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Abstract
Human impact is noticeable around the globe, indicating that a new era might have 
begun: the Anthropocene. Continuing human activities, including land- use changes, 
introduction of non- native species and rapid climate change, are altering the distribu-
tions of countless species, often giving rise to human- mediated hybridization events. 
While the interbreeding of different populations or species can have detrimental 
effects, such as genetic extinction, it can be beneficial in terms of adaptive intro-
gression or an increase in genetic diversity. In this paper, I first review the different 
mechanisms and outcomes of anthropogenic hybridization based on literature from 
the last five years (2016– 2020). The most common mechanisms leading to the inter-
breeding of previously isolated taxa include habitat change (51% of the studies) and 
introduction of non- native species (34% intentional and 19% unintentional). These 
human- induced hybridization events most often result in introgression (80%). The 
high incidence of genetic exchange between the hybridizing taxa indicates that the 
application of a genic view of speciation (and introgression) can provide crucial in-
sights on how to address hybridization events in the Anthropocene. This perspective 
considers the genome as a dynamic collection of genetic loci with distinct evolution-
ary histories, giving rise to a heterogenous genomic landscape in terms of genetic 
differentiation and introgression. First, understanding this genomic landscape can 
lead to a better selection of diagnostic genetic markers to characterize hybrid popu-
lations. Second, describing how introgression patterns vary across the genome can 
help to predict the likelihood of negative processes, such as demographic and ge-
netic swamping, as well as positive outcomes, such as adaptive introgression. It is 
especially important to not only quantify how much genetic material introgressed, 
but also what has been exchanged. Third, comparing introgression patterns in pre- 
Anthropocene hybridization events with current human- induced cases might provide 
novel insights into the likelihood of genetic swamping or species collapse during an 
anthropogenic hybridization event. However, this comparative approach remains to 
be tested before it can be applied in practice. Finally, the genic view of introgression 
can be combined with conservation genomic studies to determine the legal status 
of hybrids and take appropriate measures to manage anthropogenic hybridization 
events. The interplay between evolutionary and conservation genomics will result 
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1  | INTRODUC TION

Human activities are affecting global environmental processes and 
patterns, from rapid climate change and radical land- use changes to 
the introduction of exotic species, prompting some scientists to de-
clare that we have entered a new era: the Anthropocene. The exact 
start of the Anthropocene has been a matter of debate and its onset 
has been connected to different events, such as the rise of deforesta-
tion and agriculture (Ruddiman, 2003), the Columbian Exchange of 
species between the Old World and the New World (Lewis & Maslin, 
2015), the Industrial Revolution in the 1800s (Crutzen, 2002), and 
the population growth and industrialization during the mid- 20th 
century (Steffen et al., 2015). Based on the increase in the use of 
certain materials (e.g., aluminum, plastics, concrete), the nuclear fall-
out of atomic bomb testing, the geochemical signatures of particular 
compounds (e.g., polyaromatic hydrocarbons and pesticides), and 
the atmospheric rise in carbon concentrations, Waters et al., (2016) 
proposed a lower boundary for the Anthropocene during the mid- 
20th century. In this review, I will follow this definition to provide a 
clear distinction between hybridization events that occurred before 
or during the Anthropocene.

Anthropogenic developments affect the distribution of nu-
merous species, often resulting in secondary contact between 
previously allopatric taxa. If these taxa are closely related and re-
productive isolation is incomplete, hybridization might occur. In this 
review, I will define hybridization following Arnold (1997), namely 
the situation in which “two populations of individuals that are distin-
guishable on the basis of one or more heritable characters overlap 
spatially and temporally and cross to form viable and at least par-
tially fertile offspring.” These hybrid interactions can have detrimen-
tal consequences for the interbreeding populations, such as genetic 
swamping or extinction by hybridization (Rhymer & Simberloff, 
1996; Todesco et al., 2016). This is why conservationists have es-
tablished guidelines to deal with such cases of human- induced hy-
bridization (Allendorf et al., 2001). However, hybridization can also 
provide ecological and evolutionary opportunities, such as the origin 
of new hybrid species (Mallet, 2007; Ottenburghs, 2018) or the ex-
change of adaptive genetic variation (Arnold & Kunte, 2017; Hedrick, 
2013). It is thus important to determine the balance between these 
potential detrimental and beneficial consequences when devising 
effective conservation strategies.

In the following sections, I first review the literature on anthropo-
genic hybridization from the last five years (2016– 2020) to identify 
the most common mechanisms and outcomes of human- mediated 
hybridization events (see Table 1, extending the search strategy 
from Grabenstein & Taylor, 2018). Next, I introduce the “genic view 

of speciation,” a concept that has shaped recent research agendas 
in speciation genomics (Campbell et al., 2018; Ravinet et al., 2017; 
Wu, 2001). This viewpoint focuses on the heterogenous nature of 
genetic differentiation and introgression across the genome. The 
insight that different genomic regions tell different evolutionary sto-
ries needs to be taken into account when dealing with anthropogenic 
hybridization events. Specifically, it has important consequences for 
(1) the development of molecular markers, (2) the quantification of 
(adaptive) introgression patterns, and (3) the legal status of hybrids.

2  | MECHANISMS OF ANTHROPOGENIC 
HYBRIDIZ ATION

There are three main mechanisms of anthropogenic hybridization 
(Figure 1), namely human- assisted translocations, habitat modi-
fications, and climate change (Crispo et al., 2011; Grabenstein & 
Taylor, 2018). Translocations or introductions of certain taxa can 
be intentional, such as in genetic rescue programs. This strategy is 
used to restore genetic diversity and reduce the extinction risk of 
small, isolated, and often inbred populations. About 90 percent of 
these genetic rescue attempts have been successful, indicating that 
human- mediated hybridization can be an important tool in conser-
vation (Frankham, 2015). In this review, however, I focus on species 
translocations and introductions that are unrelated to conservation 
efforts. My literature search uncovered 31 papers (out of 59 studies, 
53%) that involved the introduction of non- native species (Figure 2a). 
Some of these cases involved intentional movement of organisms, 
such as the release of game- farm birds for hunting purposes (Forcina 
et al., 2020), the stocking of fish populations with captive- bred ani-
mals (Beheregaray et al., 2017; Bruce et al., 2020), or the translo-
cation of large mammals between African game reserves (Grobler 
et al., 2018; Miller et al., 2020; van Wyk et al., 2019). Other human- 
assisted translocations were unintentional, such as the transport of 
aquatic organisms in ship hulls (Oziolor et al., 2019) or plant seeds by 
cargo or passenger transport, sometimes resulting in cryptic inva-
sions and hybridization events (Morais & Reichard, 2018). In addi-
tion, domestic animals that escape from captivity often interbreed 
with their wild relatives (Anderson et al., 2019; Salvatori et al., 2019; 
Tiesmeyer et al., 2020). Species translocations or introductions— 
both intentional and unintentional— leading to hybridization events 
have thus been documented in a variety of taxa and are expected 
to increase as humans continue to move species across the globe 
(Crispo et al., 2011).

Anthropogenic hybridization can also be the outcome of habitat 
modifications (Grabenstein & Taylor, 2018). Edgar Anderson (1948) 

in the constant exchange of ideas between these fields which will not only improve 
our knowledge on the origin of species, but also how to conserve and protect them.
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TA B L E  1   Overview of studies on anthropogenic hybridization events published in the last five years (2016– 2020)

Species Location Mechanism Outcome Molecular markers Reference

Plants

Centaurea seridis
Centaurea aspera

Spain Habitat Change F1 hybrids
(triploids)

NA Garmendia et al., (2018)

Eucalyptus tetrapleura Australia Habitat Change Introgression RADseq Rutherford et al., (2018)

Odontarrhena spp. Albania Habitat Change Introgression AFLP- fingerprinting Coppi et al., (2020)

Phragmites australis
Phragmites mauritanius

Southern Africa Habitat Change Introgression Chloroplast DNA
Microsatellites

Canavan et al., (2018)

Nevada, USA Introduction F1 hybrids Saltonstall et al., (2016)

Quercus durata
Quercus berberidifolia

California, USA Habitat Change
(fire frequency)

Introgression Microsatellites Ortego et al., (2017)

Rhododendron ferrugineum
Rhododendron hirsutum

Italy Habitat Change Introgression Chloroplast DNA
Microsatellites

Bruni et al., (2016)

Taraxacum calanthodium
Taraxacum lugubre

China Pollination by 
introduced bees

Introgression Microsatellites Peng et al., (2018)

Insects

Bactrocera tryoni
Bactrocera aquilonis

Australia Habitat Change
(horticulture)

Introgression RADseq Popa- Báez et al., (2020)

Helicoverpa armigera
Helicoverpa zea

Brazil Introduction
(invasive species)

Introgression *
(adaptive)

Whole Genome Valencia- Montoya et al., 
(2020)

Phaulacridium marginale
Phaulacridium otagoense

New Zealand Habitat Change
(deforestation)

Introgression Mitochondrial and 
nuclear loci

Sivyer et al., (2018)

Amphibians

Bufo woodhousii
Bufo microscaphus

Southwest USA Habitat Change Introgression Microsatellites Wooten et al., (2019)

Hyperolius thomensis
Hyperolius molleri

Sao Tomé Island Habitat Change
(deforestation)

Introgression mtDNA
RADseq

Bell and Irian (2019)

Lissotriton vulgaris meridionalis
Lissotriton vulgaris vulgaris

Italy Introduction F1 hybrids Mitochondrial and 
nuclear loci

Dubey et al., (2019)

Pelophylax spp. Switzerland Introduction F1 hybrids mtDNA
Microsatellites

Dufresnes et al., (2018)

Rana pipiens Southern USA Introduction Introgression mtDNA
Microsatellites

O’Donnell et al., (2017)

Triturus cristatus
Triturus carnifex

The 
Netherlands

Introduction Introgression Mitochondrial and 
nuclear loci

Wielstra et al., (2016)

Reptiles

Pelodiscus spp. China Introduction
(farmed turtles)

Introgression Mitochondrial and 
nuclear loci

Gong et al., (2018)

Sternotherus depressus
Sternotherus peltifer

Alabama, USA Habitat Change Introgression
(unidirectional)

RADseq Scott et al., (2019)

Fish

Archosargus probatocephalus
Archosargus rhomboidalis

Florida, USA Habitat Change F1 hybrids mtDNA & nDNA
microsatellites

Seyoum et al., (2020)

Alosa alosa
Alosa fallax

France Habitat Change Introgression Mitochondrial and 
nuclear loci

Taillebois et al., (2020)

Alosa pseudoharengu Connecticut, 
USA

Introduction Introgression RADseq Reid et al., (2020)

Catostomus discobolus
Catostomus ardens

USA Habitat Change F1 hybrids Mitochondrial and 
nuclear loci

Bangs et al., (2017)

Cobitis magnostriata
Cobitis minamorii oumiensis

Japan Habitat Change Reproductive
Interference

mtDNA Morii et al., (2018)

(Continues)
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Species Location Mechanism Outcome Molecular markers Reference

Colpichthys regis
Colpichthys hubbsi

California, USA Habitat Change Introgression
(unidirectional)

mtDNA
Microsatellites

Lau and Jacobs (2017)

Coregonus lavaretus
(wild and stocked)

Finland Introduction &
Habitat Change

Introgression Microsatellites Huuskonen et al., (2017)

Coregonus spp. Switzerland Habitat Change
(eutrophication)

Introgression RADseq Feulner and Seehausen 
(2019)

Cottus sp.
Cottus cognatus

Canada Habitat Change Introgression mtDNA
Microsatellites

Rudolfsen et al., (2019)

Etheostoma osburni
Etheostoma variatum

West Virginia, 
USA

Habitat Change Introgression Microsatellites Gibson et al., (2019)

Fundulus grandis
Fundulus heteroclitus

Mexico Habitat Change Introgression *
(adaptive)

Whole Genome Oziolor et al., (2019)

Gila cypha
Gila robusta

Colorado, USA Habitat Change Introgression RADseq Chafin et al., (2019)

Macquaria ambigua
(wild and stocked)

Australia Introduction Introgression RADseq Beheregaray et al., (2017)

Micropterus spp. Southern USA Introduction Introgression Mitochondrial and 
nuclear loci

Bangs et al., (2018)

Oncorhynchus chrysogaster
Oncorhynchus mykiss

Mexico Introduction
(aquaculture)

Introgression RADseq Escalante et al., (2020)

Oncorhynchus clarkii
Oncorhynchus mykiss

USA Introduction Introgression Allozymes, SNPs 
and microsatellites

Muhlfeld et al., (2017)

Oncorhynchus tshawytscha Washington, 
USA

Habitat Change F1 hybrids SNP markers Fraser et al., (2020)

Oreochromis niloticus Ethiopia Introduction Introgression Microsatellites Tibihika et al., (2020)

Parachondrostoma toxostoma
Chondrostoma nasus

France Habitat Change Introgression mtDNA
Microsatellites

Guivier et al., (2019)

Salvelinus alpinus
Salvelinus fontinalis

Sweden Introduction Introgression mtDNA
Microsatellites

Faulks and Östman 
(2016)

Salvelinus fontinalis
(wild and stocked)

New York, USA Introduction Introgression Microsatellites Bruce et al., (2020)

Salvelinus fontinalis
Salvelinus confluentus

Oregon, USA Introduction &
Habitat Change

F1 hybrids
(morphology)

NA Howell (2018)

Sander vitreus
Sander Canadensis

Canada Introduction &
Habitat Change

Introgression RADseq Graham et al., (2020)

Tropheus moorii
(two lineages)

Lake Tanganyika Habitat Change
(lake levels)

Introgression mtDNA, AFLP, and 
Microsatellites

Sefc et al., (2017)

Birds

Alectoris rufa
Alectoris chukar

Italy Introduction
(hunting)

Introgression mtDNA Forcina et al., (2020)

Francolinus francolinus
(subspecies)

Pakistan Introduction Introgression mtDNA
Microsatellites

Forcina et al., (2018)

Mycteria cinerea
Mycteria leucocephala

Singapore Introduction
(captive hybrids)

Introgression RADseq Baveja et al., (2019)

Vermivora chrystoptera
Vermivora cyanoptera

Canada Habitat Change F1 Hybrids mtDNA Moulton et al., (2017)

Mammals

Aepyceros melampus petersi
Aepyceros melampus melampus

Namibia & 
South Africa

Introduction Introgression Microsatellites Miller et al., (2020)

Callithrix spp. Brazil Introduction Introgression NA Malukiewicz (2019)

TA B L E  1   (Continued)

(Continues)
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coined the phrase “hybridization of the habitat” to indicate that 
human disturbances of the environment can lead to the production 
of hybrid offspring. Indeed, 30 studies (51%) attributed hybridiza-
tion events to human- induced habitat changes (Figure 2a). In several 
plant species, the rate of hybridization increased with the level of 
disturbance in the area, such as the concentration of heavy met-
als (Coppi et al., 2020) or the frequency of wildfires (Ortego et al., 
2017). Hybridization can also be the outcome of homogenization of 
the habitat or the construction of landscape features that facilitate 
dispersal (e.g., roads and verges), culminating in contact between 
previously isolated populations (Bangs et al., 2017; Carantón- Ayala 
et al., 2018; van Hengstum et al., 2012). For instance, deforestation 
has led to hybridization between certain insect (Sivyer et al., 2018) 
and amphibian populations (Bell & Irian, 2019). Moreover, habitat 
disturbances can affect selective pressures, allowing hybrids to 
thrive in new environments that are not accessible for the parental 
populations (Arnold et al., 2012; Arnold & Martin, 2010). For exam-
ple, hybrids between cave salamanders (Hydromantes ambrosii and 
Hydromantes italicus) with transgressive phenotypes could expand 
into more harsh environments with higher food availability (Ficetola 
et al., 2019). Human- mediated actions can also influence the sensory 
environment in a number of ways, such as pollutants that alter chem-
ical signaling (Smadja & Butlin, 2009) or anthropogenic noise that 
interferes with auditory communication (Slabbekoorn et al., 2010; 
Slabbekoorn & Ripmeester, 2008). A well- studied example concerns 

the effect of increased lake eutrophication on species recognition in 
fish (Alexander et al., 2017; Vonlanthen et al., 2012). Eutrophication 
decreases water clarity, leading to a breakdown of prezygotic bar-
riers because individuals cannot discriminate between conspecifics 
and heterospecifics in the turbid waters (Seehausen et al., 1997). As 
human- mediated habitat modifications continue to change the envi-
ronmental and sensory conditions for numerous taxa, more hybrid-
ization events are expected to arise in the near future (Crispo et al., 
2011; Grabenstein & Taylor, 2018).

Climate change can be seen as a special case of habitat change 
and can affect hybridization dynamics in a myriad of ways (Chunco, 
2014). Both latitudinal and altitudinal range shifts are expected to 
occur, leading to secondary contact between previously isolated 
species (Larson et al., 2019; Parmesan, 2006; Taylor et al., 2015). 
Such distributional shifts and consequent hybridization events have 
already been documented, for instance between polar bears (Ursus 
maritimus) and grizzly bears (U. arctos) in the Arctic (Kelly et al., 
2010) and between species of Glaucomys flying squirrels (Garroway 
et al., 2010), and will be observed more often in the future (Chunco, 
2014; Taylor et al., 2015). Apart from distributional changes, climate 
change might also result in the breakdown of reproductive isolation 
mechanisms between sympatric species, such as the disappearance 
of temporal isolation due to phenological changes (Vallejo- Marín & 
Hiscock, 2016). Climate change will thus alter population dynamics 
in time and space, culminating in more hybridization events.

Species Location Mechanism Outcome Molecular markers Reference

Canis lupus
Canis lupus familiaris

Italy Introduction
(domestic dogs)

Introgression Nuclear loci Salvatori et al., (2019)

Cervus elaphus
Cervus nippon

Scotland Introduction Introgression SNP genotyping McFarlane et al., (2020)

Cervus elaphus Spain & 
Portugal

Introduction
(non- native deer)

Introgression mtDNA
Microsatellites

Queirós et al., (2020)

Damaliscus pygargus pygargus
Damaliscus pygargus phillipsi

South Africa Introduction F1 hybrids Microsatellites Van Wyk et al., (2017)

Felis silvestris
Felis catus

Europe Introduction
(domestic cats)

Introgression SNP genotyping
Microsatellites

Tiesmeyer et al., (2020)

Gazella bennettii
Gazella subgutturosa

Iran Introduction F1 Hybrids Mitochondrial and 
nuclear loci

Fadakar et al., (2020)

Sus scrofa
(wild and domesticated)

Japan Introduction
(escaped animals)

Introgression mtDNA Anderson et al., (2019)

Other taxa

Daphnia pulex
(different lineages)

Canada Habitat Change Introgression mtDNA
Microsatellites

Millette et al., (2020)

Daphnia longispina
Daphnia galeata

Switzerland Habitat Change
(eutrophication)

Introgression mtDNA
Microsatellites

Alric et al., (2016)

Pomacea canaliculata
Pomacea maculata

Brazil & 
Uruguay

Introduction Introgression Nuclear markers Glasheen et al., (2020)

Note: These studies were found in a systematic literature search of Google Scholar and the Web of Science, using the combined search terms: 
‘anthropogenic AND disturb* AND hybrid*’OR ‘habitat AND chang* AND hybrid*’ OR ‘human AND chang* AND hybrid*’ OR ‘environment* AND 
chang* AND hybrid*’ NOT climate NOT introduc* NOT zone* (following Grabenstein & Taylor).

TA B L E  1   (Continued)
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3  | OUTCOMES OF ANTHROPOGENIC 
HYBRIDIZ ATION

Regardless of the underlying mechanism, anthropogenic hybridiza-
tion can have several outcomes, which are mainly determined by the 
level of genetic divergence and the nature of reproductive isolation 
between the interacting species (Figure 1). In some cases, the hybrid-
ization event is limited to first- generation (F1) hybrids (11 studies, 
19%, Figure 2b), such as the production of triploid hybrids between 
diploid and tetraploid Centaurea species in Spain (Garmendia et al., 
2018) or the occasional hybrid between subspecies of the smooth 
newt (Lissotriton vulgaris) in Italy (Dubey et al., 2019). The absence of 
second- generation hybrids or backcrosses might be due to the lower 
fitness of F1 hybrids (e.g., decreased fertility) or the lower sensitiv-
ity of certain molecular markers that fail to identify later- generation 
hybrids. Another possible outcome of human- induced hybridization 
is a hybrid swarm: a population of fertile hybrids that survived past 
the first hybrid generation, followed by interbreeding between hy-
brid individuals and backcrossing with their parental populations. 
Hybrid swarms generally form within a hybrid zone, an area where 
two populations overlap spatially and temporally and produce viable 
and at least partially fertile offspring within a restricted area (e.g., 
Carney et al., 2000; Fisher et al., 2006). In the majority of studies (47 
studies, 80%), the production of hybrids resulted in the exchange 
of genetic material through backcrossing with parental species (i.e., 

introgression, Figure 2b). On a longer timeframe, the fate of these 
hybrid swarms is difficult to predict. The mixing of different genetic 
lineages might lead to the extinction of particular lineages through 
species collapse (Zhang et al., 2019) or it might provide the raw ma-
terial for an adaptive radiation (Marques et al., 2019; Seehausen, 
2004). In theory, hybrid species can emerge from hybrid swarms, 
but this speciation process is typically too slow to observe on a short 
timescale (Lamichhaney et al., 2018; Ottenburghs, 2018; Seehausen, 
2004). There are, however, some exceptions, such as the Oxford 
ragwort (Senecio squalidus) that originated from the interbreeding of 
two Italian species (S. aethnensis and S. chrysanthemifolius) in British 
gardens at the turn of the 18th century (Nevado et al., 2020).

On a population level, different combinations of hybrid fitness 
and hybridization rate can lead to drastically different outcomes in 
an anthropogenic hybridization event. First, if hybrid fitness is com-
parable to the fitness of parents (i.e., outbreeding depression is low) 
and hybrids show higher population growth rates than the parental 
taxa, genetic swamping might occur in which the parental taxa are 
replaced by hybrids (Rhymer & Simberloff, 1996). This might be oc-
curring in West Virginia (USA) where hybrids between candy darters 
(Etheostoma osburni) and variegate darters (E. variatum) are replac-
ing the now endangered candy darter (Gibson et al., 2019). A special 
case of potential genetic swamping concerns the release of actively 
managed species, such as fish stocks and game birds (Randi, 2008). 
These artificially selected organisms often differ genetically from 

F I G U R E  1   Mechanisms and outcomes of anthropogenic hybridization. Mechanisms that can result in hybridization include human- 
assisted translocations (both intentional and unintentional), habitat modification and climate change. Anthropogenic hybridization events can 
result in the formation of first- generation (F1) hybrids, a hybrid swarm or a hybrid species. If the production of F1 hybrids interferes with the 
reproductive output of the parental species, demographic swamping can occur. A hybrid swarm can lead to (adaptive) introgression, genetic 
swamping or provide the raw material for an adaptive radiation (potentially including the origin of a hybrid species)
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their wild conspecifics which can result in outbreeding depression 
when they interbreed (Muhlfeld et al., 2009). Moreover, the strong 
selection pressures in captivity might lead to low genetic diversity 
and inbreeding depression (Willoughby et al., 2015). Hybridization 
with these maladapted individuals can lower the average fitness of 
wild populations. Although most studies documented introgression 
and warn for the possibility of genetic swamping, few studies di-
rectly quantified the likelihood of genetic swamping in their study 
system. This important knowledge gap should be addressed with 
more detailed analyses, complemented with modeling studies, to 
determine crucial tipping points in introgression levels that can lead 
to genetic swamping.

If hybrid fitness is strongly reduced compared to the parental 
taxa (i.e., outbreeding depression is high) and hybridization rates 
are high, parental taxa will waste reproductive effort when hybrid-
izing. This situation can lead to demographic swamping where pa-
rental taxa decline due to decreased population growth rates (Wolf 
et al., 2001). This situation has been described for the Australian 
native variable groundsel (Senecio pinnatifolius) and the invasive 
Madagascar ragwort (S. madagascariensis). Hybridization rates be-
tween these species are very high, but hybrids are not viable. As the 
invasive plant increases in abundance, the native plant continues to 
waste reproductive effort and will start declining in numbers (Prentis 
et al., 2007). Another example concerns reproductive interference 
between two spined loaches (Cobitis magnostriata and C. minamorii 
oumiensis) that could lead to the decline of the latter species (Morii 
et al., 2018). Between the extremes of genetic and demographic 

swamping, there is a continuum of introgression patterns that are 
neutral or benefit one or both hybridizing taxa.

4  | THE GENIC VIE W OF SPECIATION AND 
INTROGRESSION

This overview of the different mechanisms and outcomes of an-
thropogenic hybridization highlights the difficulty in predicting the 
future developments of hybrid interactions and devising appropri-
ate conservation measures. Recent developments in genomic tools 
have led to more accurate detection of hybrids and the quantifica-
tion of introgression patterns (McFarlane & Pemberton, 2019), but 
an overarching framework is needed to interpret these findings and 
translate them to successful conservation strategies. Here, spe-
ciation genomics and the study of pre- Anthropocene hybridization 
events can provide additional insights (Campbell et al., 2018; Taylor 
et al., 2015). In particular, the genic view of speciation has drastically 
changed the way evolutionary biologists study the process of spe-
ciation (Bazykin, 1969; Key, 1968; Wu, 2001) and this perspective 
can be applied to several conservation genomic questions.

Speciation research has long been dominated by the Biological 
Species Concept (BSC) which focuses on reproductive isolation be-
tween diverging lineages (Mayr, 1963). This concept assumed that 
species differentiation is controlled by a large number of genetic loci 
and that the whole genome functions as an integrated and cohesive 
genetic unit. Hybridization and consequent genetic exchange were 
thought to destroy this integrity and break up “co- adapted gene com-
plexes.” This perspective is still widely followed by conservationists 
that describe introgressive hybridization as “genetic erosion” (Chafin 
et al., 2019) or “genetic pollution” (Wielstra et al., 2016). However, 
genomic studies have overturned the idea of the genome as a cohe-
sive genetic unit that can be destroyed by hybridization. Instead, the 
genome can better be regarded as a dynamic collection of genetic 
loci with separate, but entangled evolutionary histories. Moreover, 
reproductive isolation is often controlled by epistatic interactions 
between a few genetic loci (Ravinet et al., 2017; Wu, 2001).

This new perspective is nicely illustrated by recent studies that 
showed how genetic differentiation between diverging lineages is 
heterogeneously distributed across the genome, often concentrated 
in a few genomic regions, so- called “islands of differentiation” (Wolf 
& Ellegren, 2017). The genomic islands may harbor loci that contrib-
ute to reproductive isolation, and these so- called barrier loci are thus 
less likely to introgress compared to neutral loci. Consequently, bar-
rier loci and closely linked genomic regions will diverge while intro-
gression homogenizes the rest of the genome (Ravinet et al., 2017). 
An alternative explanation for the origin of genomic islands concerns 
linked selection, which comprises two processes: background selec-
tion and genetic hitchhiking (Burri, 2017). Background selection re-
fers to purifying selection against recurring deleterious mutations, 
while genetic hitchhiking occurs when positive selection on a variant 
result in the selection for the genomic region in which this advan-
tageous variant resides. As the advantageous variant increases in 

F I G U R E  2   The most common mechanisms and outcomes of 
anthropogenic hybridization, based on a literature review of the 
last five years (2016– 2020). Habitat change is the most prevalent 
mechanism behind human- induced hybridization events, followed 
by intentional and unintentional translocations of organisms. The 
vast majority of anthropogenic hybridization events results in 
introgression
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frequency, the loci linked to this variant hitchhike along (Sendell- 
Price et al., 2020). Regardless of the underlying process— barrier loci 
or linked selection— the end result is a heterogenous genomic land-
scape of differentiation, which affects several aspects of conserva-
tion genomics, including (1) the development of molecular markers, 
(2) the study of introgression, and (3) the legal status of hybrids.

5  | DE VELOPMENT OF MOLECUL AR 
MARKERS

A first step in the assessment of an anthropogenic hybridization 
event involves determining the composition of the hybrid popula-
tion in terms of parental individuals, first- generation hybrids (F1), 
second- generation hybrids (F2), backcrosses, etc. For example, a 
mixture of different generational hybrids indicates the formation of 
a hybrid swarm, whereas the absence of backcrosses and second- 
generation hybrids suggests selection against hybrids. Most con-
servation genetic studies use a set of variable genetic markers 
(e.g., microsatellites) to quantify the genetic make- up of different 
individuals using software packages such as STRUCTURE (Pritchard 
et al., 2000) or ADMIXTURE (Alexander et al., 2009). Next, this 
genetic make- up can be compared with simulated data to test the 
power of discriminating between different levels of admixture 
(Anderson, 2008). The resulting composition of the hybrid popula-
tion provides the basis for subsequent analyses and potential con-
servation measures.

The use of a few genetic markers works well to identify early- 
generation hybrids and backcrosses, but can run into several is-
sues (McFarlane & Pemberton, 2019). First, the determination of a 
threshold to discriminate between hybrid and parental species can 
be problematic. Population assignment algorithms calculate an ad-
mixture score (Q) for individuals where a score of 0 or 1 indicates a 
purebred individual from one of the parental populations. However, 
due to errors in genotyping or the presence of nondiagnostic mark-
ers, most individuals will have a score that is not exactly 0 or 1. But 
how does one discriminate between these errors and actual hybrids 
(which have a score between 0 and 1)? Generally, a threshold is used 
to delimit the parental classes, but this threshold varies between 
studies, ranging from 0.8 (Schulte et al., 2012) to 0.99 (Galaverni 
et al., 2017), and the choice of the threshold depends on the num-
ber of hybrid classes one recognizes. Using a threshold of 0.8 would, 
for instance, assign some later- generation backcrosses to a parental 
class. A second issue of using few genetic makers for hybrid detec-
tion concerns homozygous loci. By chance, several generations of 
backcrossing can result in homozygous genetic markers for some 
individuals, which will consequently not be recognized as hybrids or 
backcrosses (Boecklen & Howard, 1997).

These two issues— setting a realistic admixture threshold and the 
presence of homozygous markers— can often be solved by adding 
more markers. Indeed, genomic studies can more confidently iden-
tify hybrids and later- generation backcrosses, leading to more sound 
conclusions about the hybridization dynamics (Lemopoulos et al., 

2019; McFarlane et al., 2020; McFarlane & Pemberton, 2019). For 
instance, analyses based on microsatellite markers suggested that 
hybridization between mallards (Anas platyrhynchos) and American 
black ducks (Anas rubripes) might lead to genetic extinction of the 
latter species (Mank et al., 2004). However, genomic studies of this 
system revealed little gene flow between the species, indicating that 
hybridization is not threatening the genetic integrity of the American 
black duck (Lavretsky et al., 2019, 2020). Similarly, McFarlane et al., 
(2020) investigated the sensitivity of microsatellites and RADseq (re-
striction site- associated DNA sequencing) to discriminate between 
different hybrid classes of red deer (Cervus elaphus) and Japanese 
sika (C. nippon). The RADseq data were able to identify more ad-
vanced backcrosses compared to the microsatellites, leading to a 
more fine- grained picture of introgression dynamics between these 
species.

The discrepancy between microsatellite markers and genomic 
data can partly be explained by the underlying genomic landscape 
of differentiation. The random selection of a few genetic markers 
might result in a marker set that only captures the undifferentiated 
section of the genome, missing the genomic islands of differentia-
tion. Genomic sequencing methods, such as RADseq, cover a larger 
proportion of the genome compared to microsatellites and can be 
used to develop diagnostic markers. For instance, Taillebois et al., 
(2020) developed 77 species- specific SNPs (single nucleotide poly-
morphisms) that could detect hybrids and backcrosses between allis 
shad (Alosa alosa) and twaite shad (A. fallax) up to the third gener-
ation. Similar marker sets and sequencing protocols have been de-
veloped for other study systems (Feulner & Seehausen, 2019; Vaux 
et al., 2021; Wielstra et al., 2016) and show that conservationists do 
not always need whole genome sequencing data to reconstruct the 
entire genomic landscape. This conclusion is further supported by 
evolutionary studies that used less powerful sequencing methods 
(e.g., RADseq or ultraconserved elements) to explore the genomic 
landscape of differentiation (Battey, 2019; Bourgeois et al., 2020; 
Oswald et al., 2019; Plomion et al., 2018). There are, however, cer-
tain situations where these methods do not provide the necessary 
resolution to investigate genetic differentiation across the genome, 
such as polyploids (Bourke et al., 2018; Clark et al., 2019), large 
genome sizes (Lowry et al., 2016), or populations with large- scale 
demographic changes (Arnold et al., 2013). It is thus important to 
be conscious about the potential biases of reduced representa-
tion methods, such as RADseq (reviewed in Andrews et al., 2016). 
Nonetheless, being aware of the heterogenous nature of the un-
derlying genomic landscape will already lead to a more conscious 
selection of diagnostic markers, even if not using whole genome 
sequencing.

6  | PAT TERNS OF ANTHROPOGENIC 
INTROGRESSION

Hybridization often results in introgression: the exchange of genetic 
material between populations through backcrossing (Ottenburghs, 
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Kraus, et al., 2017; Ottenburghs, Megens, et al., 2017; Taylor & 
Larson, 2019). Introgression can have detrimental effects, such as 
loss of genetic integrity, speciation reversal (Seehausen et al., 2008), 
and the genetic extinction of certain taxa (Rhymer & Simberloff, 
1996). However, introgression can be beneficial by facilitating the 
exchange of adaptive loci and increasing genetic diversity (Arnold 
& Kunte, 2017; Hedrick, 2013), possibly improving the adaptive 
potential of a population or species (Funk et al., 2019; Milot et al., 
2020). Indeed, several authors have suggested that hybridization 
can be used as an effective conservation measure (Chan et al., 2019; 
vonHoldt et al., 2018). From a conservation point of view, we are 
thus faced with a difficult dilemma when assessing a human- induced 
hybridization event: should we prevent potential genetic extinction 
with conservation measures (e.g., culling hybrids) or should we not 
intervene to provide the opportunity for adaptive introgression and 
an increase in genetic diversity?

The positive effects of introgressive hybridization have been 
well- documented in several genetic rescue programs (Frankham, 
2015; Whiteley et al., 2015), but does it also occur in unintentional 
anthropogenic hybridization events? A literature survey reported 
that the majority of human- induced hybridization events led to an 
increased extinction risk of the parental species (Todesco et al., 
2016), indicating that introgression was mainly detrimental. The 
discrepancy between the success of intentional genetic rescue pro-
grams and the detrimental effects of unintentional anthropogenic 
hybridization events can be partly explained by the genetic diver-
gence between the hybridizing taxa (Whiteley et al., 2015). Genetic 
rescue involves the carefully planned supplementation of a small 
inbred population with individuals from other populations that be-
long to the same (Heber et al., 2013; Miller et al., 2012) or a closely 
related subspecies (Harrisson et al., 2016; Pimm et al., 2006) in order 
to restore genetic diversity. Because the genetic distance between 
the local and supplemented individuals is low, it is unlikely that the 
resulting hybrids will suffer from outbreeding depression (i.e., de-
creased fitness of hybrids relative to their parents). In fact, hybrids 
in genetic rescue programs often exhibit a temporary increase in 
fitness due to the masking of rare deleterious alleles (Pickup et al., 
2013; Weeks et al., 2017). In contrast to genetic rescue interven-
tions, anthropogenic hybridization events often occur between 
more distantly related taxa, increasing the likelihood of outbreeding 
depression due to negative epistatic interactions between divergent 
loci (Edmands, 1999). Indeed, the majority of studies in my literature 
search (43 out of 59 studies, 73%) involved different species.

Speciation genomics— particularly the study of pre- Anthropocene 
hybrid zones— has shown that introgression varies across the ge-
nome (Payseur, 2010). Genetic loci can roughly be divided into three 
categories: (1) neutral loci that flow freely between taxa, (2) dele-
terious loci that contribute to reduced fitness in hybrids and inhibit 
introgression, and (3) beneficial loci that confer an adaptive advan-
tage and increase in frequency following introgression. Admixed ge-
nomes can be seen as a mosaic of these three categories, shaped 
by genetic drift, recombination, and selection (Runemark et al., 
2019). This genic view of introgression illustrates that the dichotomy 

between the deleterious and beneficial effects of introgression on 
the population level becomes more nuanced on the genomic level 
(Wu, 2001). Both effects can be acting simultaneously within a col-
lection of genomes: some genomic regions will be homogenized by 
(adaptive) introgression, while other regions will remain species- 
specific due to strong negative selection against introgressed loci.

The majority of conservation genetic studies only quantified the 
level of introgression between interacting populations, but they did 
not assess which genomic loci are being exchanged or not. Genomic 
regions that contribute to reproductive isolation, either because 
they contain barrier loci or because they are involved in local adapta-
tion, do not introgress and will thus preserve species integrity, even 
in the face of high levels of hybridization. A study only quantifying 
introgression might thus warn for genetic swamping or species col-
lapse, even though species- specific loci will prevent this from hap-
pening. For instance, extensive introgression between taiga bean 
goose (Anser fabalis fabalis) and tundra bean goose (A. f. serrirostris) 
resulted in a largely homogeneous genomic landscape, but a few 
genomic islands of differentiation seem to prevent these taxa from 
merging (Ottenburghs et al., 2020). However, if reproductive isola-
tion mechanisms break down completely, such as the loss of species 
recognition between fish species due to eutrophication (Vonlanthen 
et al., 2012), the genomic barriers preventing species from merging 
have been broken and the underlying loci can also introgress. Hence, 
the threat of genetic swamping might increase and conservation 
measures will be warranted. It is thus important to investigate the 
functional role of introgressed regions. If the genes at the exchanged 
genomic locations are important in adaptation to rapidly changing 
environments (e.g., immune genes), a local increase in genetic diver-
sity can provide the necessary adaptive potential to deal with these 
challenges (Chan et al., 2019; Derry et al., 2019). The development of 
more powerful techniques to detect introgression (Hibbins & Hahn, 
2021) and the increasing completeness and better annotation of ge-
nome assemblies (Peona et al., 2018) suggest that these types of 
analyses will be possible for nonmodel organisms in the near future.

The genic view of introgression also becomes apparent in stud-
ies that documented the exchange of adaptive traits between taxa. 
In most cases, these traits can be traced back to one or a few ge-
netic loci, such as polymorphisms in the gene vkorc1 that causes 
resistance to rodenticides and introgressed between European and 
Algerian mouse populations (Song et al., 2011). Similarly, adaptive 
changes in coat color have been linked to particular introgressed 
loci in wolves (Anderson et al., 2009) and snowshoe hares (Jones 
et al., 2018). Examples of adaptive introgression in plants include the 
transfer of herbivore resistance traits between Helianthus sunflow-
ers (Whitney et al., 2006) and regulatory genes for certain ecological 
traits between Senecio plants (Kim et al., 2008). Two recent studies 
on anthropogenic hybridization documented adaptive introgression. 
Oziolor et al., (2019) showed that Gulf killifish (Fundulus grandis) 
adapted to high levels of water pollution through introgressive hy-
bridization with the non- native Atlantic killifish (F. heteroclitus). And 
a study on hybridization between the local moth species Helicoverpa 
zea and the invasive H. armigera revealed that an insecticide- resistant 



     |  2351OTTENBURGHS

locus introgressed into the local species and increased in frequency 
(Valencia- Montoya et al., 2020). Interestingly, both studies relied 
on whole genome sequencing data, suggesting that it is difficult to 
detect adaptive introgression with less powerful sequencing meth-
ods. However, the methods for detecting adaptive introgression 
are improving (Moest et al., 2020; Setter et al., 2020; Zhang et al., 
2020) and it will only be a matter of time before these methods can 
be applied more widely, as exemplified by the increasing availabil-
ity of test statistics to detect introgression (Hibbins & Hahn, 2021). 
However, not intervening in anthropogenic hybridization events to 
provide the opportunity for adaptive introgression is generally not 
advisable and requires a thorough understanding of the study sys-
tem (Allendorf et al., 2001). In summary, it is not only important to 
quantify how much genetic material introgressed, but also what has 
been exchanged.

7  | INSIGHTS FROM PRE- ANTHROPOCENE 
HYBRIDIZ ATION E VENTS?

Several anthropogenic hybridization events occur between species 
that have previously not overlapped in range. For example, hybridi-
zation between Corbicula clams in the European river Rhine prob-
ably started with the introduction of American lineages through 
cargo ships (Pfenninger et al., 2002). When two previously allopat-
ric taxa interact for the first time prezygotic isolation mechanisms 
are often not well developed, resulting in high level of interbreeding 
and possibly introgression. Indeed, reproductive isolation is often 
weaker between allopatric taxa compared to sympatric taxa (Coyne 
& Orr, 1989; Presgraves, 2002), probably because reproductive 
isolation between sympatric taxa has been strengthened by rein-
forcement (Calabrese & Pfennig, 2020; Coughlan & Matute, 2020). 
Alternatively, some hybridizing taxa might have a history of hybridi-
zation with previous periods of secondary contact. For instance, 
polar bears and grizzly bears, that are currently interbreeding in the 
Arctic due to recent climate change (Kelly et al., 2010), have an ex-
tensive history of pre- Anthropocene hybridization events (Kumar 
et al., 2017; Kutschera et al., 2014). This raises the question whether 
conservationists can apply insights from these past hybridization 
events to inform current policy.

One could compare past introgression patterns with the current 
dynamics of the human- mediated hybridization event, potentially 
allowing researchers to assess different outcomes with greater con-
fidence. For example, according to one theoretical model of genome 
evolution during speciation, genomic islands of differentiation that 
house barrier loci are expected to increase in size as genomic regions 
are linked together. This process— known as genome hitchhiking— 
leads to an average genome- wide reduction in introgression, ulti-
mately culminating in complete reproductive isolation (Feder et al., 
2012; Flaxman et al., 2013). Comparing the genomic landscape be-
tween pre-  and post- Anthropocene hybridization events might re-
veal this expansion of genomic islands over time, suggesting that 
reproductive isolation has been strengthened and genetic swamping 

is less likely to occur. It is also possible that some taxa are in merging- 
and- diverging cycles where periods of geographic isolation are 
punctuated by introgression events (Grant & Grant, 2008; McKay & 
Zink, 2015). During each allopatric phase, more genetic divergence 
builds up between the taxa, resulting in lower levels of introgression 
during the subsequent merging phase. Human- mediated changes 
might have sped up the occurrence of a merging event, such as the 
interbreeding of polar bears and grizzly bears. Reconstructing the 
dynamics during these merging- and- diverging cycles might provide 
insights into the likelihood of genetic swamping or species collapse 
during the anthropogenic introgression event. However, the envi-
ronmental and genetic context of pre- Anthropocene hybridization 
events might not be comparable with the dynamics in current hybrid 
zones (Gompert et al., 2017). To my knowledge, no study has ex-
plicitly compared pre- Anthropocene hybridization events with cur-
rent human- induced cases. This knowledge gap provides an exciting 
avenue for further research that could lead to better conservation 
measures.

8  | RETICUL ATION AND CONSERVATION

The genetic legacy of past hybridization events is still detectable 
in present- day genomes (Lombal et al., 2020; Ottenburghs, 2020; 
Taylor & Larson, 2019). These genetic patterns can be especially 
apparent in phylogenomic studies where phylogenetic analyses 
of different genomic regions point to distinct evolutionary histo-
ries— as one would expect based on the genic view of introgression 
(Edelman et al., 2019; Li et al., 2019; Ottenburghs, Kraus, et al., 2017; 
Ottenburghs, Megens, et al., 2017). For instance, phylogenomic 
analyses of the cat family (Felidae) revealed that the phylogenetic 
signal for the species tree was concentrated within genomic regions 
of low recombination, whereas regions of high recombination were 
heavily influenced by past introgression (Li et al., 2019). Apart from 
introgressive hybridization, this phylogenetic incongruence between 
different genomic regions— known as gene tree discordance— can 
also be the outcome of other evolutionary processes, such as in-
complete lineage sorting or gene duplications (Degnan & Rosenberg, 
2009; Maddison, 1997). Several methods have been developed to 
discriminate between these processes and to deal with high levels 
phylogenetic incongruence (Kapli et al., 2020; Ottenburghs, Kraus, 
et al., 2017; Ottenburghs, Megens, et al., 2017; Zhou et al., 2020). 
One promising approach is the application of phylogenetic networks 
to highlight the reticulated nature of evolution (Blair & Ané, 2019; 
Ottenburghs et al., 2016).

Conservation efforts are still mainly focused on a tree- like pat-
tern of evolution in which distinct evolutionary lineages warrant 
protection. This perspective is reflected in the Endangered Species 
Act (ESA) in the United States which lists and protects vulnerable 
species and subspecies of plants and animals (Ellstrand et al., 2010). 
At the moment, interspecific hybrids are generally denied protection 
under ESA (although some hybrid plant species might be consid-
ered). Similarly, the IUCN Red list does not consider hybrids (IUCN, 
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2020). Other organizations do take hybrids into account or provide 
guidelines on how to deal with hybridization (Jackiw et al., 2015). 
For example, the Convention on International Trade in Endangered 
Species of Wild Fauna and Flora (CITES) has included some hybrids 
in Appendices I and II (i.e., species threatened with extinction or spe-
cies that will become threatened without controlling trade). These 
examples clearly indicate that there are still large discrepancies in 
conservation efforts regarding hybrids between different countries 
and organizations. Acknowledging the reticulated nature of the evo-
lutionary process by reconstructing past hybridization events and 
adopting a phylogenetic network approach can help to design better 
guidelines for hybrids (vonHoldt et al., 2018).

Jackiw et al., (2015) proposed an elaborate framework to imple-
ment conservation efforts for hybrids, taking into account ethical and 
ecological considerations. We can incorporate insights from specia-
tion genomics into this framework to deal with hybridization events 
in the Anthropocene (Figure 3). First, consider human- mediated hy-
bridization events (e.g., due to land- use changes or the release of 
particular species). The release of individuals can be intentional as 
part of a genetic rescue program. If this program is closely monitored 
and there are no negative effects of hybridization, the hybrids are el-
igible for legal protection (Frankham, 2015). However, if the genetic 
rescue program leads to unforeseen issues, such as outbreeding de-
pression or maladaptive introgression, and the hybrids threaten the 
endangered population, conservation efforts are needed (Frankham 
et al., 2011; Mills & Allendorf, 1996). This scenario also applies to 
the intentional release of game birds or fish that might negatively 

affect local populations through interbreeding (Randi, 2008). When 
the introduction of a particular species is unintentional— either due 
to individuals escaping from captivity or the spread of populations 
due to land- use changes— the legal status of the hybrids depends on 
the native distribution of hybridizing species. If one parental species 
is non- native, the hybrids cannot be legally protected and conserva-
tion measures should be implemented. For example, the introduc-
tion of North American Corbicula clams in the European river Rhine 
(Pfenninger et al., 2002). However, some studies documented adap-
tive introgression between a native and an exotic species (Oziolor 
et al., 2019; Valencia- Montoya et al., 2020), indicating this possi-
bility should be taken into account when setting the legal status of 
hybrids. When both parental species are native, the hybridization 
event can be treated as a natural phenomenon and the conservation 
status of the interbreeding species should be taken into account. 
If one or both species are threatened by genetic or demographic 
swamping, then legal protection of the resulting hybrids is not advis-
able and conservation efforts should be implemented. If the parental 
species are not threatened by hybridization, the situation needs to 
be assessed to determine whether hybridization could be beneficial 
(e.g., adaptive introgression or increasing genetic diversity). Here, in-
sights from speciation genomics can be useful. However, be aware 
that this decision tree only provides a rough framework and each 
hybridization event— anthropogenic or natural— should be assessed 
individually (Allendorf et al., 2001).

An aspect that is currently missing from this framework is how 
anthropogenic hybridization affects ecosystem functioning. Most 

F I G U R E  3   A decision tree to guide conservationists in determining the legal status of hybrids (based on Jackiw et al., 2015). Insights from 
speciation genomics (yellow) and past hybridization (blue) events are especially relevant in determining the risk for parental populations and 
the likelihood of adaptive introgression. In the final legal decision, it is important to also take into account potential ecosystem- level effects 
of the hybrids. Please note that this decision tree only provides a rough framework and each hybridization event— anthropogenic or natural— 
should be assessed individually
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research on hybridization has focused on the interactions and ge-
netic consequences between two or several taxa (Ottenburghs, 
2019; Schwenk et al., 2008; Taylor & Larson, 2019). However, the 
production of hybrids not only affects the interbreeding taxa, it 
can also have far- reaching consequences on an ecosystem level, 
altering food webs or nutrient cycles (Brennan et al., 2014). Some 
of these consequences are clearly negative, such as the spread of 
invasive pests (Corrêa et al., 2019) and the emergence of novel 
pathogens (Stukenbrock, 2016). But hybrids can also have a pos-
itive effect on other species in the ecosystem. For example, the 
spread of invasive Spartina hybrids provided extra habitat for the 
endangered California Ridgway's Rail (Rallus obsoletus) in the San 
Francisco Estuary (Ort & Thornton, 2016). Should the positive ef-
fect of these hybrids be taken into account in conservation ef-
forts? The ecosystem perspective on anthropogenic hybridization 
adds another layer of complexity to the implementation of conser-
vation measures.

9  | CONCLUSION

As humans continue to change the environment and alter spe-
cies distributions, more anthropogenic hybridization events will 
definitely occur. This will pose challenges for the conservation of 
endangered species, but also provide unique opportunities for evo-
lutionary biologists. The interplay between conservation genomics 
and speciation genomics provides an exciting avenue for further re-
search to gain important insights into the origin of species and how 
to protect them. In this review, I have illustrated this exchange of 
ideas by showing how insights from speciation genomics can guide 
the management of anthropogenic hybridization events. These in-
sights range from practical issues (e.g., the development of diag-
nostic markers) to theoretical considerations, such as patterns of 
introgression, ancient hybridization events, and the reticulated na-
ture of evolution.

From a conservation perspective, the unpredictability of (adap-
tive) introgression dynamics (Taylor & Larson, 2019) in combination 
with the strong link between anthropogenic hybridization and ex-
tinction risk (Todesco et al., 2016) suggests that the default course 
of action for human- induced hybridization events should be the 
implementation of conservation measures to prevent hybridiza-
tion. However, some studies documented the exchange of adaptive 
traits between native and non- native species (Oziolor et al., 2019; 
Valencia- Montoya et al., 2020), indicating that anthropogenic hy-
bridization can result in adaptive introgression. The removal of 
introduced species and hybrids might have prevented the local spe-
cies from adapting to the changing environment. These examples 
illustrate that each case of human- induced hybridization should be 
judged separately (Allendorf et al., 2001). In addition, speciation ge-
nomic studies have shown that species can remain distinct in the 
face of high levels of introgression when species- specific loci are not 
exchanged. Hence, high levels of introgression do not necessarily 
imply genetic swamping. It is not only important to quantify how 

much genetic material introgressed, but also what genomic regions 
have been exchanged. Finally, comparing current introgression dy-
namics with pre- Anthropocene hybridization events might lead to 
novel insights on how to manage human- mediated hybridization 
events, although this idea remains to be tested. Taking all these per-
spectives into account, in combination with the conservation status 
of the hybridizing taxa, thoughtful and evidence- based conservation 
measures can be implemented.
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