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Deep learning for anatomical 
interpretation of video 
bronchoscopy images
Ji Young Yoo1, Se Yoon Kang1, Jong Sun Park2,3, Young‑Jae Cho2,3, Sung Yong Park1, 
Ho Il Yoon2,3, Sang Jun Park3,4, Han‑Gil Jeong3,5,6 & Tackeun Kim3,5,7*

Anesthesiologists commonly use video bronchoscopy to facilitate intubation or confirm the location 
of the endotracheal tube; however, depth and orientation in the bronchial tree can often be confused 
because anesthesiologists cannot trace the airway from the oropharynx when it is performed using 
an endotracheal tube. Moreover, the decubitus position is often used in certain surgeries. Although it 
occurs rarely, the misinterpretation of tube location can cause accidental extubation or endobronchial 
intubation, which can lead to hyperinflation. Thus, video bronchoscopy with a decision supporting 
system using artificial intelligence would be useful in the anesthesiologic process. In this study, 
we aimed to develop an artificial intelligence model robust to rotation and covering using video 
bronchoscopy images. We collected video bronchoscopic images from an institutional database. 
Collected images were automatically labeled by an optical character recognition engine as the carina 
and left/right main bronchus. Except 180 images for the evaluation dataset, 80% were randomly 
allocated to the training dataset. The remaining images were assigned to the validation and test 
datasets in a 7:3 ratio. Random image rotation and circular cropping were applied. Ten kinds of 
pretrained models with < 25 million parameters were trained on the training and validation datasets. 
The model showing the best prediction accuracy for the test dataset was selected as the final model. 
Six human experts reviewed the evaluation dataset for the inference of anatomical locations to 
compare its performance with that of the final model. In the experiments, 8688 images were prepared 
and assigned to the evaluation (180), training (6806), validation (1191), and test (511) datasets. The 
EfficientNetB1 model showed the highest accuracy (0.86) and was selected as the final model. For 
the evaluation dataset, the final model showed better performance (accuracy, 0.84) than almost 
all human experts (0.38, 0.44, 0.51, 0.68, and 0.63), and only the most‑experienced pulmonologist 
showed performance comparable (0.82) with that of the final model. The performance of human 
experts was generally proportional to their experiences. The performance difference between 
anesthesiologists and pulmonologists was marked in discrimination of the right main bronchus. Using 
bronchoscopic images, our model could distinguish anatomical locations among the carina and both 
main bronchi under random rotation and covering. The performance was comparable with that of the 
most‑experienced human expert. This model can be a basis for designing a clinical decision support 
system with video bronchoscopy.

In this era of artificial intelligence, clinical decision support systems have been developed using artificial intel-
ligence and used to mitigate physicians’ effort and improve patient  outcomes1–4. To build a reliable and robust 
system, well-trained algorithms with enormous amount of thoroughly prepared dataset are required to obtain 
reliable performance.

Video bronchoscopy is an important tool for airway  inspections5. Generally, anatomical discrimination of the 
bronchial tree during diagnostic video bronchoscopy examinations is achieved by tracing the airway from the oral 
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space to the deeper bronchi. In addition, navigation bronchoscopy has been developed to support examination 
 process6–10. In anesthesia, video bronchoscopy is commonly used to intubate difficult airways and to confirm 
the proper positioning of lung-isolation devices, such as the double-lumen tube or endobronchial  blocker11–16. 
Thus, an accurate understanding and knowledge of bronchial tree anatomy are essential for an anesthesiologist 
when using video  bronchoscopy16,17. Unlike general diagnostic video bronchoscopic procedures, anesthesiolo-
gists often cannot determine anatomical locations by tracing from the oral cavity to the deeper bronchi when 
it is performed using an endotracheal tube. Moreover, the position of patients according to operations (e.g., 
lateral decubitus position) can cause confusion with respect to the orientation of bronchoscopic view, and the 
bronchial part of the double-lumen tube or bronchial blocker often blocks the view. Thus, it is more difficult 
to determine the depth and location in the bronchial tree in anesthesiologic procedures than in routine diag-
nostic video bronchoscopy. Although rare, misinterpretation of tube location can cause accidental extubation 
or endobronchial intubation, which can lead to complications, such as atelectasis in the unventilated side and 
barotrauma of the intubated  side18,19.

In this study, we developed artificial intelligence model robust to rotation and covering for anatomical inter-
pretation of video bronchoscopy images which can be a useful option in anesthesiologic process.

Materials and methods
Data preparation and preprocessing. The retrospective data collection and analysis plan was approved 
by the Institutional Review Board of the Seoul National University Bundang Hospital and the need for obtaining 
informed consent was waived (B-2001/588-102). All research processes were performed in accordance with the 
Declaration of Helsinki. We subsequently searched the clinical data warehouse of our institution for patients 
who had undergone video bronchoscopy.

Because some information regarding anatomical location was missing since 2008, we limited the scope 
of search from 2004 to 2007. A total of 3216 patients underwent video bronchoscopy from January 2004 to 
December 2007. Through the picture archiving and communication system, we could download 47,447 images 
containing text annotations regardless of age, sex, and diagnosis.

Collected images were automatically labeled using an open-source optical character recognition engine 
(Tesseract, version 4.1.1, https:// tesse ract- ocr. github. io). To enhance optical character recognition performance, 
we converted the color images to gray and then applied binary thresholding using the OpenCV library (version 
4.4.0, https:// opencv. org). If extraction of meaningful strings from images of the original size was not possible, 
we attempted to extract strings from images sequentially magnified by 2–10 times. All recognized text strings 
were converted to lowercase. If any text containing “car” was found, that image was assigned to the carina class. 
In a similar manner, images with text containing “left main”, “lt. main”, or “lm” were assigned to the left main 
bronchus class and images containing “right main”, “rt. main”, or “rm” were assigned to the right main bronchus 
class. Images which represented anatomical position other than the carina and main bronchi or could not be 
identified by automated labeling were excluded (37,654). The remaining 9793 images were successfully placed 
in the carina class (3228), left main bronchus class (3471) and right main bronchus class (3094).

Next, a single researcher (TK) evaluated the entire image set manually and excluded images with a foreign 
body, tumors, massive sputum, or hemorrhage blocking normal anatomical structures. Images showing traces 
of surgery or very poor quality were also excluded. Consequently, 1105 inappropriate images were discarded by 
manual evaluation. Finally, 8688 images were prepared for experiments (3100 for the carina class, 2901 for the 
left main bronchus class, and 2687 for the right main bronchus class). For experimental images, only a squared 
area containing the bronchoscopic view was cropped, and the rest of the canvas, including patient-related infor-
mation, was removed. Finally, all images were resized to 224 by 224 pixels.

Prepared images were categorized into four datasets using a random permutation: training dataset (used for 
model training), validation dataset (used for model training for calculating validation accuracy and loss), test 
dataset (used for evaluating each experiment to select the best model), and evaluation dataset (used for compar-
ing model performance to that of human experts). First, 180 images were selected and isolated for the evaluation 
dataset. Then, 80% (6806) of the remaining 8,508 images were randomly allocated to the training dataset and 
the remaining 1702 were randomly divided in a 7:3 ratio and assigned to the validation dataset (1191) and test 
dataset (511), respectively (Fig. 1).

The training, test, and evaluation datasets were randomly rotated (0–2π) and cropped to a circle of random 
radius from 60 to 112 pixels, where the x–y coordinates of the center point between 72 and 152 were randomly 
assigned, respectively, to make the model robust to rotation and covering by the endotracheal tube. Regarding the 
validation dataset, the same preprocessing was applied, but the original images were also appended to optimize 
the model training process to enhance the classification performance (Fig. 2).

Model training and evaluation. We used TensorFlow (version 2.3.1, https:// www. tenso rflow. org) as a 
back-end library on the Python (version 3.6.9, https:// www. python. org) programming language. To search for 
adequate models for our classification problem, we adopted pretrained convolutional neural network models 
provided as application programming interfaces by the TensorFlow library. Models with < 25 million parameters 
were selected considering training and inference efficiency for the possibility of being embedded in endoscopic 
equipment in the future. Thus, 10 models (DenseNet121, DenseNet201, EfficientNetB0, EfficientNetB1, Effi-
cientNetB2, EfficientNetB3, EfficientNetB4, MobileNetV2, NASNetMobile, and ResNet50V2) with pretrained 
weights with Imagenet dataset were adopted for this  investigation20–25.

Using each pretrained model, several modifications were made to fit our classification task. First, the shape of 
the input array was set to (224, 224, 3) for models with different input shape. Next, the output layer containing 
1000 fully connected nodes was replaced with three fully connected nodes activated by a normalized exponential 

https://tesseract-ocr.github.io
https://opencv.org
https://www.tensorflow.org
https://www.python.org
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Figure 1.  Image preprocessing. Images were labeled automatically by an optical character recognition engine. 
Recognized text strings were classified as the carina, left main bronchus, and right main bronchus classes. Only a 
square area containing the bronchoscopic view was cropped, and the rest, including patient-related information, 
was removed. All images were resized to 224 by 224 pixels and randomly rotated and cropped to a circle of 
random radius.

Figure 2.  Data preparation and partitioning process.
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function (softmax) to predict ternary classes of our datasets. Loss function was defined with categorical cross-
entropy. An Adam optimizer was  used26. Batch size was equally set to 128 for all models considering the maxi-
mum parameter numbers and size of the graphics-processing unit memory (32 GB × 2). As to the initial learning 
rate, we performed grid search to identify the best parameter among  10–2,  10–4,  10–6, and  10–8. While monitoring 
the loss function for the validation dataset, we proceeded with training to minimize the loss function. If the 
minimum loss was not updated during five epochs, the learning rate was reduced by 0.9. In the case of failure 
to update the lowest loss value for 100 epochs, training was terminated, and the saved model with the lowest 
loss was used as the best model of each experiment. The same training processes were applied to all 10 models.

Model evaluation was performed by using a test dataset after all model training processes were finished. Using 
each best model, the prediction of classes and related probabilities was inferred to calculate the numbers of true 
positives, true negatives, false positives, and false negatives. The best prediction accuracy of a model defined as 

TP+TN

TP+TN+ FP+ FN
 was selected as the final artificial intelligence model. Using the artificial intelligence model, the 

area under the receiver operating characteristic curve (AUC) and area under the precision 
(

TP

TP+ FP

)

 − recall 
(

TP

TP+ FN

)

 curve were plotted for each class.

Performance comparison with human experts. To evaluate and compare model performance against 
human experts, 200 images were prepared from 180 isolated evaluation dataset images; 20 were randomly 
selected and added to measure test–retest reliability. Each of the 200 images underwent random rotation and 
circular crop in the manner described above, and true labels were blinded. Three anesthesiologists (A1, A2, and 
A3) with 1, 15, and 24 years, respectively, of specialist experience and three pulmonologists (P1, P2, and P3) with 
12, 14, and 20 years, respectively, of specialist experience at a referral university hospital reviewed 200 images 
to infer anatomical locations. Inference results were also obtained by substituting the same image set for the 
artificial intelligence model.

For each evaluator, including the artificial intelligence model, two methods were used to measure the per-
formance: the first to measure performance for the originally planned ternary classification and the second to 
measure performance for binary classification distinguishing the carina from both bronchi. In both methods, 
classification accuracy, precision, and recall were individually calculated.

Explanation of artificial intelligence model. The mode of action of a convolutional neural network as 
a classifier is difficult to intuitively understand. Thus, several methods have been introduced for visualization of 
the decision basis. Among them, we adopted gradient-weighted class activation mapping (Grad-CAM), which 
could be calculated by average pooling of weights formed by each convolution layer for visualization of the ana-
tomical structures that influence the  prediction27.

Statistical analysis. The statsmodels library (version 0.12.1, https:// stats models. org) for Python was used. 
The chi-square test was applied to compare the proportions of classes among datasets. To compare classification 
performance, the McNemar test was performed by using paired answers between evaluators. p-value of < 0.05 
was considered statistically significant.

Results
There was no significant difference in the class distribution among the four datasets (training, validation, test, 
and evaluation datasets) (X2 = 6.6487, p = 0.3546).

The results of the training process using the base model adopted for custom model construction fit to our task 
are summarized in Table 1. Generally, the training process using a learning rate of  10–4 showed faster convergence, 
while using a learning rate of  10–6 showed higher accuracy for the validation dataset. In most cases, parameters 
could not be converged with a learning rate of  10–8. The DenseNet201 based model with a learning rate of  10–4 
showed the lowest loss value (0.2039) for the validation dataset. However, the highest accuracy for the validation 
dataset was achieved by EfficientNetB1 based model trained with a learning rate of  10–6 (0.8871). Figure 3 shows 
the change in performance metrics during the training process with a learning rate of  10–6 according to each 
base model. Using models showed the best accuracy for validation dataset by each base model, accuracy for test 
dataset was measured to select the final model. The model based on EfficientNetB1 trained using a learning rate 
of  10–6 showed the highest accuracy (0.8630) for the test dataset; the precision and recall were 0.8661 and 0.8652, 
respectively, for the test dataset. Thus, the EfficientNetB1 based model trained with a learning rate of  10–6 was 
selected as the artificial intelligence model.

With the artificial intelligence model, the AUCs for predicting the carina, left main bronchus, and right main 
bronchus were 0.9833, 0.9765, and 0.9657, respectively. The class-average AUC was 0.9752. The area under the 
precision-recall curve for predicting the carina, left main bronchus, and right main bronchus were 0.9674, 0.9616, 
and 0.9439, respectively. The class-average area under the precision-recall curve was 0.9673 (Fig. 4).

The performance of the human experts for the evaluation dataset varied. In the ternary classification task, 
A1 (1 year of anesthesiology specialist experience) showed the lowest accuracy (0.3800) among the human 
experts, whereas P3 (20 years of pulmonology specialist experience) showed the highest accuracy (0.8150). The 
accuracy was higher for the artificial intelligence model (0.8400) than for any of the human experts. Except for 
P3, the performance of the artificial intelligence model was significantly superior. Although the accuracy was 
slightly lower for P3 than for the artificial intelligence model, the difference was not significant (p = 0.5601). In 
the binary classification task, the overall results were similar except that P3 outperformed the artificial intelli-
gence model (accuracy 0.9300 vs. 0.9100), although the difference was not significant (p = 0.5572). These results 
are summarized in Fig. 5. The agreement rate for 20 duplicated but differently rotated and cropped images were 

https://statsmodels.org
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95% (19/20) for the artificial intelligence model and 45%, 65%, 45%, 65%, 70%, and 80% for A1, A2, A3, P1, P2, 
and P3, respectively.

Gradient-weighted class activation mapping analysis provided a graphic view of the ability of the artificial 
intelligence model to predict anatomical locations from video bronchoscopy images (Fig. 6). When the artificial 
intelligence model predicted the carina, it was mostly focused on the sharp edge of the carina with adjacent 
bronchial cartilages and posterior muscle stripes. On the other hand, the prediction of the bronchi seemed to be 
influenced by the features of deeper structures, such as the junction between the secondary and tertiary bronchi. 
Although almost all circular cropped images showed similar heatmaps for the original images, large differences 
were noted in some cases with excessive cropping.

Table 1.  Training results according to the base models used for custom model design and initial learning rate. 
MB megabytes. *The lowest loss value. † The highest accuracy for validation dataset. ‡ The highest accuracy for 
test dataset.

Base model Number of parameters Model size (MB) Learning rate Training epochs
Loss for validation 
dataset

Accuracy for validation 
dataset

Accuracy for test 
dataset

DenseNet121 7,040,579 82

10–2 72 0.5139 0.7322

10–4 46 0.2269 0.7649

10–6 147 0.4132 0.8375 0.8141

10–8 Failed to converge

DenseNet201 18,327,747 212

10–2 54 0.5457 0.7200

10–4 32 0.2039* 0.7720

10–6 69 0.4307 0.8380 0.8239

10–8 2205 0.6662 0.7364

EfficientNetB0 4,053,414 48

10–2 52 0.4440 0.8296

10–4 6 0.2841 0.8098

10–6 497 0.3324 0.8787 0.8434

10–8 Failed to converge

EfficientNetB1 6,579,082 77

10–2 81 0.3607 0.8438

10–4 5 0.2641 0.8237

10–6 392 0.3047 0.8871† 0.8630‡

10–8 Failed to converge

EfficientNetB2 7,772,796 90

10–2 51 0.3224 0.8375

10–4 4 0.2984 0.8014

10–6 375 0.3248 0.8774 0.8589

10–8 Failed to converge

EfficientNetB3 10,788,146 125

10–2 65 0.4671 0.8119

10–4 4 0.3046 0.8077

10–6 323 0.3781 0.8610 0.8258

10–8 Failed to converge

EfficientNetB4 17,679,202 204

10–2 55 0.3126 0.8308

10–4 31 0.3089 0.8338

10–6 285 0.3751 0.8589 0.8434

10–8 Failed to converge

MobileNetV2 2,261,827 27

10–2 235 0.4963 0.7397

10–4 103 0.5407 0.7208

10–6 164 0.5426 0.7926 0.7789

10–8 4026 0.8471 0.6121

NASNetMobile 4,272,887 53

10–2 858 0.7217 0.8237

10–4 166 0.4902 0.8799 0.8219

10–6 187 0.6392 0.7519

10–8 Failed to converge

ResNet50V2 23,570,947 271

10–2 25 0.5966 0.6377

10–4 23 0.2962 0.7531

10–6 74 0.5310 0.8023 0.7808

10–8 1902 0.7737 0.6688



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23765  | https://doi.org/10.1038/s41598-021-03219-6

www.nature.com/scientificreports/

Figure 3.  Performance metrics changes during the training process of each base model using a learning 
rate of  10−6. The horizontal axis represents the number of epochs. (A) training accuracies for the EfficientNet 
family; (B) training losses for the EfficientNet family; (C) validation accuracies for the EfficientNet family; 
(D) validation losses for the EfficientNet family; (E) training accuracies for models other than the EfficientNet 
family; (F) training losses for models other than the EfficientNet family; (G) validation accuracies for models 
other than the EfficientNet family; (H) validation losses for models other than the EfficientNet family.
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Discussion
In this investigation, our goal was to develop an artificial intelligence model that could anatomically interpret 
video bronchoscopy images of the carina and main bronchi regardless of rotation or covering. We demonstrated 
that the classification performance of the artificial intelligence model outperformed that of most human experts 
and was comparable with that of the most-experienced pulmonologist.

Video bronchoscopy has been an important diagnostic or interventional tool for anesthesiology as well as pul-
monary and critical care medicine. Although video bronchoscopy is a safe method, accurate navigation through 
airways requires thorough  training28,29. The Accreditation Council for Graduate Medical Education, American 
College of Chest Physicians, American Thoracic Society, and European Respiratory Society require a certain 
number of procedures for demonstrating competence in interpretation of examination  results30,31. However, the 
training environment can be somewhat more disadvantageous for anesthesiologists than for pulmonologists. 
Unlike pulmonary video bronchoscopy training, in which the anatomical context is well-perceived through 
exploration of the trachea and bronchial trees, anesthesiologists often introduce the bronchoscope through the 
endotracheal tube and directly reach the carina. In 2020, the pulmonologists who participated in this study had 
each performed an average of 250–300 video bronchoscopies, whereas the anesthesiologists had each performed 
an average of 80–100 video bronchoscopies in a year. Previous reports demonstrated distinct differences in the 
procedure lengths and complication rates according to training  experiences32. Furthermore, with the introduc-
tion of video laryngoscopes and supraglottic airways, the number of video bronchoscopies by anesthesiologists 
has been  decreasing33. Thus, there are relative differences quantitatively and qualitatively. Hence, we believe 
our developed model can provide advice comparable with the most-experienced human expert in anatomical 
location discrimination, which not only enables use in clinical settings but also improves the training process.

Apart from anesthesiologic use, interventional video bronchoscopy, including biopsy, anatomical navigation 
is more important for targeting appropriate tissue location. Thus, several technologies, including augmented 
reality and 3D printing, have been used to support video bronchoscopy  training10,28,34,35. However, those studies 
required prebronchoscopic computed tomography scan to construct 3D segmented volumes and additional dis-
play devices. On the other hand, our artificial intelligence model only needs video bronchoscopic images without 
any additional examinations to be performed. Moreover, the predicted anatomical location can be overlaid in 
the same screen that examiners view. In short, our artificial intelligence model can assist examiners directly by 
predicting the anatomical location of what he or she visualizes around the carina and both main bronchi regard-
less of rotation and covering in real-time. The mean inference time per image was 44.6 ± 3.1 ms (22.4 images per 
second) for use of a single V100 GPU and 101.0 ± 6.3 ms (9.9 images per second) for use of an eight-threaded i7 
CPU. Considering the small size of the model and short inference time, our artificial intelligence model can be 
embedded in bronchoscopic equipment without network connections or high-performance GPUs.

Throughout our experiments, the EfficientNetB1 model showed the best performance for the test dataset, 
whereas the NASNetMobile model showed the worst performance. As shown in Fig. 3, models based on the 
EfficientNet family showed a relatively steady and continuous increase in accuracy and a decline in losses for 
both training and validation datasets (Fig. 3A–D). Thus, the overall accuracy of the validation dataset outper-
formed models based on another pretrained network (Fig. 3C,G). Models based on DenseNets, MobileNetV2, 
NASNetMobile, and ResNet50V2 showed a relatively early overfitting, and the accuracy of the validation dataset 
was saturated at < 0.85. The model structure proposed by the innovative scaling method of EfficientNet seemed 
to be more effective in the learning dataset of this study. The proposed EfficientNet model with compound 

Figure 4.  The area under the receiver operating characteristic curve and precision-recall curve of the artificial 
intelligence model for distinguishing anatomical locations.
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scaling already showed a tendency to focus on more relevant regions with more object details, whereas other 
models either lack object details or are unable to capture all objects in other transfer learning  tasks24. On the 
other hand, although the NASNetMobile-based model had a larger number of parameters than that of the Effi-
cientNetB0, but it seems that the initial loss value altered and converged to local minimal  tasks24. On the other 
hand, although the NASNetMobile-based model had a larger number of parameters than the EfficientNetB0 
model, it showed an unstable convergence of loss during early epochs, leading to the highest loss value and 
lowest accuracy (Fig. 3G,H).

There were several limitations in this study. We collected image data retrospectively to secure a sufficiently 
large number of images for model training. Although a prospective validation study might be needed for gen-
eral applications in the medical field, our artificial intelligence model showed excellent performance as assessed 
using sufficient numbers of separate test and evaluation datasets. Another limitation is that this study included 
only video bronchoscopic images of the carina and both main bronchi with normal anatomy. Thus, anatomical 
discrimination along the entire airway could not be trained. To demonstrate the ability to function well as a 
general clinical decision support system as bronchoscopic assistant, training with more images of various regions 
and pathological conditions would be needed.

In conclusion, we showed that our artificial intelligence model could identify and distinguish anatomical 
locations using bronchoscopic images of the carina and both main bronchi with performance comparable with 
that of the most-experienced pulmonologist, which can overcome various patient position and surrounding 
tubes. Further studies with various conditional datasets are warranted for developing a general clinical decision 
support system for video bronchoscopy.

Figure 5.  Performance metrics of the artificial intelligence model and human experts. (A) Classification 
metrics for ternary (carina/left main bronchus/right main bronchus); (B) confusion matrix for ternary 
classification; (C) classification metrics for binary (carina/both main bronchi); (D) confusion matrix for binary 
classification. A1, A2, and A3 are anesthesiologists with 1, 15, and 24 years of specialist experience and P1, P2, 
and P3 are pulmonologists with 12, 14, and 20 years, respectively, of specialist experience working in a referral 
university hospital. Letters C, L, R, and B in the confusion matrix indicate the carina, left main bronchus, right 
main bronchus, and both main bronchi, respectively.
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Figure 6.  Saliency map generated by gradient-weighted class activation mapping. Odd lines and even lines 
represent matched original images and circular cropped images, respectively. Images at lines 1 and 2 are 
correctly predicted cases for the carina and those at lines 3 and 4 are for the left main bronchus. Lines 5 and 6 
represent the correctly predicted images of the right main bronchus. Images at lines 7 and 8 indicate the cases in 
which inference has changed depending on whether the image is cropped. A7, true carina; A8, carina predicted 
as the right main bronchus; B7, true left main bronchus; B8, left main bronchus predicted as the carina; C7, true 
right main bronchus; C8, right main bronchus predicted as the left main bronchus; E7, carina predicted as the 
right main bronchus; E8, true carina; F7, left main bronchus predicted as the right main bronchus; F8, true left 
main bronchus; G7, right main bronchus predicted as the left main bronchus; G8, true right main bronchus.
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