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AMD pathobiology was irreversibly changed by the recent discovery of extracellular
cholesterol-containing deposits in the subretinal space, between the photoreceptors and
retinal pigment epithelium (RPE), called subretinal drusenoid deposits (SDDs). SDDs
strikingly mirror the topography of rod photoreceptors in human macula, raising the
question of whether an equivalent process results in a deposition related to foveal cones.
Herein we propose that AMD’s pathognomonic lesion—soft drusen and basal linear deposit
(BLinD, same material, diffusely distributed)—is the leading candidate. Epidemiologic,
clinical, and histologic data suggest that these deposits are most abundant in the central
macula, under the fovea. Strong evidence presented in a companion article supports the idea
that the dominant ultrastructural component is large apolipoprotein B,E–containing
lipoproteins, constitutively secreted by RPE. Lipoprotein fatty acids are dominated by
linoleate (implicating diet) rather than docosahexaenoate (implicating photoreceptors); we
seek within the retina cellular relationships and dietary drivers to explain soft druse
topography. The delivery of xanthophyll pigments to highly evolved and numerous Müller
cells in the human fovea, through RPE, is one strong candidate, because Müller cells are the
main reservoir of these pigments, which replenish from diet. We propose that the evolution
of neuroglial relations and xanthophyll delivery that underlie exquisite human foveal vision
came with a price, that is, soft drusen and sequela, long after our reproductive years.

Keywords: age-related macular degeneration, drusen, lipoproteins, cholesterol, retinal
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Age-related macular degeneration (AMD) is a major cause of
legal blindness in the elderly, approachable through

multidisciplinary research involving human tissues and patients.
Our views of AMD have advanced substantially through clinical
imaging in the last decade, culminating in the Classification of
Atrophy Meetings Working Group, which is redefining atrophy
to incorporate pathology newly revealed by optical coherence
tomography.1 AMD pathobiology was irreversibly changed by
the recent discovery and characterization of a layer of
extracellular deposits in the subretinal space, between the
photoreceptors and RPE, called subretinal drusenoid deposits
(SDDs).2–5 One striking feature of SDDs is that they mirror the
topography of rod photoreceptors in human macula,6,7 leading
to the question of whether there is an equivalent process
resulting in a deposition related to foveal cones.

A central thesis of this review is that the biogenesis of soft
drusen, the pathognomonic and specific extracellular deposit
of AMD8 and basal linear deposit (BLinD), a diffusely distributed
form of the same material, is the leading candidate for such a
process. Further, because the fatty acids in cholesterol-rich
Bruch’s membrane (BrM) lipoproteins, the dominant ultrastruc-
tural component of soft drusen, are rich in the fatty acid
linoleate (from diet) rather than in docosahexaenoate (from
photoreceptors),9 we seek within the neurosensory retina the
cellular relationships and dietary factors that can explain the
topography of soft drusen and BLinD in older adults. The

delivery of xanthophyll pigments (XPs) to the highly evolved
Müller cells supporting foveal cones is one strong candidate.
These speculative but testable hypotheses potentially unify
many disparate data sets.

ESSENTIALS FROM THE BIOLOGY OF MACULA

A neurovascular unit, conceptualized originally for brain and
then for inner retina,10,11 comprises microvessels, neurons, glia,
pericytes, and extracellular matrix that link blood flow to the
metabolic demands of neurons. The cells and tissues most
prominently affected by AMD pathology are those of the outer
retinal neurovascular unit,12 that is, photoreceptors, retinal
pigment epithelium (RPE), Müller cells (in neurosensory retina),
and the choriocapillaris (ChC) endothelium (in the choroidal
vasculature) (Fig. 1, top). Together these cells are served by the
choroid, which has the highest blood flow in the body and is
regulated in part by the autonomic nervous system and intrinsic
choroidal neurons,13 and contains clinically visible extracellular
lipid depots.14 Between RPE and ChC is a laminated subendo-
thelial extracellular matrix called Bruch’s membrane, which
functions as a vessel wall laid out flat, in parallel to vascular
lumens,15 rather than circumferentially around them.

The RPE is a monolayer of cuboidal polygonal cells
embedded between photoreceptors and BrM. Strong apical to
basolateral polarization makes the RPE a key player in
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FIGURE 1. Neurobiology and aging of macula. Top: (A) Cross-section of a human eye. Green bracket shows area in (B), including optic nerve head
and macula. (B) Swept-source optical coherence tomography of a living human neurosensory retina (black bar) and choroid (white bar), showing
the 6-mm-diameter macula and adjacent optic nerve. The retina contains multiple bands of alternating high and low reflectivity that coincide in part
with the anatomic layers. Blue bar delimits layers occupied by photoreceptors and interleaved Müller glia (M). Arrows indicate the fovea. The
choroidal vasculature contains lumens of large vessels and is bounded externally by the sclera. (C) High-resolution histology of the fovea, in the
center of macula and responsible for high acuity vision. The retina, photoreceptor layers, and choroid are indicated by black, blue, and white

arrows, respectively. A foveal pit is created by inner retinal neurons, Müller cells, and accompanying retinal vasculature being swept to the side of
the visual axis. The RPE is a simple cuboidal epithelium that sits on Bruch’s membrane, the inner wall of the choroidal vasculature. Osmium
postfixation, epoxy embedding, 1-lm-thick section, toluidine blue stain. Lower left: Photoreceptor mosaic and topography of outer retinal cells. (A)
Foveal cone inner and outer segments, longitudinal section. (B) Foveal cone inner segments in a flat-mounted retina of a 34-year-old donor,
Nomarski differential interference contrast optics and video. (C) Nonfoveal cone and rod inner segments, longitudinal section. (D) Cone inner
segments (large) and rod inner segments (small) in the same eye. (E) Number of cones (C), rods (R), and RPE per square millimeter of retinal
surface in nasal and temporal retina, in young adults, as a function of eccentricity from the foveal center in mm. Peak densities of cones, rods, and
RPE in young adults are 200,000/mm2, 150,000/mm2, and 10,000/mm2, respectively. With increasing eccentricity, cone density decreases, and rod
density increases, becoming equal at ~0.55 mm. The RPE exhibits central peak with a shallow gradient. Scale bars: 10 lm. Hatched rectangle, optic
nerve head. Dashed lines, limits of macula. Lower right: Topography of cones and rods in aging human retina,64 shown as a fundus of a left eye.
Black oval, optic nerve; ring, limits of macula. In (C) and (F), warm colors mean that older group has higher mean density than younger group and
cool colors mean that older group has lower mean density than younger group. A yellow-green map means that differences between groups are
small. (A) Cones, 27- to 36-year-old donors. (B) Cones, 82- to 90-year-old donors. (C) Log mean difference in cone density between younger adults
and older adults is small and inconsistent. (D) Rods, 27- to 36-year-old donors. (E) Rods, 82- to 90-year-old donors. (F) Log mean difference in rod
density between younger adults and older adults is greatest at 0.5 mm to 3 mm from fovea. Purple signifies that the log mean difference (aged-
young) was <�0.16 log units, that is, that aged eyes had 31% fewer cells than young eyes. G, globule; GCL, ganglion cell layer; HFL, Henle fiber
layer; INL, inner nuclear layer; IPL, inner plexiform layer; IS, inner segments; NFL, nerve fiber layer; ONL, outer nuclear layer; OPL, outer plexiform
layer; OS, outer segments. Top: reprinted with permission from Tian L, Kazmierkiewicz KL, Bowman AS, Li M, Curcio CA, Stambolian DE.
Transcriptome of the human retina, retinal pigmented epithelium and choroid. Genomics. 2015;105:253–264. � 2015 Elsevier Inc. Bottom:
reprinted with permission from Jackson GR, Curcio CA, Sloan KR, Owsley C. Photoreceptor degeneration in aging and age-related maculopathy. In:
Penfold PL, Provis JM, eds. Macular Degeneration. Berlin: Springer-Verlag; 2005:45–62.
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maintaining homeostasis of photoreceptors apically and ChC
basally and in the pathology of SDDs apically and drusen
basally. The outer blood-retina barrier is maintained by
junctional complexes on the RPE, the basolateral surface of
which faces the systemic circulation. The inner part of the
blood-retina barrier is maintained by endothelial cells and
Müller glia around retinal capillaries.

The human macula, 6 mm in diameter, is defined in
neurobiology as an area with a continuous layer of ganglion
cells16 and in epidemiology as the area included in the Early
Treatment of Diabetic Retinopathy Study grid for grading color
fundus photographs.17 Because the macula constitutes ~3% of
the total retina area (of ~1000 mm2), human eye studies that
pool macula and periphery in assays based on whole eyecups
overlook potentially important macula-specific signals. Older
literature sometimes equates macula and fovea; the fovea is one
subregion of the macula. It takes a whole macula to support a
fovea.

In 1990, my colleagues and I presented a comprehensive
two-dimensional map of cone and rod density in seven short
postmortem retinas prepared as unstained whole mounts (Fig.
1, bottom left).18 This technique enables visualization,
topography, and morphologic detail of inner segments, while
largely eliminating histologic processing artifacts and counting
errors. With accurately localized foveal centers and computer-
ized microscopy, it is possible to determine photoreceptor
density over the entire retina. In the human macula, rods
outnumber cones: a rod-dominant perifovea surrounds a cone-
only foveola that is 0.8 mm in diameter. The foveola has a high
peak density (>150,000 mm2) and a sharp decline with
eccentricity. Rods are also numerous (peak >150,000 mm2) in
an elliptical crest at 2- to 5-mm eccentricity that encircle the
optic nerve head nasally.18 Macular cone topography in this
study has been replicated repeatedly in vivo by adaptive optics
scanning laser ophthalmoscopy imaging.19,20 Similar laboratory
approaches have been recently applied to cell density and
autofluorescence of human macular RPE.21 A demonstrated
peak cell density of ~7200/mm2 RPE cells and a shallow
eccentricity-dependent decline is consistent with previous
literature.22,23

Neurons of the inner nuclear and ganglion cell layers are
numerous and are displaced from the foveal center to create
the foveal pit.24 Approximately 95% of macular ganglion cells
are midget cells, that is, compact neurons responsible for
transmitting signal for high acuity and color vision to the
brain.25 There are at least two ganglion cells for each foveal
cone within the central several degrees of vision.18,26–28 Each
foveal cone contacts two midget bipolar cells, splitting the
output signal along ‘‘private lines’’ signifying light ON and light
OFF to corresponding midget ganglion cells.29 This unique
circuitry means that 40% of human retinal ganglion cells are
offset from photoreceptor inner segments defining their
receptive fields in visual space.18 The Henle fiber layer (Fig.
1, top) thus comprises 14% of retinal thickness and contains
inner fibers of rod and cone photoreceptors (interleaved with
Müller glia and up to 600 lm in length) extending centrifugally
to contact bipolar neurons.16,27,30–33

Müller glia span the retina between external and internal
limiting membranes. In the macula Müller cells equal or exceed
the number of foveal cones34,35 and are Z-shaped owing to the
Henle fiber layer. Extramacular Müller cells are vertical and are
outnumbered by photoreceptors. Among their many func-
tions,36 Müller glia deliver vitamin A derivatives required by
phototransduction selectively to cones37,38 (although this
function has been explored in only mice to date). Recent
evidence supports macular Müller cells as the principal
reservoir of the yellow xanthophyll pigments (XP) lutein and
zeaxanthin,39–43 which are replenished by diet (see Aging of

Macula below). Owing to their hydrophobicity, XPs localize to
the interior of cell membranes. XP is detectable in vivo with
behavioral tests involving color matching (heterochromatic
flicker photometry)44 and noninvasive imaging (e.g., two-
wavelength autofluorescence, fluorescence lifetimes).45,46

DEFINING THE SPACES BETWEEN THE LAYERS

Between the photoreceptors and the apical RPE is the
subretinal space, a closed physiologic compartment.47 It is
bounded inwardly by the external limiting membrane, a plane
of heterotypic junctional complexes between photoreceptors
and Müller cells and outwardly by junctional complexes among
the RPE cells.48 Within this compartment is the delicate
interphotoreceptor matrix, which includes specialized do-
mains ensheathing every cone and rod photoreceptor49,50 to
mediate intercellular transfers and adhesion.51

As defined in a companion article,9 a three-layer definition
BrM allows a tissue compartment and potential space between
the RPE-basal lamina and the inner collagenous layer, called the
sub–RPE-basal lamina space.9 Drusen are thus focal deposits
located between the RPE-basal lamina and the inner collage-
nous layer of BrM, in the sub–RPE-basal lamina space. Basal
linear deposit is a thin layer of soft druse material, in the same
compartment as drusen. Together BLinD and soft drusen
comprise the Oil Spill on aging BrM (by this definition)52 and
constitute AMD’s specific deposits. SDDs are also extracellular,
located between the photoreceptors and RPE. While common
in AMD, SDDs also occur in monogenic inherited disorders
involving BrM and inherited and acquired disorders of retinoid
processing.53

AGING OF MACULA

As shown by population-based epidemiology studies based on
color fundus photography, aging is the greatest risk factor for
AMD, followed by family history and smoking.54,55 Intraocular
factors most relevant to AMD initiation and progression are the
disposition of drusen and hyperpigmentation,56,57 suggesting
that focusing on cell and tissue pathology and pathways
underlying these signs will yield insights into molecular
pathogenesis.

The relative rate of rod and cone loss characterizes each
degeneration affecting photoreceptors,58–60 and within the
neurovascular unit, photoreceptor health is a readout of the
support system.61 In normal eyes from human donors aged 27
to 92 years in which inner segments have been counted in
whole mounts for accuracy, rods decline 30% at 0.5- to 3-mm
eccentricity, and cones remain stable (Fig. 1, bottom).62 The
rod-vulnerable region is closer to the fovea than the ring of
high rod density and autofluorescence attributable to RPE
lipofuscin (i.e., lysosome-related, long-lasting inclusion bodies
rich in vitamin A derivatives)21,63 and in fact hugs the rod-free
area. Other studies enumerating cells in sectioned tissues agree
on relative sparing of foveal cones in aging,22 which continues
well into advanced AMD.64,65 Rod-mediated dark adaptation,
which is limited by retinoid delivery,66 is slowest within the
central 68 of macula (of 128 tested in a small sample).67

Major age-related macular changes relevant to AMD besides
rod loss and cone resilience are the stability of RPE cell
numbers despite lipofuscin accumulation and mitochondrial
degeneration.21,22,68–70 Sprouting of rod terminals in aging are
surprisingly more prominent in peripheral retina than in the
macula.71 BrM undergoes cross-linking, thickening, calcifica-
tion, and lipidization.72–78 Macular soft and hard drusen
accumulate in the sub–RPE-BL space.79,80 Choriocapillaris
apposition to BrM declines,77 along with increased immuno-
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reactivity for membrane attack complex (terminal component
of the complement cascade),81 loss of autonomic nerve
fibers,82 and thinning of the choroid.77

Among aging-related factors that could impact rod survival
in central macula (Fig. 1, bottom right), we focused on BrM and
the sub–RPE-BL space, where AMD pathology is prominent.
We investigated BrM lipidization, because a straightforward
connection from there to druse lipids, arguably the first druse
component described,83–87 seemed possible. Lipid accumula-
tion in vessel walls can be informed by the pathophysiology of
atherosclerotic cardiovascular disease88 as well as the clinical
success in reducing its public health burden.89

SOFT DRUSEN COMPOSITION RESEMBLES BOTH

PLASMA LIPOPROTEINS AND OUTER SEGMENTS

A companion review article9 details histochemical, ultra-
structural, direct assay, gene expression, and cell culture
evidence that membranous debris, the principal component
of soft drusen as defined by Sarks et al.,90,91 derives from
large lipoproteins containing apolipoproteins B and E,
secreted basolaterally by the RPE into BrM. Lipoproteins
are multimolecular complexes that resemble oil droplets
solubilized for transport through aqueous media with a
surface of proteins (apolipoproteins and others), phospho-
lipid, and unesterified cholesterol. Very low-density lipopro-
tein (of hepatic origin, parent to ‘‘bad cholesterol’’ low-
density lipoprotein [LDL]) and dietary chylomicrons (of
intestinal origin) are two well studied examples; the brain
has high-density lipoprotein (HDL) rich in apolipoprotein E
(apoE). As elaborated separately,9 the predominant ultra-
structural component in soft drusen was initially called
‘‘membranous debris,’’ which in turn is partly preserved
‘‘lipoprotein-derived debris.’’ By using lipid-preserving ultra-
structural techniques originally used for elucidating the
deposition of plasma LDL in arterial intima,92,93 it has been
possible to see the core-and-surface morphology of lipopro-
teins that accumulate with age in human BrM, with highest
concentration in the macula. When assayed with high-
performance liquid chromatography, isolated lipoproteins
and BrM extracts are rich in esterified and unesterified
cholesterol. Importantly, fatty acids are dominated by
linoleate (implicating dietary sources) and not docosahex-
aenoate (not implicating photoreceptor outer segments).
Recently, a culture system of primary porcine RPE was
shown to lay down a continuous layer of deposits containing
lipid and hydroxyapatite, depending on the substrate the
cells were grown on, without supplementation of outer
segments and taking up only components of culture medium,
which include plasma lipoproteins. These findings give
credence to the notion of a diet-driven system.94 Further,
clinical imaging has documented that drusen grow, and RPE
migrates anteriorly into the retina, thus no longer maintain-
ing the druse,95,96 indicating that presence of drusen implies
a certain level of RPE functionality. The current model for
BrM lipoproteins is that they have two principal sources,
plasma lipoproteins delivering lipophilic essentials and
phagocytized outer segments, and they provide a mechanism
for the RPE to offload unneeded lipids to the systemic
circulation and avoid lipotoxicity. Details are available in our
companion article.9

USING TOPOGRAPHY TO DISSECT MECHANISMS

Adhering to the philosophy that improved care for AMD
patients is best served by following the biology,97 we next

consider biologic antecedents for these pathways in neuro-
sensory retina. According to the terrain theory of vision,98 the
sampling of visual space by neurons in each species’ retina is
influenced by the species’ normal habitat. Mammalian retinas
have an area of high neuronal density specialized for visual
acuity, onto which images are registered by coordinated head
and eye movements.99 Conversely, neuronal density and
spatial resolution is low in peripheral retina, because space
for neurons receiving visual input in the brain is limited and
peripheral retina has evolved for functions like motion
detection. Retinal neurobiology has taught us that cell
populations have emergent properties not appreciated by
study of individual cells.99 Topography is thus a powerful
independent variable for dissecting pathogenic mechanisms,
while also completing a trajectory from clinical manifesta-
tions back to the evolutionary biology that brought humans a
macula in the first place.

Topographic considerations can prioritize mechanisms for
follow-up. For example, light exposure is often mentioned in
the AMD context, yet retinal illuminance is homogeneous to
508 eccentricity100,101 and not obviously related to the
distribution of AMD’s characteristic pathology. We have
previously considered whether a strong macula-to-periphery
gradient (7:1) of esterified cholesterol in aged BrM is related to
gradients in photoreceptor density and concluded that these
are too small (2.7 for rods, 1.9 for cones).75 Drawing from
hemodynamic considerations in the regional vulnerability of
large vessels for atherosclerosis, we also have considered ChC
blood flow impacting BrM capacity to retain lipoproteins.102

However, existing laboratory studies of blood flow have
technical limitations,103,104 and new in vivo methods are under
active development.105,106 Here we ask whether dietary
delivery of lipophilic essentials required by macular cells
could influence drusen biogenesis.

DO SOFT DRUSEN HAVE A PREDILECTION FOR THE

MACULA?

Drusen and hyperpigmentation are the two largest intraocular
risk factors for progression to neovascularization and atrophy.
Epidemiology, restricted to the 308 view of color fundus
cameras,17,107 has shown that drusen conferring the greatest
progression risk reside in the central 1-mm-diameter subfield of
the Early Treatment of Diabetic Retinopathy Study
grid.57,108–111 Risk is markedly heightened when normalized
for this subfield’s small area. Similarly, longitudinal clinical
studies using optical coherence tomography have determined
that high progression risk associated with drusen volume
within the central 3 mm diameter is not increased by using the
central 5 mm diameter.112,113 Via clinical ophthalmoscopy,
color fundus photography, and ultrastructural clinicopatholog-
ic correlation, Sarks et al.114 have stated that soft drusen arise
within the ‘‘inner macula’’ and are preferentially depleted,
relative to hard drusen, by prophylactic laser therapy.

Pathology data supporting a predilection of soft drusen for
macula exist but are sparse, because few studies have been
designed to test this possibility. In a large series of autopsy eyes
analyzed by ex vivo imaging and histology, low-profile
‘‘serogranular drusen’’ in macula86 have been contrasted to
globular drusen in periphery.115 More peripheral drusen than
macular drusen contain apolipoprotein immunoreactivity,
whereas all drusen in all regions contain cholesterol forms,
suggesting higher lipid concentration in macular drusen.116 In
drusen microdissected from nine eyes of seven AMD donors,
soft drusen are found only in the macula,117 and are less likely
to be harvested intact, and more likely to have overlying basal
laminar deposit, high coverage by RPE, and interiors dominat-
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ed by a homogeneous membranous material consistent with
the Sarks’ descriptions.117 In a high-resolution histology survey
of nonneovascular AMD eyes, BLinD is thickest under the
fovea.4 These suggestive results should be fortified with new
high-resolution histology and clinical imaging covering the
entire retina, which is now possible. In particular, more data
supporting scarcity or absence of soft drusen in the periphery
could definitively establish specificity for foveal biology.

CONSIDERING DIETARY DELIVERY OF XANTHOPHYLL

PIGMENT

Our model of soft drusen biogenesis suggests that fatty acids
from diet are combined with unesterified cholesterol both
from diet and from outer segments to create large lipoproteins
secreted by RPE in BrM.9 Fatty acids in RPE-secreted BrM
lipoproteins are enriched in linoleate (implicating diet as a
source) and not docosahexaenoate (from photoreceptor outer
segments),118,119 raising the question of what major dietary
pathway(s) supply fatty acids and for what purpose. One
possibility is the delivery of vitamin A derivatives for photo-
transduction. The paucity of well-studied bisretinoid A2E in
macula relative to periphery120–125 (unlike mouse126) hints at a
unique division of labor between RPE and Müller cells in
vitamin A homeostasis, which remains to be explored further.
Here we suggest that delivery of XP to Müller cells is a
plausible biologic purpose for a large influx of dietary lipids
through RPE that is specific to central macula.

The XPs lutein, zeaxanthin, and meso-zeaxanthin127 are
highly concentrated in the fovea, decline by an order of
magnitude within 28 of fixation, reach very low levels at the
edge of the macula, and remain low throughout the
retina.128–130 The distribution of XPs can be envisioned as
three concentric zones centered on the fovea: zeaxanthin is
central-most (foveola, 350 lm diameter), overlapped by meso-
zeaxanthin (foveal avascular zone, 500 lm diameter); these two
are surrounded by lutein (foveal-parafoveal annulus of outer
diameter, 2.0 mm).131 The role of XP in vision is actively
investigated under several mechanistic hypotheses. The pro-
tection hypothesis suggests that XP protects the retina from

cumulative damage of ambient blue light via antioxidant
properties.132 The optical hypothesis suggests that XP improves
visual performance and visual comfort by attenuating chromatic
aberration and light scatter, via short-wavelength light filtering
and dichroism.133,134 The neural efficiency hypothesis suggests
that XP improves vision by a direct interaction with neurons,135

perhaps conferring an evolutionary advantage.133 XP biology
has expanded beyond the macula to the brain, where these
compounds are detected and studied in reference to cognition
and aging.136,137 XP is of clinical significance because dietary
supplements containing lutein and zeaxanthin are recommend-
ed for some patients with intermediate AMD.138

Recent evidence supports macular Müller cells as the
principal cellular reservoir of XP. High XP concentration in
the Henle fiber layer, foveal center,128,139–141 and inner
plexiform layer is well explained by the morphology of
individual Müller glia.32,142,143 The persistent finding of rings
and shoulders in addition to a strong central peak is consistent
with Müller cell side branches in the synaptic layers.144–146 In
macular telangiectasia type 2, XP absence is associated with
histologically confirmed degeneration of foveal Müller cells.39,40

Patients with Sjögren-Larsson syndrome exhibit loss of clinically
detectable XP and presence of inner retinal cysts suggestive of
Müller cell degeneration.41,147,148 Surgically excised lamellar
hole epiretinal membranes are enriched both in Müller cell
markers and in XP.42,43 Autofluorescence imaging suggests that
XP persists in central geographic atrophy,149–151 even after
photoreceptor death, because Müller cells remain.33,64 Attri-
buting strong XP signal to only cone axons in the Henle fiber
layer152 overlooks the numerous rod and Müller processes also
in this layer. In 1984 Snodderly et al.128 rejected Müller cells as a
reservoir, in part because little evidence at the time suggested
so many foveal glia. Subsequent studies in monkeys34 and
humans153 indicate equal numbers of Müller glia and macular
photoreceptors, at the limited sites examined. This hypothesis
does not exclude XPs or their binding proteins also localizing to
other cells,154,155 including cone axons, or the possibility of
transfers between Müller cells and photoreceptors.

Figure 2 plots on the same eccentricity axes several
mechanisms that may contribute to the apparent vulnerability
of parafoveal rods and resilience of foveal cones in aging. The

FIGURE 2. Topography of human macular photoreceptors, retinal pigment epithelium, XP, and BLinD/soft drusen. Dotted lines indicate the limits of
the 6-mm-diameter macula. Stippled rectangles indicate the optic nerve head. Green downward arrows indicate the annulus of deepest rod loss in
aging (Fig. 1, bottom right, deep blue). The lateral extents of XP and BLinD/soft drusen are drawn to scale on the eccentricity axis and not-to-scale
on the y-axis. Data come from different eyes of younger adults: photoreceptors/mm2 (Ref. 18); RPE/mm2 (Ref. 18); XP129; thickness of BLinD/soft
drusen in AMD eyes.4
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phagocytic load on RPE is represented by a ratio of photorecep-
tors/mm2 to RPE/mm2 and is computed for cones and rods,
separately and summed. This ratio is high at the cone peak,
lower in the parafovea, and higher again at the edge of the
macula. Yet foveal cones survive into late AMD, and in aging the
rods die in an annulus of vulnerability where phagocytic load is
lower than elsewhere. These considerations suggest that
phagocytic load is less of a factor in AMD initiation than is
commonly believed, as previously concluded for monkeys.23

Figure 2 also shows that BLinD/soft drusen in nonneovascular
AMD are found across the macula, being slightly thicker at the
foveal center than elsewhere. The annulus of age-related rod loss
localizes to the shoulder of this lipid-rich area in BrM. Foveal
cones directly overlie lipid deposits but in contrast to rods are
sustained by Müller cells harboring XPs, which are present
throughout the foveal center and across the annulus of
vulnerability.

Factors underlying XP absorption, distribution, metabolism,
and excretion are actively investigated and include intestinal
absorption and intracellular transport in enterocytes, receptors
and transporters in retina and brain target tissues, and
participation by the microbiome.156 Available evidence sug-
gests that retinal XPs are turned over, that is, delivered and
removed, on a time scale of months. A detailed time course of
XP repletion in two volunteers has shown a steady increase for
140 days after initiation of supplementation, followed by a
plateau or slight decrease to 1 year or more.157 Many studies
report that dietary supplementation results in higher MPOD
(measured behaviorally or via several imaging technologies) at
the earliest time points tested, typically 2 to 4 months and
depending on the dose and baseline XP levels in test
subjects.131,158–169 XP removal is less well documented, with
limited data suggesting stable, slightly decreasing, or baseline
MPOD.157,169 Mature macaque monkeys consuming a semi-
purified diet lacking XP lose yellow pigment; these animals
were examined after years on this regimen and therefore the
minimum time for XP depletion is unknown.170 Interestingly,
XP-deficient animals have hypopigmented spots in the fovea
that could represent either drusen or lipoidal degeneration of
individual RPE cells, both of which are found in mon-
keys.171–174

We thus hypothesize that XP is a marker for Müller cell
protection and enhancement of foveal cone function for acute
vision. We also hypothesize that an influx of HDL-mediated XP
delivery through RPE provides a major source of fatty acids in
BrM lipoproteins, which are a source of peroxidizable,
cytotoxic lipids and a barrier to transport between the ChC
and outer retinal cells.

HDL (PLASMA AND GENES) AND XANTHOPHYLLS

Accumulation of XP in the macula begins with consumed
foods, digestion, absorption, and transport in plasma, and
ultimately capture, transcellular transfer, and stabilization
within retinal cell membranes.127,132 On a sufficient diet,
HDL is the major lipoprotein transporter of lutein (52%) and
zeaxanthin (44%); LDL is the major transporter of a- and b-
carotene and lycopene.175 The best studied cellular receptor
for plasma HDL is scavenger receptor B-I (SRB-I).176 Evidence
for a facilitated, SRB-I–mediated transport mechanism for lutein
absorption in human intestinal enterocytes has been summa-
rized.132 Animal models lacking apoA-I (principal protein of
HDL) lack lutein in retina and retain it in brain, suggesting
specific targeting and uptake mechanisms.177 Evidence accru-
ing for ocular cells includes selective reduction of XP uptake
(compared to LDL) by depletion of SRB-I activity in RPE-derived
cell lines178,179 and capacity for XP binding by interphotor-

eceptor retinoid-binding protein (IRBP) within the subretinal
space.180 In contrast to lutein and zeaxanthin, meso-zeaxanthin
is rare in common dietary sources and appears to be converted
within the RPE from dietary lutein by a newly recognized
function of RPE65, the well-known retinol isomerase of the
visual cycle.181

Our overall hypothesis adds a new perspective to recurring
reports that elevated levels of plasma HDL modestly increase
risk (1.15–2.3 fold) for incident early AMD, in popula-
tion182–186 and case-control studies,187 and not in a large
cohort of advanced AMD.188 This effect of AMD is opposite to
the well-documented association of elevated plasma HDL with
reduced risk for cardiovascular disease. It is possible that
elevated HDL level leads to increased XP uptake by the RPE, in
turn increasing both the amount available for delivery to
photoreceptors and excess lipids to be offloaded to ChC, in
RPE-secreted lipoproteins. Yet, positive association between
plasma concentrations of lutein and HDL does not always
imply an association between detectable retinal XP and plasma
HDL concentration.189

XP delivery also adds a new perspective to the association
of genes of plasma HDL metabolism with AMD, including
APOE, CETP, ABCA1, LIPC, and SCARB1.190–196 DNA sequence
variants in LIPC and ABCA1 associate with intermediate and
large drusen.197 The International Age-related Macular Degen-
eration Genomics Consortium cohort of 16,144 cases, with
17,832 controls,195 has been used in Mendelian randomization
analyses of genes associated with plasma lipid classes on AMD
risk. In one study,198 three of five variants reached genome-
level significance (LIPC 3 2; CETP), placing AMD intermediate
between cardiovascular disease (5/17 variants) and Alzheimer
(1/4 variants) in lipid gene effects. Another study using this
data set has shown that HDL-increasing alleles CETP and LIPC

have opposite effects on AMD risk.199 A meta-analysis of 21
studies suggests that elevated HDL is a risk factor for any and
early AMD.200 A sequence variant in SCARB1 (gene encoding
SRB-I) is positively associated with plasma lutein but not with
behaviorally measured XP.196

Not all variants in HDL genes result in higher plasma HDL.
Our AMD pathobiology model suggests that genetic variations
either modulate concentrations of plasma HDL, intraocularly
modulating retinal uptake, intercellular transfer, and mem-
brane stabilization, or both. Many of these gene products are
expressed in outer retina (Fig. 3), consistent with an
intraretinal HDL system based on apoE, like brain.4 Immuno-
localization of HDL-related genes, using validated antibodies in
polarized RPE (in vivo or high-fidelity culture), includes apoE
(outer segments, RPE, Müller cells,94,201–204 drusen,116,190,201

SDD)117; ABCA1 (ATP-binding cassette transporter), RPE cell
bodies205–208; CETP (cholesteryl ester transfer protein), outer
segments, and outer plexiform layer205; LIPC (hepatic lipase),
all retinal neurons plus RPE, and not in Müller cells192; SRB-I,
RPE expression,209,210 activity,178,211 and localization.202,206

Lutein has been detected in subretinal fluid removed from
rhegmatogenous retinal detachments,212 consistent with trans-
fer between RPE and retina. Both systemic and ocular
mechanisms of HDL-mediated XP delivery could be simulta-
neously operative. More data are certainly needed.

CONCLUSIONS

In this scenario, soft drusen and the Oil Spill on BrM in AMD
develop over a lifetime of recycling unneeded lipids, many
taken up with plasma HDL delivering XP to the choroid and
impaired in egress by aged BrM-ChC. XP is a biomarker of
Müller cell health and capacity for sustaining high-acuity, foveal
cone-mediated vision, conferring a selective advantage for eyes

Why the Macula for Soft Drusen? IOVS j Special Issue j Vol. 59 j No. 4 j AMD187



with XP in mammalian evolution. XP may be just one
representative of the nutritional support system of this superb
human asset. We suggest that evolution of the neuroglial
relations underlying exquisite foveal vision in humans came
with a price, that is, soft drusen and their sequela, long after
our reproductive years.

Limitations to this analysis are sparse experimental confir-
mation of hypotheses largely generated from human tissues
and patients. We are fortunate that XP can now be measured
noninvasively and objectively in vivo through imaging.45,146

Further, short-lived mouse models exhibiting relevant pheno-
types are now available (XP accumulation,213 retentive matrix
for RPE-secreted lipoproteins214–216). Our hypotheses, while
speculative, bring together many lines of evidence and do not
exclude other major extant hypotheses for AMD biology and
may in fact occur in parallel. It is hoped that this conceptual
framework can guide the exploration of clinical imaging data
sets46,141,217 and high-throughput analytic assays of tis-
sues.218,219
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