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Bone regeneration in osteoporosis and fragility fractures which are highly associated with
age remains a great challenge in the orthopedic field, even though the bone is subjected to
a continuous process of remodeling which persists throughout lifelong. Regulation of
osteoblast and osteoclast differentiation is recognized as effective therapeutic targets to
accelerate bone regeneration in osteopenic conditions. Anthocyanins (ACNs), a class of
naturally occurring compounds obtained from colored plants, have received increasing
attention recently because of their well-documented biological effects, such as antioxidant,
anti-inflammation, and anti-apoptosis in chronic diseases, like osteoporosis. Here, we
summarized the detailed research progress on ACNs on bone regeneration and their
molecular mechanisms on promoting osteoblast differentiation as well as inhibiting
osteoclast formation and differentiation to explore their promising therapeutic
application in repressing bone loss and helping fragility fracture healing. Better
understanding the role and mechanisms of ACNs on bone regeneration is helpful for
the prevention or treatment of osteoporosis and also for the exploration of new bone
regenerative medicine.
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INTRODUCTION

Osteoporosis is a condition that bones become weak and brittle, so brittle that a fall or a cough can
cause a fracture which is often called fragility fracture. Fragility fractures commonly occur in the hip,
wrist, or spine, and hip fracture is associated with significant mortality and morbidity. Osteoporosis
is closely related to aging. According to the first report on the prevalence of osteoporosis in China
issued by the National Health Commission in 2018, 32% of people aged over 65 suffer from
osteoporosis. More seriously, 46.4% of individuals aged over 50 were in the condition of low bone
mass, suggesting they were at a high risk of becoming osteoporosis (Wang et al., 2021).

The process of bone maintenance is regulated by bone-forming osteoblasts and bone-resorbing
osteoclasts. Bone is highlighted by its unique ability to regenerate throughout adulthood, restoring to
a fully functional, pre-injury state (Salhotra et al., 2020). For osteoporosis and fragility fractures, the
dysregulation of bone biology in the setting of bone repair is “lack of bone”. The excessive bone
resorption guided by osteoclasts and/or the impaired capability of bone formation regulated by
osteoblasts attributes the bone loss.

Recently, an emphasis has been placed on the relationship between diet and disease, and pieces of
evidence have also emerged from clinical trials demonstrating that a dietary pattern, rich in
anthocyanins (ACNs), is related to the reduced risk for chronic diseases, such as cancers,
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obesity, diabetes, and cardiovascular disease (Khoo and Azlan,
2017; D’cunha et al., 2018). ACNs are a class of naturally
occurring compounds and show their positive influences on
health owing to their antioxidant, anti-inflammatory, and anti-
apoptotic potential in various chronic diseases, especially age-
related diseases (Aqil et al., 2012; Huang et al., 2018; Speer et al.,
2020). Increasing evidence from experimental, and clinical
studies showed the consumption of ACNs rich foods played a
role in protecting bone loss and helping the healing of fractures
(Hardcastle et al., 2011; Mcnaughton et al., 2011).

CLINICAL THERAPIES OF PROMOTING
BONE REGENERATION

Clinical strategies used in promoting bone regeneration mainly
include bone transplantation, stem cell therapy, physical adjuvant
therapy, and local injection of growth factors. These approaches
and their current advantages and disadvantages are summarized
in Table1.

Autogenous, allograft, and bone grafted substitutes are widely
used in the treatment of posttraumatic conditions such as

fracture, delayed union, and nonunion (Baldwin et al., 2019).
Available in abundant living cells and various growth factors that
facilitate the osteogenic differentiation of stem/progenitor cells,
the autogenous bone graft is regarded as the gold standard
(Gómez-Barrena et al., 2015; Baldwin et al., 2019).
Nevertheless, problems like the limited quantity of bone
available for harvest make autograft a less-than-ideal option
for individuals with osteoporosis (Fillingham and Jacobs,
2016). Allograft and bone graft substitutes provide viable
alternatives due to their convenience, abundance, and lack of
procurement-related patient morbidity (Baldwin et al., 2019).

Stem cells, including bone mesenchymal stem cells (BMSCs),
Human umbilical cord mesenchymal stem cells (HUC-MSCs),
and periosteal cells (PCs), owing to their multipotency, anti-
inflammatory, and immune-modulatory properties, have been
applied in bone repair. BMSCs are the most commonly used stem
cells in the field of bone regeneration (L et al., 2019). Endogenous
BMSC activation or exogenous BMSCs are utilized for the repair
of long bone and vertebrae fractures due to osteoporosis or
trauma (Gómez-Barrena et al., 2019). HUC-MSCs Indirectly
increased bone formation by promoting angiogenesis, but it is
relatively rare for their use on bone regeneration (Li et al., 2016).

TABLE1 | Therapies to promote bone regeneration.

Treatment strategies Treatments Treatment principle Advantages Disadvantages

Bone transplantation Autogenous bone
transplantation Fillingham and
Jacobs (2016)

The transfer of cancellous or
cortical bone from one part of the
body to another

1. Abundant living cells 1. Less available bone source
2. Low Immunogenicity 2. Poor osteogenesis of donor tissue

leads to failure
3. Low risk of virus
transmission

—

4. Success rate of 80–90% —

Allograft bone transplantation
Gómez-Barrena et al. (2015)

Obtained from another person Suitable substitute for
autogenous bone

Prolonged operation time and pain

Stem cell therapy Bone mesenchymal stem cells
(BMSCs) Casati et al. (2019)

Interact with a variety of growth
factors to promote differentiation
of osteoblasts

Wide application 1. Low accessibility
2. Lack of standardized isolation
3. Poor long-term stability

HUC-MSCs (L et al., 2019) Indirectly promotes bone
formation by promoting
angiogenesis

1. Wide sources Low application in bone regeneration
2. Low risk of infection
3. Less immunogenicity

PCs Casati et al. (2019) Periosteum-derived cells (PDCs)
were implanted into the defect
using scaffolds

1. Strong bone
regeneration ability

1. Bionics research is still in its infancy

2. Be widely used in the
treatment of bone
nonunion

2. Material selection need to be
improved

Drug treatments rhBMP Nishimura et al. (2008) 1. Promote the differentiation of
MSCs into osteogenic and
chondrogenic lineages

3. Promote bone
regeneration and
accelerate healing

1. Expensive treatment

2. Promote chondrocyte
hypertrophy differentiation

2. The spread of rhBMP can lead to
ectopic bone formation

3. Promote callus remodeling 3. Natural bone resorption
— 4. Soft tissue swelling
— 5. Dissolve the bone

PTH James et al. (2016) 1. Promote proliferation 1. Reduce the risk of
fractures

High dose injection of PTH induce
catabolic reaction leads to fracture
healing and repairing2. Delay chondrocyte hypertrophy 2. Promote callus

formation
— 3. Reduce healing time

Physical adjuvant therapy
Padilla et al., (2016), Bhavsar
et al., (2020)

Low intensity pulsed
ultrasound

Accelerate the repair of fracture
injury through external stimulation

Promote angiogenesis and
remodeling in callus

Poor healing results in many cases
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PCs were widely used in the treatment of bone nonunion and
especially used as a source of cells for tissue engineering of bone
or cartilage (Li et al., 2016; Duchamp De Lageneste et al., 2018).
For stem cell therapy, scaffolds or biomaterials are normally
needed to improve their efficacy and stability.

Recombinant human bone morphogenetic protein
(rhBMP) is the only osteoinductive growth factor as a bone
graft substitute applied in the clinical setting (James et al.,
2016). BMP-2 could improve the impaired fusion capacity for
some patients, thereby decreasing the prevalence of repeated
surgical re-entry, trauma, complications, and additional
medical cost (Cahill et al., 2011). However, considering that
the delivery of rhBMP often exceeds the physiological dose,
this not only leads to the high cost of treatment, but also results
in the spread of rhBMP that can lead to adverse effects such as
heterotopic bone formation, natural bone resorption, soft
tissue swelling, and bone lysis (James et al., 2016).
Parathyroid hormone (PTH) provides anabolic therapy for
osteoporosis clinically as it has been documented to increase
bone mineral density and to reduce the rate of fractures in
patients with osteoporosis and also improve fragility fracture-
healing (Goltzman, 2018). Systemic injections of parathyroid
hormone (PTH) also promoted the proliferation of
chondrocytes and osteoblasts (Peichl et al., 2011). However,
continuous high-dose injection of PTH could induce a
catabolic reaction, which is not conducive to fracture
healing and repair (Wojda and Donahue, 2018). In

addition, consideration must be given to the instability and
variability of growth factors after being injected.

Electrical stimulation (EStim) has been proven to promote
bone healing in experimental settings and has been used clinically
for many years. Low intensity pulsed ultrasound is the most
widespread and studied technique which could accelerate fracture
repair in some cases. However, it has not become a mainstream
clinical treatment due to the great variation in methods reported,
and the inconsistent results associated with this treatment
approach (Padilla et al., 2016; Bhavsar et al., 2020).

By now, clinical treatment options for bone regeneration are
relatively limited, so it is necessary to develop and improve drugs
that are more effective, more economic, and have fewer side
effects.

ANTHOCYANINS AND THEIR BIOLOGICAL
EFFECTS ON CHRONIC DISEASES

ACNs are a class of water-soluble natural pigments that are
prominent in colored plants and belong to flavonoid
compounds. More than 635 ACNs have been identified based
on the number and location of hydroxyl and methoxy groups
(Wu and Prior, 2005; Mulabagal and Calderón, 2012; Sehitoglu
et al., 2014; Wallace and Giusti, 2015; Smeriglio et al., 2016;
Cerletti et al., 2017; Khoo and Azlan, 2017; Li et al., 2017).
Different ACNs may exhibit different bioactive chemical

TABLE 2 | The basic information of six major anthocyanins.

Anthocyanin Formula CAS number Sources Biological effects Molecular structure

Delphinidin C₁₅H₁₁ClO₇ 528-53-0 Berries and red wine Antioxidant; Anti-inflammatory

Petunidin C16H13O7 1,429-30-7 Purple potato and black goji Antioxidant

Malvidin C₁₇H₁₅ClO₇ 643-84-5 Blueberries Apoptosis-inducing; Antioxidant; Anti-tumorogenesis

Cyanidin C15H11O6 13,306-05-3 Cherries Antioxidant; Anti-angiogenic; Antiviral

Peonidin C16H13O6 134-01-0 Berries Antioxidant; Apoptosis-inducing

Pelargonidin C15H11O5 7,690-51-9 Stawberries Antioxidant
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structures due to their specificity. They are derived from the
flesh, skin, roots of many colored fruits and vegetables.
Anthocyanins, particularly glucosides and galactosides of
cyanidin, peonidin, delphinidin, petunidin, Pelargonidin,
and malvidin are responsible for the final color of the
berries (Millar et al., 2017), and the information of these
six major ACNs is summarized in Table 2.

ACNs are well documented for their antioxidant, anti-
inflammatory, and anti-apoptotic effects on human health
(Henriques et al., 2020; Kozłowska and Dzierżanowski, 2021;
Liu et al., 2021; Pérez-Torres et al., 2021; Vega-Galvez et al.,
2021). ACNs could be rapidly absorbed in the stomach and
detected in the blood and urine (Fang, 2014; Tian et al., 2019),
so these pigments are recognized as one of the leading
nutraceuticals for prolonging health benefits through the
attenuation of chronic, non-communicable diseases, including
cancers, obesity, diabetes, cardiovascular diseases, and
neurodegenerative diseases.

ACNs have the potential anti-tumor effects for their anti-
carcinogenic activities in the initial stage of tumorigenesis,
the cancer formation stage, and the cancer development stage
(Lin et al., 2017). Delphinidin strongly inhibited cell
transformation and migration during tumorigenesis of
various cancers (Yun et al., 2009; Ozbay and Nahta, 2011),
and it significantly inhibited proliferation and induced
apoptosis in osteosarcoma (OS) cell lines (Kang et al.,
2018). In addition, delphinidin also showed its promise as
a potential chemotherapeutic agent by blocking the
development and progression of tumors by inducing
apoptotic cell death of osteosarcoma cells (Lee et al., 2018).

ACNs also showed their biological effects on anti-
inflammation and anti-oxidative stress (Lee et al., 2017;
Samarpita et al., 2020; Tsuda et al., 2000; Choi et al., 2010;
Jakesevic et al., 2011; Mane et al., 2011; Kim et al., 2013;
Fintini et al., 2020; Casati et al., 2019). With the increase of
age, low-grade inflammation and the production of reactive
oxygen species (ROS) increased which were involved in the
imbalance of bone homeostasis (Domazetovic et al., 2017).
Cyanidin could be used for rheumatoid arthritis (RA)
treatment as Interleukin 17A/IL-17 receptor A (IL-17/17RA)
signaling targeted therapy and could alleviate clinical
symptoms, synovial growth, immune cell infiltration, and bone
erosion in adjuvant-induced arthritis (AA) rats (Samarpita et al.,
2020; Samarpita and Rasool, 2021). Anthocyanins could reduce
oxidative stress in vivo and in vitro (Ali et al., 2018; Ullah et al.,
2019; Chen et al., 2020). Delphinidin repressed pathological
cardiac hypertrophy by modulating oxidative stress through
the AMPK/NADPH oxidase (NOX)/mitogen-activated protein
kinase (MAPK) signaling pathway (Chen et al., 2020). The
significant increase in the intracellular ROS levels induced by
tert-butyl hydroperoxide was prevented by Delphinidin-3-
rutinoside treatment (Casati et al., 2019).

However, there are controversial reports of the role of
delphinidin on apoptosis. Delphinidin enhanced β2m-/Thy1+
bone marrow-derived hepatocyte stem cells (BDHSCs) survival
by inhibiting transforming growth factor-β1 (TGF-β1)-induced
apoptosis via PI3K/AKT signaling pathway (Chen et al., 2019),
but it induced apoptosis of human osteosarcoma cells with
compromising the cellular protective mechanisms (Lee et al.,
2018). Therefore, the role of ACNs on apoptosis needs to be

TABLE 3 | The roles of anthocyanin in bone regeneration.

Anthocyanin Functions In vitro In vivo

— — — Animal model Micro-CT
Delphinidin 1. Stimulate bone formation 1. BMP2, Runx2, Osx, OCN ↑ OVX rat 1. BV/TV↑

2. Tb.Th↑
— — 3. Tb.N↑
2. Inhibit bone resorption 2. NF-κB, c-Fos, NFATc1↓ 4. Tb.Sp↓

MMP9, CTSK, DC-stamp↓ 5. ES/BS↓
— — 6. N.Oc/BS↓

Delphinidin-3-rutinoside Enhance osteoblast proliferation CoL1, OCN, ALP↑ — —

Petunidin 1. Suppress bone resorption 1. >5 μg/ml Osteopenic mouse model 1. BV/TV↑
c-Fos, NFATc1↓ 2. Tb.Th↑
MMP9, CTSK, DC-stamp↓ 3. Tb.N↑

— — 4. Tb.Sp↓
2. Accelerate osteogenesis 2. >16 μg/ml 5. Oc.S/BS

BMP2, OCN↑ —

Malvidin Stimulate bone formation BMP2, Runx2↑ — —

— —

Cyanidin Chloride Protect against bone loss 1. NF-κB↓ OVX-induced osteoporosis mouse model 1. BV/TV↑
2. IκB-α↑ 2. OcS/BS↑
3. ERK↓ 3. N.Oc/BS↑
4. NFATc1, c-Fos↑ —

Cyanidin-3-glucoside 1. Enhance osteoblast proliferation 1. OCN, ALP, Runx2↑ — —

—

2. Inhibit bone resorption 2. c-Fos, NFATc1↓
CTSK, OSCAR, Tm7sf4, Atp6v0d↓
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explored in the future to better understand the effects of ACNs on
apoptosis.

ROLE OF ANTHOCYANINS ON BONE
REGENERATION

Increasing evidence has demonstrated the beneficial role of ACNs
on bone health (Zheng et al., 2016; Melough et al., 2017; Shimizu
et al., 2018; Speer et al., 2020). Many ACNs could promote the
differentiation of mesenchymal stem cells into osteoblasts and/or
inhibit osteoclastogenesis (Park et al., 2015; Dou et al., 2016;
Sakaki et al., 2018; Nagaoka et al., 2019a; Nagaoka et al., 2019b;
Casati et al., 2019; Saulite et al., 2019; Domazetovic et al., 2020;
Hu et al., 2021; Imangali et al., 2021; Karunarathne et al., 2021). In
this review, the effects of different ACNs on bone regeneration
were described in detail respectively as below and summarized in
Table 3.

The molecular mechanisms of ACNs underline bone regeneration
have also been explored. For osteogenesis, as shown in Figure 1, there
are three major pathways involved, including the BMP2 pathway,
WNT-β catenin pathway, and FGF pathway. The pathways involved
in the differentiation of the osteoblast lineage normally function in a
coordinated manner. For example, BMP2 promotes osteoblast
differentiation by targeting Runx2 downstream (Salhotra et al.,
2020). As shown in Figure 1, the role of Delphinidin-3-rutinoside
and Cyanidin-3-glucoside on osteoblast differentiation is mainly by
activating the fibroblast growth factor (FGF) pathway, while the
mechanisms of other ACNs, including delphinidin, malvidin, and
petunidin as well as black rice extracts and maqui blackberry extracts,
which also accelerating osteogenesis in vitro, are not yet explored. The

transcription factors Sox9, Runx2, and Osterix (Osx) are three major
components that commit stem/progenitor cells to osteoprogenitor
cells, and most of ACNs which could promote osteogenesis
upregulated the gene expressions of these transcription factors, at
least one of them, as well as osteoblastic markers, such as type 1
collagen (Col1), osteopontin (OPN), osteocalcin (OCN), and alkaline
phosphatase (ALP).

The mechanisms of most ACNs on osteoclast differentiation were
investigated. For osteoclastogenesis, as shown in Figure 2, the c-Fos
pathway, NF-κB pathway, JNK pathway, Ca2+ pathway, and ROS
pathway are four major pathways in osteoclastogenesis. These
pathways also interact with each other to be functional. Three
subfamilies (P38, ERK1/2, and JNK) of mitogen-activated protein
kinases (MAPKs) also play an important role in RANK signal-
mediated osteoclast generation (Zhai et al., 2014). The nuclear
factor of activated T-cells 1(NFATc1) is a major transcription
factor and a key target gene of most of the pathways that regulate
osteoclastic differentiation. As shown in Figure 2, the regulation of
ACNs which suppressed osteoclast formation and differentiation is
through more than one of these pathways. For example, CC could
regulate osteoclastogenesis by repressing the expression of ERK1/2,
IKBα, and NFATc1, indicating it is involved in several key pathways.
Furthermore, most of ACNs downregulated the expression of
NFATc1, indicating that they might be involved in several
pathways. Most of ACNs that inhibit osteoclastogenesis
downregulated the gene expressions of osteoclast specific markers
such as Tartrate-resistance acid phosphatase (TRAP), cathepsin K
(CTSK),matrixmetalloproteinase (MMP9), and dendritic cell-specific
transmembrane proteins (DC-stamp). These substances can enhance
the bone resorption activity of osteoclasts, decompose bone matrix
proteins and inhibit matrix mineralization.

FIGURE 1 | A proposed working model for the promotion of anthocyanins on osteogenesis.
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Delphinidin
Delphinidin [2-(3,4,5-trihydroxyphenyl) chromenylium-3,5,7-
triol], a flavonoid compound rich in berries, represents its role
in the protection against bone loss by regulating osteoblasts and
osteoclasts (Moriwaki et al., 2014; Nagaoka et al., 2019a; Nagaoka
et al., 2019b; Imangali et al., 2021). Maqui blackberry extract
(MBE), rich in delphinidin, prevented bone loss in osteopenic
conditions by not only inhibiting bone resorption by suppressing
the NF-κB pathway but also promoting bone formation by
enhancing mineralized nodule formation and upregulating
osteoblastic genes including BMP-2, Runx2, Osx, and OCN
(Nagaoka et al., 2019a) (Figure 1). Osx is another transcript
factor and triggers differentiation of immature osteoblasts to
mature osteoblasts and eventually into osteocytes (Sinha and
Zhou, 2013). Delphinidin could markedly inhibit the osteoclastic
differentiation and prevented bone loss in both RANKL-induced

osteoporosis model mice and OVX model mice by suppressing
the activities of NF-κB, c-Fos, and NFATc1 (Moriwaki et al.,
2014).

Delphinidin-3-rutinoside (D3R) is a simpler delphinidin
derivative than nasunin (Azuma et al., 2008). D3R protected
mouse embryo osteoblast precursor cells (MC3T3-E1) from
oxidative damage, and promoted the osteoblastic
differentiation of MC3T3-E1 by the PI3K/AKT pathway
and increased Col1α1, ALP, and OCN gene expressions
after D3R treatment (Figure 1), suggesting the potential
utility of dietary D3R supplement to prevent osteoblast
dysfunction in age-related osteoporosis (Casati et al.,
2019). D3R also exerted their anti-inflammatory effects in
LPS-induced osteoclastogenesis partly by inhibiting nuclear
translocation of NF-κB (Figure 2), indicating its potential in
suppressing bone resorption (Lee et al., 2014).

FIGURE 2 | A proposed working model for the inhibition of anthocyanins on osteoclastogenesis.
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Petunidin
Petunidin, a B-ring 5’-O-methylated derivative of delphinidin, also
showed its protection against bone loss and multi-faced function on
bone cells. Daily oral administration of petunidin (7.5mg/kg/day)
could prevent bone mass loss in RANKL-induced osteopenic mice in
vivo (Nagaoka et al., 2019b). In vitro, petunidin (>5 μg/ml)
significantly suppressed osteoclastic differentiation by
downregulating c-Fos, NFATc1, MMP9, CTSK, and DC-stamp
mRNA expression in pre-osteoclasts (Nagaoka et al., 2019b)
(Figure 2). Conversely, petunidin (>16 μg/ml) stimulated
mineralized matrix formation and gene expression of BMP2 and
OCN, specific osteoblastic markers, of pre-osteoblasts (Nagaoka et al.,
2019b) (Figure 1).

Malvidin
Malvidin is one of the primary plant pigments mainly existing in fruit
skins and abundant in blueberries. Blueberries, consist of malvidin
(16%), exerted their anti-inflammatory effects in macrophages by
inhibiting nuclear translocation ofNF-κB (Lee et al., 2014). Reports on
the role of malvidin on bone regeneration are rare by now, but it still
showed promising application in promoting bone formation.
Malvidin induced a significantly higher accumulation of calcium
deposits in MSCs comparing to untreated MSCs, as well as
upregulated the osteocyte-specific gene BMP-2 and Runx-2
expression and induced BMP-2 secretion (Saulite et al., 2019)
(Figure 1).

Cyanidin
Cyanidin is an anthocyanin widely distributed in cherries. Cyanidin
Chloride (CC) and Cyanidin-3-glucoside (C3G) are two cyanidins
that are able to regulate bone homeostasis.

Kinds of literatures on the role of CC in regulating
osteoclastogenesis are controversial. Cheng et al. (2018) found that
CC inhibited osteoclast formation, hydroxyapatite resorption, and
RANKL-induced signal pathways in vitro and protected againstOVX-
induced bone loss in vivo, indicating its therapeutic potential for
osteolytic diseases. CC inhibited RANKL-induced NF-κB activation,
suppresses the degradation of IκB-α, and attenuates the
phosphorylation of extracellular signal-regulated kinases (ERK). In
addition, CC abrogated RANKL-induced calcium oscillations, the
activation of nuclear factor of activated T cells calcineurin-dependent
1 (NFATc1), and the expression of c-Fos (Figure 2). However, Dou
et al. (2016) suggested that CC had a dual role in the differentiation of
osteoclasts. Only a high dosage of cyanidin (>10 µg/ml) suppressed
osteoclastogenesis and osteoclast fusion whereas a low dosage (<1 µg/
ml) showed an opposite impact.

C3G has also played a role in bone regeneration by regulating
osteoblast and osteoclast differentiation. C3G could improve the
proliferation of osteoblasts, and upregulate the expression of
osteogenic genes, including OCN, ALP, and Runx2 (Park et al.,
2015; Kim et al., 2019; Hu et al., 2021). C3G mainly activated the
ERK1/2 pathway to regulate the expression of OCN, enhancing the
maturation of osteoblasts and promoting bone nodule formation
(Cheng et al., 2018) (Figure 1). C3G has also shown promise in
inhibiting bone resorption by regulating osteoclastic differentiation.
C3G-rich blackberries treatment at the level of 5% (w/w) may
modestly reduce OVX-induced bone loss evident by improved

tibial, vertebral, and femoral BMD values, and tibial bone
microstructural parameters (Kaume et al., 2015). C3G significantly
reduced the expression of osteoclastic differentiation markers
including CTSK, Osteoclast-associated receptor (OSCAR),
transmembrane 7 superfamily member (Tm7sf4) and ATPase, H+
transporting, lysosomal 38kda, V0 subunit d2 (Atp6v0d2), and
significantly inhibited the nuclear translocation of c-Fos and
NFATc1 (Park et al., 2015) (Figure 2). Furthermore, C3G
considerably reduced the induction of extracellular signal-regulated
kinase, c-Jun N-terminal kinase, and p38 mitogen-activated kinases
activation, which were major pathways regulated by RANKL in
osteoclast precursor cells (Figure 2). In the process of osteoclast
formation induced by RANKL, NF-κB and ERK/MAPK were
activated by RANKL, while C3G attenuated the induction of
RANKL in cultured cells in vitro, suggesting that C3G could
inhibit the generation of osteoclasts (Aqil et al., 2012) (Figure 2).

CONCLUSION

In recent years, increasing studies have shown that anthocyanins
display their beneficial role on bone formation, including upregulating
the osteoblastic genes, promoting the proliferation of osteoblasts and
enhancing themineral nodule formation. Also, they play an important
role in inhibiting osteoclastogenesis, able to protect against bone mass
loss in osteopenic conditions. Nevertheless, reports of these pigments
as therapeutic applications on bone homeostasis, especially on fracture
healing, are limited and role of these pigments on bone homeostasis
need to be further explored.

PERSPECTIVE OF ANTHOCYANINS

As a class of natural compounds, ACNs are rich in dietary sources,
and their use in the prevention and treatment of adverse health events
deserves attention. ACNs are a safe and inexpensive way to prevent
diseases with minimal side effects. In the light of the molecular
mechanisms, it is possible to find new targets for treating bone-
related diseases such as fragility fractures in the future, and provide a
new perspective for therapies. Most studies have been conducted
in vitro or in animal models, while ACNs have rarely been studied in
humans. In the future randomized controlled trials are needed to
determine the role and mechanism of ACNs in human bone health.
Further studies on the preventive dose of ACNs for bone health
should standardize the amount of anthocyanin-rich fruits and
vegetables consumed by humans. In addition, in order to better
apply anthocyanin in orthopedic clinics, it is necessary to further study
the role of anthocyanin in bone health, including dose, administration
mode, toxicity, and side effects, etc. More importantly, Random
Clinical Trial is needed to establish the role and mechanism of
anthocyanin.
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