
Current status on Alzheimer disease molecular
genetics: from past, to present, to future

Karolien Bettens1,2, Kristel Sleegers1,2 and Christine Van Broeckhoven1,2,∗

1Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB and 2Laboratory of

Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium

Received February 15, 2010; Revised and Accepted April 7, 2010

Linkage studies, candidate gene and whole-genome association studies have resulted in a tremendous
amount of putative risk genes for Alzheimer’s disease (AD). Yet, besides the three causal genes—amyloid
precursor protein and presenilin 1 and 2 genes—and one risk gene apolipoprotein E (APOE), no single func-
tional risk variant was identified. Discussing the possible involvement of rare alleles and other types of gen-
etic variants, this review summarizes the current knowledge on the genetic spectrum of AD and integrates
different approaches and recent discoveries by genome-wide association studies.

INTRODUCTION

It was estimated that, in 2010, 35.6 million people worldwide will
be living with a diagnosis of dementia. This number of diagnosed
dementia patients is projected to nearly double every 20 years,
leading to 65.7 million patients in 2030 (1). Also, it is known
that the actual number of dementia patients is much higher
since several more people live with dementia but never receive
a clinical diagnosis. These numbers indicate that dementia is
rapidly becoming a major threat to healthcare in our societies.

Alzheimer’s disease (AD) is by far the most common form
of dementia with prevalence estimates ranging from 4.4% in
persons aged 65 years to 22% at ages 90 and older (2).
Increased age and a positive family history of dementia are
the two major risk factors of AD. AD is clinically character-
ized by insidious onset and progressive impairment of
memory and other cognitive functions (3), ultimately resulting
in complete dependency and death of the patient. As clinical
AD symptoms overlap substantially with other disorders of
the central nervous system {such as frontotemporal dementia
[FTLD (4)]}, a definite diagnosis of AD can only be obtained
after pathological brain examination. The key features of AD
brains are neuronal and synapse loss, extracellular plaques
composed of amyloid-b (Ab) peptides and intraneuronal neu-
rofibrillary tangles consisting of hyperphosphorylated tau
protein (5), although other lesions such as TDP-43 immunor-
eactivity and ischaemia are common observations.

In general, two subgroups are recognized upon the age at
which the first clinical symptoms become apparent; early-onset
AD (onset age ,65years) and late-onset AD (onset age
.65years). Although most patients develop AD at later age,
it is mainly the research performed on the rare autosomal-
dominant early-onset form of AD that provided valuable
insights into disease pathogenesis. Fully penetrant (causal)
mutations leading to early-onset familial AD were identified
within three genes; the amyloid precursor protein gene (APP)
and the two presenilin genes (PSEN1 and PSEN2). While the
heritability for the more common late-onset form of AD is pre-
dicted to be as high as 80% based on twin studies (6), over the
last decades only the apolipoprotein E gene (APOE) has been
irrefutably recognized as a major risk factor for late-onset AD
(7). Nonetheless, APOE 14 does not account for all genetic vari-
ation in AD (8,9). The complex late-onset form is most likely
caused by multiple genetic and environmental susceptibility
factors. High-throughput genomic association studies on exten-
sive populations have opened up new avenues in detecting sus-
ceptibility factors for late-onset AD. Recently, three novel risk
genes have been identified [CLU, CR1 and PICALM1 (10,11)].

MONOGENIC FORMS OF AD: CONSTITUTION OF

Ab CASCADE

Since the identification of the first APP missense mutation in her-
editary cerebral hemorrhages with amyloidosis (HCHWA-D)
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(12), 23 APP missense mutations have been identified in 77 AD
families (for up-to-date information, see AD Mutation Database,
http://www.molgen.vib-ua.be/ADMutations/). APP mutations
account for ,0.1% of AD patients (13). Following the amyloi-
dogenic pathway in neurons, APP is proteolytically cleaved by
b-secretase and subsequently by g-secretase generating full-
length Ab40 or Ab42 (14,15). Interestingly, all missense
mutations influence APP processing since they are positioned
in or near the Ab coding exons (APP exons 16 and 17) (AD
Mutation Database) (Fig. 1). In addition to dominant APP
mutations, two recessive mutations causing disease only in the
homozygous state were identified: a trinucleotide deletion
E693D segregating in one Japanese family proportionally
decreased Ab40 and Ab42 with no change in their ratio (16),
and A673V in one other family (Fig. 1) (17). Although very
rare, it does suggest that other disease-causing mutational
mechanisms can occur in this well-studied gene, which might
explain at least some seemingly sporadic patients with
early-onset AD. Additionally, the mutation spectrum extended
to APP locus duplications underscoring the importance of APP
gene dosage in AD. Duplicated APP regions containing
several genes (18–20) or APP only (21) were clinically linked
to early-onset AD often with extensive cerebral amyloid

angiopathy (22). Depending on the ethnic population under
study, APP duplications accounted for ,2–18% of autosomal-
dominant early-onset AD families (19,21,23,24).

At present, 178 different AD-related mutations in 393
families have been identified in PSEN1, while only 14 mutations
in 23 families were detected in PSEN2 (http://www.molgen.
vib-ua.be/ADMutations/). The majority of PSEN mutations
are single-nucleotide substitutions, but small deletions and
insertions have been described as well (AD Mutation Database).
Mutations are scattered over the protein with some clustering
within the transmembrane domains and the hydrophilic loops
surrounding these domains (25). PSENs are functionally
involved in the g-secretase-mediated proteolytic cleavage of
APP (26). Mutations in PSENs impair this cleavage, resulting
in an increased Ab42/Ab40 ratio, by either an increase in Ab42

as shown in plasma and fibroblast media of PSEN mutation car-
riers (27,28) or by a decrease in Ab40, suggesting a
loss-of-function mechanism rather than a gain-of-function
[(29,30) Fig. 1].

Summarized, all three causal AD genes lend support to a
common pathogenic AD pathway, stating a pivotal role for
Ab. According to this amyloid hypothesis, neurodegenerative
processes are the consequence of an imbalance between Ab

Figure 1. Effect of different causal APP and PSEN1 mutations on APP processing and Ab generation. (A) Schematic presentation of the APP protein structure.
Right, the effect of APP mutations on APP processing is given according to their location relative to the Ab peptide. The additional effects of the N-terminal
recessive mutations A673V and E693D are indicated by the ‘+’ symbol. Left, the effect of whole APP gene or locus duplications is depicted. (B) Schematic
presentation of the PSEN protein structure. Boxes represent the transmembrane regions that are separated by hydrophilic loops. The effect of different mutations
scattered throughout the protein is summarized.
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production and Ab clearance (31–33), suggesting that other
genes involved in these pathways might be risk factors as well.

COMPLEX FORMS OF AD: CONTINUOUS SEARCH

FOR NEW RISK GENES

The genetic complexity of late-onset AD is underscored by the
detection of only one consistent susceptibility factor; APOE 14
(34). Yet, genetic linkage and association studies over the last
20 years led to a plethora of putative risk genes (for up-to-date
information; see AlzGene; http://www.alzgene.org/) (35).
Approaches differed from hypothesis-driven (gene or pathway-
based) to hypothesis-free (genome-scale) genetic studies. In a
hypothesis-free setup, linkage scans on late-onset AD families
and affected sib-pairs (ASP) identified candidate regions on
several chromosomes. Particularly chromosomes 6, 9, 10, 12
and 21 were repeatedly found (36) and predicted to harbor sus-
ceptibility genes for late-onset AD. To date, no gene has been
reported to explain these linkage peaks with high confidence.

The design of hypothesis-driven association studies has
gradually shifted from studies in which only a few SNPs per
gene were investigated to studies employing a more extensive
linkage disequilibrium (LD)-based approach covering the
complete genetic variation in a gene or a gene region, includ-
ing, for example, regulatory regions. Besides the amyloid
hypothesis, numerous candidate genes fitting one or another
AD-related hypothesis on neurodegenerative pathways were
analyzed, such as APP cleavage and trafficking, cholesterol
metabolism, calcium dysregulation and so on (Fig. 2). As
such, an endless record of candidate-gene-based studies was
publicized. Nevertheless, none of the associated candidate
genes attained an effect size similar to APOE 14 and along
with positive associations, negative replications for the same
gene were described (their number will probably be higher
since publication in the field is biased toward positive
finding; http://www.alzgene.org/). Reasons for lack of repro-
ducibility may include: insufficient study power to detect var-
iants with minor contributions, biological, genetic and allelic
heterogeneity, differences in study design and the presence
of population substructure.

The comprehensive approach of genome-wide association
(GWA) studies seemed very promising for complex disorders,
as it permits the simultaneous assessment of thousands of
genetic variants without prior assumption on biological path-
ways. Until now, 10 GWA studies have been published on
AD, with some differences in terms of design (patient-control
or family based), SNP selection method (LD-based or based
upon biological function), ethnicity of population, number of
AD patients and controls, number of SNPs and SNP genotyp-
ing platform. Apart from the fact that all GWA studies except
one [which was conducted in two extended pedigrees (37)]
substantiated APOE 14 as the most significant finding, other
genes were proposed as risk factors for late-onset AD [for
an overview (38)]. Although none met standard criteria for
genome-wide significance, several loci were replicated in
independent study populations (39,40), though it should be
noted that few replication studies have been published so far.

The two most recent GWA studies differ largely from all
previous ones (10,11). First and foremost, they independently

provided strong evidence for an association with the clusterin
gene (CLU aka apoliprotein J gene, APOJ), making CLU the
first consistent risk gene in AD history since the identification
of APOE 14. Secondly, major sample sizes were acquired by
international collaboration (.13 000 individuals in the study
of Lambert et al. and .16 000 individuals in the study of
Harold et al.), surpassing the power hurdle to detect variants
with a minor effect. Two other risk genes were detected, i.e.
the receptor gene for the complement C3b protein, CR1, and
PICALM, encoding the phosphatidylinositol-binding clathrin
assembly protein. However, together the three risk genes
explained only part of the genetic variance which at their dis-
covery was even likely an overestimate of the true effect (41).
Ongoing meta-analyses using raw data of GWA studies will
undoubtedly reveal novel genes, given their increased power
to detect alleles with a minor effect.

The three novel risk genes support the existing AD hypoth-
eses. Several properties of CLU, an abundantly expressed apo-
lipoprotein in brain, are directly connected to Ab. Present in
amyloid deposits (42), CLU has an increased expression in
several AD brain regions (43). It acts as an Ab chaperone
blocking the aggregation of Ab42 peptides (44,45). However,
depending on the balance between Ab and CLU, CLU can
either enhance or prevent amyloid fibril formation and cyto-
toxicity (46), though it remains unknown whether the same
holds true in AD patients. CLU mediates Ab clearance at
the blood–brain barrier (47) and by increased endocytosis
into glial cells (48–50). CR1 is linked to AD through fibrillar
Ab-induced activation of the C3 complement cascade (51).
Circulating Ab42 is cleared by C3b-mediated adherence to
CR1 at the erythrocyte surface, a process which is decreased
in AD patients when compared with control individuals (52).
Complement inhibition of C3 in transgenic mice leads to an
increased Ab deposition and neurodegeneration (53),
suggesting a protective role of the complement system in
AD mice. The precise role of PICALM in AD pathophysiol-
ogy is unclear, but it could include a role in APP processing
through the endocytotic pathway, synaptic fusion and
memory formation during trafficking of vesicle-associated
membrane protein 2 [VAMP2 (54,55), Fig. 2]. Previous
associations were detected within the dynamin-binding
protein gene (DNMBP) (55,56), underscoring that genetic
variability in genes involved in synaptic functioning might
contribute to AD risk. The primary genetic variants within
the three novel genes CLU, CR1 and PICALM underlying
the associations with risk for AD remain to be elucidated.

LESSONS FROM GENETIC EVIDENCE

The fact that late-onset AD has a complex genetic heterogen-
eity is reflected by the dissimilar results obtained in the
hypothesis-free genome scans and GWA studies. This casts
some doubt on the appropriate detection methods for AD sus-
ceptibility factors. Late-onset AD might be caused by multiple
common or rare alleles, as well as by a wide spectrum of
alleles of different frequencies and phenotypic effect sizes.
In the common disease-common variant hypothesis, complex
diseases are caused by a limited number of common variants
with small predisposing effects (57–59). GWA studies
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restricting the use of tagSNPs to common SNPs (minor allele
frequency, MAF ≥ 5%) have the potential to detect common
variants since LD mapping depends on allele frequency of
disease and marker locus (60–62). Even common variants
with small effects (odds ratios in the range of 1.1–1.2) (63)
will be detected when using very large sample sizes acquired
by combining samples from many different settings.

On the contrary, rare variants will likely go undetected by
GWA studies, no matter how large the sample size and the
number of common SNPs being genotyped (64). Yet, rare var-
iants might be implicated in complex pathways as previous
studies suggested their contribution to common disease (65)
and their importance in several disorders (66–68). Evidence
suggested that rare variants in regulatory regions of causal
genes contribute to AD susceptibility. For example, mutations
detected within the APP 5′ regulatory region in early- and
late-onset AD patients might increase APP transcriptional
activity (69,70), although this was not corroborated by a sub-
sequent study (71). Whether 3′-UTR variants exert a func-
tional effect on APP translation by miRNAs still remains to
be assessed, but a recent re-sequencing effort detected rare
mutations at highly conserved predicted miRNA target sites

in late-onset AD patients (72). In addition, regulatory
PSEN1 promoter variants were associated with AD in multiple
early-onset populations (73–75) and for some a decreasing
effect on transcriptional activity was shown (75,76). A del-
etion polymorphism inside the PSEN2 promoter region was
shown to increase PSEN2 transcription by deprivation of tran-
scription factor repression in a Russian early-onset AD popu-
lation (77), although this could not be demonstrated in early-
and late-onset AD populations of other ethnicities (78–80).

Besides the known AD genes, common or rare variants in
genes associated with other neurodegenerative dementias
might also confer risk to AD. For instance, missense mutations
in progranulin (PGRN), in which null mutations result in
FTLD, are possible susceptibility factors for AD by influen-
cing PGRN levels (81). Association findings with interesting
susceptibility genes warrant further investigation of rare var-
iants, since they might be functionally involved. Sequencing
of the b-site APP-cleaving enzyme 1 (BACE1) 3′-UTR
region identified rare patient-specific variants at predicted
miRNA-binding sites (72). Besides the involvement of mul-
tiple genes in AD, several variants within one gene might
confer risk to AD. For example, allelic heterogeneity was

Figure 2. Overview of several disease pathways involved in AD pathogenesis. Causal AD genes and AD risk factors are marked in blue. APP is synthesized by
the endoplasmatic reticulum (ER) and the Golgi apparatus (1). Following the amyloidogenic pathway in neurons, APP is cleaved by b-secretase (BACE1) and
g-secretase (PSEN) to generate Ab peptides and the amyloid intracellular domain [AICD] (2), which influences the transcription of several genes (3). In the APP
retromer recycling pathway (1), APP is redirected to endosomes by SORL1. PICALM has a presumed role in APP endocytotic recycling (1). Ab monomers
aggregate into Ab fibrils, causing amyloid plaques in brain parenchyma and vasculature (4). Ab activates microglia and astrocytes, inducing the complement
system, local inflammatory responses and oxidative stress (5). CR1 is the receptor of the complement C3b protein and participates in the clearance of Ab from
circulation (6). Besides causing increased Ab endocytosis into glial cells, CLU is involved in Ab clearance at the blood–brain barrier (7). APOE enhances
amyloid plaque formation by conformational changes of Ab. Clusterin (APOJ) and APOE are the main escorting proteins of Ab in brain (7). Both are also
important in cholesterol metabolism at the neuronal membrane (8) and high intracellular cholesterol may enhance APP amyloidogenic processing (2), which
in turn can lead to membrane damage (9). Moreover, impaired cholesterol metabolism may influence synaptic dysfunction (10). Both PICALM and DNMBP
are related at the synapse (10). Interaction of Ab oligomers at the membrane is further connected to the calcium hypothesis in AD (11). Polymorphisms in
the Ca2+ channel CALHM1 impair Ca2+ permeability at the plasma membrane (11). In addition, PSENs function as ER Ca2+-leak channels and several
early-onset mutations impair Ca2+-leak-channel function, resulting in an excessive Ca2+ accumulation in the cytosol. An excessive Ca2+ is taken up by mito-
chondria, further leading to oxidative stress and apoptosis (12).
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supported for the sortilin-related receptor (SORL1), where the
association with AD was found in two distinct gene regions
(82,83).

Another type of genetic variation that has been underrepre-
sented in genetic studies of AD but gained attention over the
last years given its contribution to phenotypic diversity and
complex diseases (84) is copy-number variations (CNVs).
CNVs are implicated in a number of neurodegenerative dis-
orders [for review, see (85)], including AD where APP dupli-
cations result in early-onset autosomal-dominant AD (18–21).
In the future, genome-wide microarray data might shed light
on the contribution of CNVs to complex AD.

SUMMARY AND FUTURE PROSPECTS: WHERE

TO GO?

A marked evolution in study design has been seen in the field
of AD genetics. Whereas classical, family-based linkage
studies identified three causal AD genes and the APOE suscep-
tibility factor, gene- and genome-based association studies
have produced an intractable amount of association signals
for late-onset AD, though the latter studies have been domi-
nated by inconsistent findings (AlzGene database). Identifi-
cation of CLU, CR1 and PICALM as novel risk genes for
late-onset AD was a major breakthrough and boost for the
genetic field of late-onset AD. Besides these three novel risk
genes, interesting genetic signals attaining sub-threshold sig-
nificance should be examined in more detail. Conducting
meta-analyses on GWA data will likely reveal new findings
given the increased power to detect risk genes with smaller
effect sizes. Conversely, this might bring about problems
inherent to combining samples of different sources to obtain
larger and powerful sample sizes, i.e. population-specific
signals are diluted using mixed samples, especially taken the
extensive genetic and allelic heterogeneity between popu-
lations. Furthermore, association outcomes might be different
depending on the LD pattern between populations. Alterna-
tively, studying isolated populations with a few founders
might reduce the genetic heterogeneity and augment the
chance to detect these otherwise ‘undetected’ signals.
Another approach could be the use of intermediate phenotypes
that resemble more closely the underlying disease pathogen-
esis and more directly interact with the genetic risk variance.

Since the failure to detect rare variants is another limitation
of GWA studies, other detection methods are warranted to
interrogate the complete allelic spectrum of AD. With the
reducing costs of novel technologies, extensive re-sequencing
efforts capturing all rare variants will eventually become poss-
ible in large AD populations. Whole exome-sequencing of
probands of early-onset AD families has already started to
take off, identifying a number of potential rare AD mutations
[presented at ASHG2009, (86)]. Furthermore, whole-genome
sequencing of AD patients will detect variations in non-coding
regulatory sequences of RNA transcripts (such as miRNAs),
and at an even higher level, variations in sequences mediating
the expression of these regulatory sequences. Using the data of
the 1000 Genomes Project (http://www.1000genomes.org),
future GWA studies might include rare variants to ensure
that a high proportion of rare SNPs are captured (61). The

role of structural variants, such as CNVs in relation to AD,
should be interrogated across the complete genome. This is
facilitated by the development of new generation SNP arrays
and technology tools that combine SNP level and CNV
dosage associations. In follow-up studies, all statistically sig-
nificant associations should be functionally assessed, although
this remains a hazardous task since many genetic variants play
an unknown role and the functional effect may well be very
subtle (87).

As no single method will fully elucidate the genetic spec-
trum of AD, more comprehensive approaches are rec-
ommended. The main challenge over the next years will be
to devise methods allowing the integration and joint analysis
of several types of variants and data, i.e. genetic data from
GWA studies and re-sequencing experiments as well as tran-
scriptomic, proteomic, epigenomic and metabolomic data.
This genomic convergence approach has already been success-
ful in prioritization of risk genes for AD on chromosome 10
(88). Once functionally established, epistasis should be evalu-
ated by interaction studies between different susceptibility
genes. One further challenge will be the study of the contri-
bution of environmental risk factors in susceptibility to AD,
since so far not much is known about the interplay of
genetic and environmental factors.

The genetic architecture of AD is far from being completely
unraveled (Fig. 3). Identifying additional genetic factors will
remain challenging as genetic searches are complicated at
several levels. However, promising strategies and tools are
being developed to optimize comprehensive approaches.
Detecting new susceptibility factors with a functional impact
on AD will bring about major insights into the disease path-
ways, and initiate new lines of research toward improved

Figure 3. Schematic summary of the current knowledge of AD molecular gen-
etics. Mutations in causal AD genes APP, PSEN1 and PSEN2 are associated
with early-onset AD. Other mutations such as regulatory variants in promoter
regions or 3′ untranslated regions (3′-UTR) of causal AD genes may confer
susceptibility to late-onset AD. Multiple common and/or rare variants in AD
susceptibility genes confer risk to late-onset AD. The top four risk genes (Alz-
forum, status on 2 April 2010) are listed. The role of CNVs and other struc-
tural variants in late-onset AD remains to be clarified, likewise for the
interaction between the different risk factors (indicated by question marks).
Genes associated with other neurodegenerative dementias like PGRN are
involved in AD genetic etiology as well. Several different approaches will
likely reveal new genes involved in early and late-onset AD (yellow box).
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medical treatment. Though, it is still a long way to go, genetic
risk profiles will eventually be translated into improved
medical healthcare, including better and earlier diagnoses of
AD as well as individualized care and treatments of AD
patients.
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