 – r)
and Ward.D hierarchical clustering based on three basic whole-genome
characteristics, which were available for all samples; number of mutations per
genomic Mbp (SNVs and InDels), number of structural variants and the relative
frequencies of structural variant categories (inversions, tandem duplications (larger
and smaller than 100 kbp), deletions (larger and smaller than 100 kbp), and
interchromosomal translocations).
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from Hartwig Medical
Foundation, which were used under data request number DR-011 for the current study.
Both WGS and clinical data are freely available for academic use from the Hartwig
Medical Foundation through standardized procedures and request forms can be found at
https://www.hartwigmedicalfoundation.nl40. The ChIP-seq profiles (aligned reads and
MACS/MACS2 peaks) as analyzed and shown in this manuscript have been deposited on
GEO under accession number: GSE138168.

Code availability
All tools and scripts used for processing of the WGS data are available at https://github.
com/hartwigmedical/ and/or can be provided by authors upon request.
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