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INTRODUCTION

Stem cells are a unique population of undifferentiated biologi-
cal cells that have the capacity to self-renew and differentiate 
into different cell types. They play a central role in the field of 
regenerative medicine, aimed at the repair and replacement of 
diseased cells, tissues and organs through the transplantation 

of healthy cells and tissues; in particular, stem cells [1]. Plastic 
surgery shares several of the same principles with regenerative 
medicine, historically functioning on a more macroscopic level 
by using a patient’s own tissue to restore and enhance the body. 
As our understanding of cellular regenerative therapies pro-
gresses, plastic surgeons may soon have the option of utilizing a 
single autologous cellular source for the regeneration of differ-
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ent tissue types.
There are several different types of stem cells that have been 

considered for clinical applications. Embryonic stem cells 
(ESCs) have the greatest regenerative “potential” being that they 
are naturally pluripotent and can differentiate into all adult cel-
lular types. The successful isolation and culture of human ESCs 
has allowed investigators to gain a much better understanding of 
the capabilities of these cells to regenerate different tissue types 
[2]. ESC research, however, has been restricted by controversy 
surrounding the origin and isolation of these cells. Additional 
obstacles include safety concerns over potential tumorigenicity 
[3] and immunocompatibilty [4]. These issues, as well as the 
ethical barriers have significantly limited the clinical applicabil-
ity of ESCs at this time.

Adult stem cells such as mesenchymal stem cells (MSCs) 
circumvent many of the ethical and technical issues associ-
ated with ESCs as they can be isolated from developed tissues 
including bone marrow, fat, and skin (bone marrow stromal 
cells [BMSCs], adipose tissue-derived stem cells [ADSCs], and 
adult skin stromal cells [ASSCs], respectively) [5]. However, 
these cells are multipotent, and are therefore restricted to the 
cell lineage in which they reside. Regardless, adult stem cells are 
a highly useful cell population in regenerative medicine as their 
ease of isolation, multilineage differentiation, and potential for 
autologous transplantation makes them a favorable candidate 
for clinical translation. 

The creation of induced pluripotent stem cell (iPSC) lines, 
or adult somatic cells reprogrammed into pluripotent cells, 
has allowed researchers to utilize the differentiation capabili-
ties of ESCs, while avoiding the ethical issues associated with 
ESC isolation. iPSCs share many similar properties with ESCs 
including expression of certain stem cells genes and proteins, 
chromatin methylation patterns, potency and differentiability 
[6]. Importantly, iPSCs can be created from several different, 
easily accessible cell types [7-10]. However, clinical translations 
of iPSC therapies still have noteworthy challenges. Generation 
of iPSCs has a low reprogramming efficiency [11] and requires 
the introduction of exogenous transcription factors with viral 
vectors [6] or through other significant ex vivo manipulations of 
cells [12,13]. This process has led to concerns over the stability 
of these cell lines [14] and the possibility of chromosomal aber-
rations [15], preventing safe use in human trials currently.

ADSCs have recently been investigated as a source of multi-
lineage precursor cells [16], and are particularly promising for 
regenerative therapies as they can be easily harvested with mini-
mal donor site morbidity [17]. In addition, ADSCs have a dif-
ferentiation potential similar to other MSCs as well as a higher 
yield upon isolation and a greater proliferative rate in culture 

when compared to BMSCs [18-20]. The discovery that AD-
SCs are not only precursor to adipocytes, but are multipotent 
progenitors to a variety of cells [21] was a milestone that has al-
lowed scientists to utilize the true potential of ADSCs to derive 
several additional cell types including osteoblasts, chondrocytes, 
myocytes, epithelial cells and neuronal cells [22]. For the plastic 
surgeon, they are an abundant source of multipotent stem cells 
that can be easily accessed during many routine procedures. 

Stem cells are a promising therapeutic modality for the treat-
ment of tissue defects, malformations and disease, and an attrac-
tive tool for the enhancement of aesthetic medicine. However, 
scientific evidence on clinical applications is still limited and 
much is unknown about the safety and efficacy of stem cell 
therapies [23]. Several key issues must be considered including 
the 1) source of stem cells, 2) efficiency of transplantation, 3) 
engraftment in host tissue, 4) interaction with the surrounding 
microenvironment, and 5) long term fate of transplanted cells. 
By further elucidating the current strategies for stem cell utiliza-
tion, this review aims to provide a better understanding of the 
current state of cellular regenerative techniques in plastic sur-
gery, the progress that remains to be made, and the appropriate 
direction for future research. 

SOFT TISSUE AUGMENTATION AND 
REGENERATION

The regeneration and augmentation of soft tissue requires the 
restoration and enhancement of form as well as the continued 
long-term maintenance of aesthetic results. Current therapies 
are limited, and include biomaterials, which can be complicated 
by infection, surrounding fibrosis, and contracture and are also 
associated with high cost. Other viable options include com-
posite tissue flaps as well as transplantation of autologous fat 
to fill defects, or fat grafting [24]. Fat grafting is a commonly 
performed procedure for soft tissue filling that can be used for 
several indications including facial lipodystrohpy, lower limb 
atrophy, and breast augmentation and reconstruction [25]. 
Autologous fat utilized in fat grafting contains a variety of cells, 
including ADSCs [26], which are well suited to support regen-
eration of tissue as their ability to secrete angiogenic growth 
factors such as vascular endothelial growth factor (VEGF) [27] 
promotes neo-vascularization of new tissues [28]. Fat is usually 
harvested and finely divided simultaneously, as in suction har-
vesting, or sequentially harvested and subsequently separated 
by mechanical means and/or enzymatic digestion to then be 
reintroduced by injection. Though this procedure is widely used 
among plastic surgeons, there remains a lack of standardiza-
tion for harvesting, processing and reinjection protocols, and 
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the universal principles that underlie successful application of 
lipoinjection have yet to be determined. 

Fat grafts, however, are restricted by varying rates of resorption 
[29] and complications of partial necrosis, resulting in unreli-
able long-term outcomes after transplantation [30]. Cell-assist-
ed lipotransfer (CAL) is a technique that combines aspirated 
fat with concentrated ADSCs in the stromal vascular fraction 
(SVF) of lipoaspirate to create ADSC-rich fat grafts. This ap-
proach allows for marked improvements in the survival rate of 
transplanted fat as well as a decrease in adverse effects of lipoin-
jection such as fibrosis and cyst formation [31]. In 2008, Yo-
shimura et al. [32] used CAL for cosmetic breast augmentation 
in forty patients with reported increases in breast circumference 
in all patients at six months and no major complications. Other 
studies utilizing CAL for cosmetic breast augmentation have 
also reported increased breast volumes with improved contour 
and minimal complications [33-35]. CAL has also been used 
for facial lipoatrophy [36,37], as well as for facial augmentation 
during face-lift and facial contouring surgeries, with similar not-
ed subjective clinical improvements [38]. In addition, a study 
quantifying fat graft volumes with computed tomography scans 
showed that fat grafts with concentrated ADSCs underwent less 
reabsorption than fat grafts alone in ten patients with hemifacial 
atrophy [39]. These preliminary studies suggest that ADSCs 
might allow for improvements in the retention and volume-
restoring capabilities of transplanted fat. However, a well-con-
trolled clinical trial comparing these two modalities with respect 
to enhancement and retention of aesthetic results will ultimately 
be necessary to draw appropriate conclusions.

Alternative ADSC therapies have also been investigated for 
soft tissue regeneration. Kim et al. [40] use immature adipo-
cytes differentiated from ADSCs in vitro for the treatment of 
depressed scars, with up to 75% recovery in volume of scars 
at twelve weeks. Other ADSC preparations include stem cell-
enriched tissue (SET) injections [41], in which isolated autolo-
gous ADSCs are injected into the area of a patient’s body that 
received traditional fat grafts earlier that day [42]. Advantages 
of this model include reduced time spent in the operating room 
and therefore decreased procedure cost compared to CAL. 
Studies comparing the two techniques, however, are not avail-
able, and larger, randomized trials with both techniques will be 
necessary to determine efficacy. 

Of note, the Food and Drug Administration (FDA) recently 
issued a statement declaring that autologous adipose stem cells 
from SVF are considered to be a “drug” due to the use of col-
lagenase during component separation, and must therefore be 
completely regulated by the FDA [43,44]. In practical terms, 
any surgeon that wishes to use SVF must submit an investi-

gational new drug (IND) application and have an approved 
Institutional Review Board (IRB), a costly and time-consuming 
process. Further investigation into other methods of separating 
cells and stroma such as mechanical separation by centrifuga-
tion and rapid isolation techniques may be warranted given the 
implications of these new regulations. 

BONY RECONSTRUCTION

Autologous bone grafts have been the gold standard for recon-
structing bony defects [45], but donor site morbidity [46] and 
complications associated with alternatives such as alloplastic 
implants [47] have led researchers to investigate cell-based 
therapies. Both BMSCs and ADSCs have proven to be favorable 
candidates based on their osteogenic capacity in in vitro and in 
vivo studies [21,48-50].

Current clinical stem cell therapies for bone regeneration 
have shown promising results for craniofacial defects [51-55]. 
Calvarial defects in particular have been a specific area of focus 
due to the unqiue challenges with repair as the calvarium is 
unable to ossify on its own in patients over two years old [46], 
and as the size of these defects is often greater than the amount 
of autologous bone available in the pediatric population [51]. 
ADSCs have been combined with milled autologous cancel-
lous bone and fibrin glue to repair a large calvarial defect with 
resulting new bone formation and near complete ossification 
of the preoperative defect at three months [51]. However, the 
utilization of multiple concomitant treatments limits the ability 
to comprehend the degree of the therapeutic effect of ADSCs 
in this study. In a more recent study, Thesleff et al. [53] trans-
plant ADSCs seeded in β-tricalcium phosphate (TCP) gran-
ules to successfully repair critical size calvarial defects (65−90 
mm × 37−75 mm) in four patients without the use of autolo-
gous bone grafting. Using CT scans to quantify ossification, 
the authors demonstrate that the Hounsfield units of ADSC 
cranioplasties approach those of surrounding intact bone. These 
results suggest that ADSCs alone are capable of appropriately 
ossifying defects without the use of exogenous growth factors, 
and therefore provide a relatively simple method of autologous 
bony reconstruction with little donor site morbidity. 

Stem cell treatments have also been used for repair of defects 
involving the maxilla and mandible. Certain approaches, with 
both ADSC [52] and BMSC [54,55] transplants, utilize a multi-
step procedure in which harvested stem cells are combined with 
different growth factors (bone morphogenetic protein [BMP]-
2 [52] and BMP-7 [54,55]) in a scaffold, and are then re-im-
planted into the patient’s muscle tissue to allow for ectopic bone 
formation. In a third procedure, occurring seven [54,55] to nine 
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months [52] after implantation, the titanium-enclosed ectopic 
bone is transplanted with the surrounding muscle and vascular 
pedicle as a composite microvascular flap to fill the bony defect. 
This technique has yielded excellent functional and aesthetic 
results; however, it is fairly complex and requires multiple differ-
ent procedures staged over the period of several months. Sandor 
et al. [56] propose a 1-stage procedure in which harvested AD-
SCs seeded on a scaffold of β-TCP and BMP-2 are placed in a 
molded titanium mesh to fill a mandibular defect. This protocol, 
named in situ bone formation, circumvents the need for ectopic 
bone formation and for a second surgical site, while producing 
favorable clinical outcomes as well as histologic signs of bone 
formation and remodeling at ten months after transplant. How-
ever, until the mechanisms behind osteogenic transformation 
can be further elucidated and the degree of ossification better 
quantified, it will be difficult to compare the efficacy of different 
cell-based treatments.

CARTILAGE FORMATION

Cartilage defects present a challenging reconstructive prob-
lem due to the tissue’s limited intrinsic capacity for self-repair. 
Currently, the only FDA-approved cellular-based therapy for 
cartilage defects involves autologous chondrocyte implantation 
(ACI), in which chondrocytes harvested from low-contact areas 
are expanded in culture and then re-injected into a defect [57]. 
This technique has shown promising results in early clinical 
studies [57], but is restricted by limited expansion of chondro-
cytes ex vivo, difficulty maintaining chondrocyte phenotype 
in vitro, and donor site morbidity [58,59]. Alternative cellular 
therapies have turned to progenitor cell populations such as 
BMSCs, which have the ability to differentiate into several con-
nective tissue cells types, including cartilage [60]. Clinically, 
autologous BMSCs have been used to repair articular cartilage 
defects by surgically transplanting collagen-embedded BMSCs 
[61-63] and by intra-articular injections of BMSCs [64]. Both 
techniques have yielded promising results with noted improve-
ments in clinical symptoms such as pain and walking ability. 

ADSCs have also been investigated as a less invasive source of 
chondrocyte progenitors that can be differentiated into chon-
drocytes in vitro [16]. Important considerations in this process 
include the use of appropriate growth factors, primarily those in 
the TGF-β superfamily [65], as well culture in a 3-dimensional 
environment by utilizing cellular scaffolds [66]. These precon-
ditioned ADSCs are then capable of forming cartilage tissue in 
vivo [67]. In addition, uninduced ADSCs transplanted into hya-
line cartilage defects in patellofemoral joints [68] and ear auricle 
defects [69] in animals have completely restored the native car-

tilage structure and fully repaired the defects at six months and 
three months, respectively. Limiting the ex vivo manipulation of 
these cells provides a more favorable technique for future clini-
cal applications and demonstrates the intrinsic ability of ADSCs 
to adapt to their environment in vivo without the need for exog-
enous growth factors and substrates pre-transplantation.

WOUND HEALING

Wound healing is a highly coordinated process involving com-
plex interactions among cells, growth factors and extracellular 
matrix (ECM) molecules to sequentially achieve hemostasis, 
cell proliferation, angiogenesis, re-epithelialization and remod-
eling of tissue. ADSCs have been promoted as favorable can-
didates for wound therapies as they secrete numerous growth 
factors and cytokines critical in wound healing [70,71] and 
also increase macrophage recruitment, enhance granulation 
tissue, and improve vascularization [72,73]. These reparative 
capabilities are illustrated in a study by Rigotti et al. [74], which 
examines the role of ADSCs in treating severe (LENT-SOMA 
grade 3) and irreversible (LENT-SOMA grade 4) radiation-
induced lesions with atrophy, fibrosis, ulceration and retraction. 
Repeated transplants of purified autologous lipoaspirates into 
irradiated areas resulted in improvement of ultrastructural tissue 
characteristics with neovessel formation as well as significant 
clinical improvements with the majority of patients exhibiting a 
decrease in LENT-SOMA scores to 0 or 1. Similar results have 
been reported in animal models of radiation injury with in-
creased vessel density in wounds treated with ADSCs [72,75]. 
These studies also elucidate possible reparative mechanisms 
of ADSCs such as the release of keratinocyte growth factor 
[72] and the differentiation of ADSCs toward endothelial and 
epithelial phenotypes [72,75]. Akita et al.  report a case of an in-
tractable sacro-coccygeal radiation ulcer treated with autologous 
ADSCs, artificial dermis, and basic fibroblast growth factor that 
healed uneventfully by 82 days after initial treatment. Similar 
mechanisms may have be responsible for improved healing in 
this case though it is difficult to determine due to the adminis-
tration of multiple treatment modalities.

The angiogenic properties of ADSCs may also be beneficial in 
other wounds complicated by ischemia, such as in the setting of 
critical limb ischemia. Lee et al. [76] utilize intramuscular injec-
tions of ADSCs to treat patients with thromboangiitis obliterans 
and diabetic feet with improvement in pain rating scores in the 
majority of patients as well as improved walking distances mea-
sured in a subset of patients. Similar to observations of neovessel 
formation by Rigotti et al. [74], transplantation of ADSCs into 
ischemic limbs increased blood flow as seen by new collateral 
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vessel formation using digital subtraction angiography at six 
months after transplant. Autologous transplantation of other cell 
types such as BMSCs have also shown promising results in limb 
ischemia patients, including evidence of increased collateral 
vessels, improved ankle-brachial index and transcutaneous oxy-
gen pressure, and improvements in patients’ walking distance 
and resting pain after cell transplantation [77-79]. However, 
it should be noted that adverse affects such as unfavorable an-
giogenesis have been noted in patients receiving bone marrow 
mononuclear cells [80] and that clinical improvements can vary 
depending on the underlying cause of critical limb ischemia 
[81]. Though Lee et al. [76] report no complications follow-
ing their transplantations, utilization of these therapies should 
proceed with caution as they are still novel and their effects not 
completely understood. 

ADSCs may also be suited for the treatment of pathological 
wound healing in the context of aberrant scar formation. The 
extent of scar formation is closely associated with the inflam-
matory process in wound healing [82], providing a potential 
therapeutic target for excessive scarring as ADSCs have been 
shown to have anti-inflammatory and immunosuppressive ef-
fects [83,84]. Yun et al. [85] injected ADSCs subcutaneously 
into scars formed from full thickness skin defects on the backs 
of pigs . Their results showed that scar surface area was signifi-
cantly smaller in the experimental group, which also had greater 
improvements in scar color and pliability. Interestingly, scars 
injected with ADSCs also had fewer mast cells, possibly de-
creasing fibroblast proliferation and supporting the concept of 
inflammatory modulation in controlling scar formation. As scar 
formation is an essential part of normal wound healing, it will 
be important for future therapies to regulate the modulation of 
inflammatory processes to achieve an appropriate balance be-
tween necessary and excessive scar formation.

SKIN REJUVENATION

Skin aging involves a number of different degenerative pro-
cesses, notably a decrease in collagen production by fibroblasts. 
Several cytokines and growth factors are involved in stimulating 
fibroblast collagen synthesis for skin rejuvenation, and have also 
been shown to be part of the secretome of ADSCs [86], sug-
gesting that these cells may be suitable for promoting repair of 
atrophic and photo-damaged skin. Animal studies have shown 
that subcutaneous ADSC injections increase dermal thickness 
and collagen density in aged mice [87], and reduce wrinkles in-
duced by UVB-irradiation [88]. Suggested mechanisms include 
paracrine activation of dermal fibroblasts and dermal angiogen-
esis [87,89]. In a clinical pilot study, Park et al. [86] injected 

autologous lipoaspirate (PLA) cells containing approximately 
20% to 30% ADSCs intradermally in the photo-aged aged skin 
of one patient. They reported an improvement in general skin 
texture and wrinkles after two months as well as an increase 
in dermal thickness by ultrasonography. These promising out-
comes are similar to the results of translational studies, though 
further elucidation of the mechanisms behind these effects is 
necessary prior to further applying these therapies.

PERIPHERAL NERVE REGENERA-
TION

The repair of peripheral nerve injuries (PNIs), particularly those 
with large defects, is limited by donor site morbidity and sub-
optimal functional recovery, prompting research for alternative 
treatments that have included a wide spectrum of regenera-
tive therapies. A majority of experimental stem cell treatments 
for PNI focus on replacing host support cells, particularly the 
Schwann-cell population, as these cells are crucial in providing 
trophic, structural and directional support for regenerating ax-
ons. Neural stem cells are a logical choice as natural precursors 
to Schwann cells (SCs), and improve regeneration in animal 
models of PNI [90]. However, they are restricted by difficulties 
with isolation as well as ethical problems. ESCs have likewise 
been used to promote nerve repair in animals [91], but are cur-
rently limited by similar issues.

Adult stem cells such as BMSCs are a useful source of autolo-
gous cells that are multipotent, but can be trans-differentiated 
into SC-like cells [92]. ADSCs also have the capacity to replace 
host SCs [17] and can promote nerve regeneration when dif-
ferentiated into neuronal-like lineages as well [93]. In addition, 
these cells are more easily accessible than BMSCs and are com-
parable to BMSCs in their capacity to promote peripheral nerve 
regeneration in animals [94]. The skin serves as another reliably 
accessible source of stem cells. A population of undifferentiated 
adult stem cells can be found in the hair follicle bulge, and has 
been differentiated into several cell types including neuronal-
like [95] and SC-like cells [96]. The dermis also contains neural 
crest precursor cells that have been shown to improve nerve 
regeneration in the chronically denervated nerve [97].

Alternative approaches to stem cell-mediated peripheral nerve 
regeneration focus on modulating the nerve injury niche to pro-
vide trophic support for host cells. Transplants of undifferenti-
ated ADSCs into peripheral nerve injuries have demonstrated 
that ADSCs can secrete several neurotrophic factors such as 
nerve growth factor, glial cell line-derived neurotrophic factor 
and brain-derived neurotrophic factor in vivo [98,99]. In addi-
tion, ADSCs express genes that belong to the glial phenotype 
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and are responsible for neuron metabolism and function [100]. 
These findings suggest that ADSCs may be particularly suited to 
create a favorable environment to support regenerating axons. 
However, the overall mechanism of action behind ADSCs’ influ-
ence on nerve regeneration is still relatively unknown. Moving 
forward with translational studies will require a better definition 
of the role of ADSCs as a paracrine influence that promotes re-
generation in the surrounding tissue or as a progenitor cell that 
replaces host tissues. 

CONCLUSIONS

Regenerative medicine has made significant progress over the 
last several years with regards to further understanding stem 
cell biology and the different applications of stem cells for the 
treatment of clinical problems. The field of plastic surgery is no 
exception, and stem cells have been reported to be effective in 
treating a variety of defects including bony and soft tissue de-
fects, as well as non-healing wounds complicated by radiation 
and ischemia. Aesthetic procedures such as breast augmenta-
tion and skin rejuvenation have also shown positive outcomes 
with stem cell treatments. Importantly, these studies have noted 
minimal complications from these cell-based therapies. ADSCs 
have proven to be particularly useful as their ease of isolation 
and efficient ex vivo culture makes them favorable candidates for 
clinical applications. However, much remains unknown about 
the mechanisms of action behind the therapeutic effects of 
these cells. In this regard, it may be beneficial for future efforts 
to focus on further investigating the survival of transplanted 
cells in the injury niche, the controlled proliferation of stem 
cells after transplantation, and the appropriate integration of the 
transplanted cells into their surrounding environment.

In addition, the majority of the clinical literature is comprised 
of case reports and small case series. These cases are valuable 
studies for creating a foundation to direct future experiments; 
however, large scale, randomized trials will eventually be nec-
essary to determine the true safety and efficacy of these novel 
treatments. Overall, the recent clinical advances in stem cell 
therapies suggest a promising future for regenerative medical 
therapies in plastic surgery. However, as the basic science of 
stem cell behavior continues to be revealed, cautious and con-
trolled implementation of cell-based therapies will be crucial for 
the appropriate translation of this new technology to the clinical 
setting.
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