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Abstract: Post-translational modifications based on redox reactions “switch on-off” the biological
activity of different downstream targets, modifying a myriad of processes and providing an efficient
mechanism for signaling regulation in physiological and pathological conditions. Such modifications
depend on the generation of redox components, such as reactive oxygen species and nitric oxide.
Therefore, as the oxidative or nitrosative milieu prevailing in the reperfused heart is determinant
for protective signaling, in this review we defined the impact of redox-based post-translational
modifications resulting from either oxidative/nitrosative signaling or oxidative/nitrosative stress
that occurs during reperfusion damage. The role that cardioprotective conditioning strategies have
had to establish that such changes occur at different subcellular levels, particularly in mitochondria,
is also presented. Another section is devoted to the possible mechanism of signal delivering of
modified proteins. Finally, we discuss the possible efficacy of redox-based therapeutic strategies
against reperfusion damage.

Keywords: oxidative post-translational modification; nitrosative post-translational modification;
reperfusion damage; mitochondria

1. Introduction

Proteome once defined as the “protein complement of the genome” cannot be accu-
rately established without taking into account post-translational modifications (PTMs),
such as proteolysis, phosphorylation, glycosylation, glutathionylation, S-nitrosylation, and
carbonylation, that contribute to the vast number of gene products from a single transcript.
It has been estimated that the human genome contains between 20,000 and 25,000 genes,
whereas the transcriptome is composed of around 100,000 transcripts, and the proteome
exceeds 1 million proteins (Figure 1) [1].

PTM of proteins based on redox reactions is a sophisticated and efficient mechanism
conserved throughout evolution, which regulates intracellular signaling. Such modifica-
tions change the biological activity of downstream targets, modifying cellular processes
such as autophagy [2], the immune and antioxidant response [3,4], energy metabolism [5],
protein folding and degradation [6], proliferation and differentiation [7,8], and also affect
the activity of transcription factors through direct and indirect mechanisms [9].

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) interact with redox-
sensitive signaling molecules that contain cysteine residues, forming disulfide cross-links,
producing nitration of tyrosine residues by S-nitrosylation [10] or carbonylation of specific
amino acid residues [11]. Besides, the typical examples of PTMs, i.e., phosphorylation
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and dephosphorylation, are also regulated by redox-based mechanisms. Tyrosine phos-
phatases contain reactive and redox-sensitive cysteine residues located in its active site
that, being deprotonated at physiological pH, exist as a thiolate anion (Cys–S−). Oxidation
of this residue to a sulfenic acid by hydrogen peroxide (H2O2) inactivates the tyrosine
phosphatases; such inactivation becomes irreversible after the addition of two molecules
of sulfinic acid or of three molecules of sulfonic acid [12]. Therefore, ROS/RNS inhibit
the activity of tyrosine phosphatases and increase tyrosine phosphorylation. In addition,
reactive cysteines in protein kinases are directly modified by ROS/RNS, resulting in further
protein activation. A good example is mitogen-activated protein kinases (MAPKs), which
play a central role in coupling extracellular signals to different biological processes such as
gene expression, proliferation, differentiation, and cell death [13].
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Another relevant aspect is that ROS/RNS are not only considered essential signaling
molecules, but sustained high levels of these reactive species cause intracellular damage
in several pathologies. Therefore, this review article focuses on redox PTMs triggered by
ROS/RNS in cardiac reperfusion damage and their role on cardioprotective signaling at
different subcellular levels, particularly in mitochondrial function. Finally, we discuss the
possible efficacy of redox-based therapeutic strategies against reperfusion damage.

2. Oxidative and Nitrosative Stress

Oxidative stress is the imbalance between the production and elimination of ROS pro-
duced by the cells. These species include a wide variety of molecules and radicals derived
from molecular oxygen (O2), which are considered physiological byproducts of mitochondrial
oxidative metabolism [14]. O2 can be reduced by one electron at a time, producing relatively
stable intermediates, such as superoxide anion (O2

•−), that can be spontaneously or enzymat-
ically dismutated to H2O2. This reactive specie can diffuse freely across cellular membranes,
acting as a signaling molecule through the oxidation of target proteins that activate signal-
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ing cascades of transducers such as ion transporters, receptors, kinases, phosphatases, and
transcription factors [15]. In turn, H2O2 can be fully reduced to water or partially reduced to
hydroxyl (OH•) radicals, in a reaction catalyzed by transition metals.

There are different possible sources of ROS in the myocardium such as xanthine
oxidoreductase, NADPH oxidoreductases, cyclooxygenases, the mitochondrial electron
transport chain, and neutrophil activation [16]. NADPH oxidases are membrane-bound
proteins that catalyze the electron transport from NADPH to molecular oxygen [17]. The
NOX family comprises seven homologues: NOX1, NOX2, NOX3, and NOX5, which
mainly produce superoxide, as well as NOX4, NOX6/DUOX1, and NOX7/DUOX2 that
generate H2O2 [18]. Remarkably, NOX1, NOX2, NOX4, and NOX5 are expressed in the
cardiovascular system, and their increased activation correlates positively with hyperten-
sion, atherosclerosis, ischemia/reperfusion (IR) injury, hypertrophy, and coronary artery
disease [19]. However, it has been recognized that NOX4 exerts protection in the car-
diovascular system; for example, endothelial-specific overexpression of NOX4 enhances
vasodilatation and decreases blood pressure through the generation of peroxide hydrogen
and the prevention of superoxide-mediated NO inactivation [20]. Besides, NOX4 limits
infarct size in hearts subjected to IR [21] and promotes angiogenesis in response to cardiac
adaptation to overload stress [22].

Mitochondria are considered the main source of ROS in mammalian cells and, accord-
ing to the redox-optimized ROS balance hypothesis, are overproduced either when the
mitochondrial redox state is highy reduced or highly oxidized. In reduced conditions, a
slow electron flow favors their reaction with molecular O2, independently of the antioxi-
dant capacity; on the other hand, when the redox balance shifts towards an oxidized state,
the scaveging activity diminishes, promoting ROS overflow [23]. In terms of physiological
signaling, this hypothesis provides an explanation of maximal energy output with mini-
mal ROS production, as well as maximal ROS production at unbalanced redox states in
pathological conditions.

Superoxide-producing domains in Complex I (CI) are the flavin mononucleotide
(FMN) domain in the NADH-binding site (site IF) and the coenzyme Q (CoQ) binding
site [13,18]. As mentioned, ROS generation is favored in the IF domain when electron trans-
port occurs under highly reductive conditions, i.e., high proton motive force (∆p) and low
rate of ATP synthesis (state 4). On the other hand, the inhibition of the CoQ-binding site by
rotenone triggers O2

•− production, drawing back electrons onto FMN, generating more
O2

•−. Even more, reverse electron transport (RET), induced by a highly reduced state of
the CoQ pool in combination with mitochondrial hyperpolarization (inactive complex V),
forces electrons back from CoQH2 into CI, thus reducing NAD+ to NADH at the FMN
and producing ROS. The site of ROS production by RET has not been determined, but it is
proposed to be the flavin site of CI, the ubiquinone-binding site of CI, or the iron-sulphur
cluster [24]. RET is thought to be the major source of O2

•− generation during both physio-
logical and patological conditions. Chouchani et al. (2014) demonstrated that fumarate
increases during ischemia and is reduced to succinate via reversal of succinate dehydro-
genase. Accumulated succinate is oxidized during reperfusion, activating conventional
electron transport through complexes III and IV, but also enhancing RET at CI, producing
ROS that contribute to IR injury [25]. Complex III has also been pointed out as a source of
O2

•−; however, this only happens if O2 reacts with a ubisemiquinone bound to the Qo site,
when mitochondria are supplied with CoQH2 and the Qi site is inhibited by antimycin [26].
Under physiological conditions, O2

•− production is lower and negligible as compared
with maximum rates produced by CI during RET [27]; however, damage to CI during IR
may induce the loss of protein–protein interaction between this complex and Complex
III, enhancing ROS production by Complex III [28]. Besides the respiratory chain, other
proteins are potential ROS sources in mitochondria. In this respect, monoamine oxidase B
(MAO-B) augments H2O2 production, as it was detected with mitochondrial specific probes
in neonatal and adult WT cardiomyocytes and compared with those lacking MAO-B [29];
also, the cytosolic adaptor protein p66Shc, which is translocated to mitochondria in response
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to stress, catalyzes electron transfer from cytochrome c to O2 and has been causally related
to reperfusion damage due to mitochondrial ROS formation [30]. Finally, the nicotinamide
nucleotide transhydrogenase (NNT), indispensable for maintaining NADPH availability,
might be linked to mitochondrial ROS production, as it is required for the peroxidase
activities that removes H2O2., resulting from excess substrate availability [31]. However,
experimental evidence of NNT-mediated ROS removal is scarce, and more studies in situ
or in vivo are necessary to demonstrate that its activity is physiologically coupled with
mitochondrial respiration.

The essential role of ROS/RNS in cellular signaling processes has led to developing
the concept of oxidative eustress (Greek eu, meaning good, well, positive), whereas the
supra-physiological levels of ROS/RNS are proposed to be named oxidative distress, i.e.,
unspecific oxidative reactions leading to cellular damage [32]. That is, when the ROS
threshold surpasses the equilibrium maintained by the antioxidant system, the cell will be
in distress. In this sense, it is relevant to mention that mitochondrial antioxidant machinery
includes systems that regulate and control H2O2 depending on the availability of NADPH.
Mitochondria express two NADPH-dependent antioxidant systems: GSH and TRX2. The
oxidation of two molecules of reduced glutathione (GSH) and one molecule of water forms
glutathione disulfide (GSSG) by the activity of the glutathione peroxidase (GPX1/4). GSH
reestablishment depends on the glutathione reductase (GR) that depends on NADPH [33].
On the other hand, mitochondria consume H2O2 in a respiration-dependent way via the
thioredoxin/peroxiredoxin (Trx/Prx) system. The contribution of both antioxidant systems
was demonstrated with the generation of the Trx2 gene, knockout (KO) mice that resulted
in embryonic lethality, while the Gpx1 and Gpx4 gene KO only increased mitochondrial
sensitivity against ROS.

The equilibrium between the antioxidant response and redox homeostasis is relevant
for the hormetic response of mitochondria. This is an adaptative state that results from a
gradual increase or exposure to low ROS levels, which promotes signaling pathways that
dimish cell susceptibility to subsequent stress [34]. This adaptative mechanism, named
mito-hormesis, is associated with the above-mentioned concept of oxidative eustress,
that might be taken into account to avoid hindering a normal hormetic response, by
indiscriminately applying antioxidant therapies.

O2
•− reacts with other radicals such as NO, producing peroxynitrite (ONOO−), which,

along with other oxidants derived from NO, are referred to as RNS [35]. NO, a highly reac-
tive molecule with astonishingly diverse roles in human physiology and disease, was first
described by Furchgott and colleagues more than 20 years ago [36]. NO modulates cardiac
function by regulating vascular tone [37], excitation–contraction coupling [38], platelet
aggregability [39], and mitochondrial function [40]. NO is produced after L-arginine oxida-
tion by the three isoforms of the nitric oxide synthase (NOS) [41]. Endothelial NOS (eNOS)
is localized in the caveolae of the sarcolemma and neuronal NOS (nNOS) in the sarcoplas-
mic reticulum [42]. Both are constitutively expressed, whereas inducible NOS (iNOS) is
only expressed under stress conditions, usually in pro-inflammatory states [43]. Nowadays,
it is well established that NO and their derivatives act as key signaling molecules in car-
dioprotection through the activation of soluble guanylate cyclase (sGC) to synthesize the
intracellular second messenger cyclic guanosine monophosphate (cGMP), which targets ion
channels, cGMP-regulated phosphodiesterases, and cGMP-dependent protein kinases [44].
Another mechanism involves the direct protein S-nitrosylation, in which a NO moiety is
covalently attached to the free thiol of a cysteine residue to modify the activity of target
proteins [45].

Switch of Oxidative/Nitrosative Signaling to Deleterious Oxidative/Nitrosative/Nitrative Stress

As described, RNS and ROS are involved in signaling events; nonetheless, when
over-generated and/or deregulated, they can lead to oxidative stress and eventually to
cell death. Cells have developed systems to fight against ROS and their deleterious effects.
Then, the control of ROS generation relies on the relative rates of electron reaction with
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oxygen and the activity of antioxidants present in the matrix and the cytoplasm [16]. The
amount of ROS to switch between redox signaling and oxidative stress remains unknown,
due to the difficulty of measuring O2

•− and H2O2 production in vivo. Although some
estimates have been made, these are only approximate under particular experimental
conditions [27].

The rate of electron leak depends mainly on the redox state of a particular carrier. The
estimated electron leak in the mETC is 0.1–0.5% under homeostatic conditions for skeletal
muscle; this rate changes if more substrates are supplied and there is more ATP synthesis.
Thus, the leaking rate depends on the type of substrates and the respiratory state, where
state 3 resembles more closely the physiological in vivo levels [16].

Early studies have demonstrated that endogenously produced NO can reduce oxida-
tive stress, terminate free radical chain reactions within the lipid membrane, and attenuate
inflammatory response [46]. Its critical role in protecting the myocardium from IR injury
has been well established [47]. At a very low concentration (pM), NO induces the acti-
vation of high-affinity primary binding targets, but if this concentration is overpassed
(50–300 nM), the response could be either beneficial (wound/healing repair) or detrimental
(oncogenesis). Nitrative and nitrosative stress is defined by a NO concentration higher
than 1 µM [48].

3. Mechanistic Clues of eNOS/NO/SNO Cardioprotective Signaling

Ischemia-reperfusion injury occurs when blood supply to an organ is disrupted and
then restored by removing the obstruction. Irreversible myocardial damage occurs after
prolonged and severe ischemia, during myocardial infarction and stroke, but also in trans-
plantation [49]. Current treatments for myocardial ischemia include surgical treatments
such as percutaneous coronary intervention and coronary artery bypass graft, as well as
drug therapies [50]. Although reperfusion of ischemic tissue is essential for survival and
represents the most favorable therapeutic strategy to prevent IR injury, the restoration
of blood flow initiates pathological events leading to cell death through the exacerbated
generation of mitochondrial ROS and RNS [51]. Specifically, excessive and unregulated NO
synthesis by NOS has been implicated as causal or a contributor to reperfusion damage,
associated with the toxicity of NO, ONOO−, and their derived species, which favor polyni-
trosylation and oxidation of cysteine thiols, as well as nitration of tyrosine in proteins [52].
In conjunction, oxidative and nitrosative stress damage biological membranes and cellular
components when the antioxidant capacity is exceeded, resulting in cardiomyocyte injury,
cardiac contractile dysfunction, arrhythmias, and endothelial dysfunction [53].

The first evidence of the relevance of eNOS/NO/ S-nitrosylation (SNO) in cardiopro-
tective signaling came from several studies using distinct approaches, such as eNOS or
iNOS transgenic models, pharmacological inhibitors of NOS activity, as well as NO precur-
sors and NO donor treatments. Regarding transgenic models, it was demonstrated that
deletion of the eNOS gene exacerbates IR injury in mice [54]; however, Kanno et al. (2000)
observed that NO increases in eNOS−/− hearts, through the compensatory induction of
iNOS producing myocardial protection [55]. In contrast, genetic overexpression of eNOS
in mice, and specifically in cardiomyocytes, attenuates myocardial infarction, and such pro-
tection is lost when NOS is inhibited with NG-nitro-L-arginine methyl ester (L-NAME) [56].
Besides, constitutive overexpression of iNOS in transgenic mice protects against IR injury
by preventing mitochondrial permeability transition pore (mPTP) opening [57].

On the other hand, the pharmacological inhibition of NOS exacerbates IR injury in the
heart [55,58], whereas NO precursors such as L-arginine and L-citrulline attenuate IR in-
jury [59]. In addition, NO donors including S-nitrosoglutathione (GSNO) [60], glyceryl trini-
trate (GTN) [61], nitrite [62], or paramagnetic nanoparticles coated with S-nitrosothiols [63]
prevent IR injury. For example, the NO donor S-nitroso-N-acetylpenicillamine (SNAP)
reduces the infarct area and preserves contractile function in isolated perfused mice
hearts [55], while the NO donor NOC-18 induces changes in the mitochondrial phospho-
proteome and prevents mPTP and apoptosis triggering after ischemia, probably through
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the activation of protein kinase C (PKC) or protein kinase G (PKG) [64]. Besides, the infu-
sion of the NO donors such as 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1) and
isosorbide dinitrate, previous to IR, promotes SNO formation in rat heart membranes [65].
Román-Anguiano et al. (2019) demonstrated that SNAP and the 17β-aminoestrogen com-
pound Prolame, which induces NO production, prevent cardiac reperfusion damage and
improve functional recovery in post-ischemic hearts by activating both cGMP-dependent
and SNO pathways [66]. Contradictorily, there is evidence showing that NO production
may be harmful for cardiomyocytes under IR conditions, and the discrepancies in the
published data as well as the potential confounding factors that affect experimental results
on the role of NO in myocardial IR damage are not discussed here, but are reviewed in
depth elsewhere [67].

Two powerful strategies for protecting the heart against the detrimental and irreversible
effects of IR myocardial injury have been pivotal to unravel the role of PTMs for cardio-
protection. Ischemic preconditioning (IPC) and ischemic postconditioning (iPostC) include
pharmacological treatments or mechanical maneuvers that induce brief, non-lethal episodes
of ischemia and reperfusion. These are applied to the heart before, during, or even after an
episode of sustained lethal myocardial ischemia [68], promoting common signaling factors
recognized by cell-surface receptors, and activating protein kinase effectors and transcription
factors that are directed to target executors such as mitochondria (Figure 2) [69].

3.1. Ischemic Preconditioning

IPC consists of brief cycles of ischemia and reperfusion applied to the heart either
locally or globally before a prolonged ischemic event, to render the heart resistant to future
ischemic insults [70,71]. Importantly, IPC can also be obtained by the use of pharmacologi-
cal agents (pharmacological preconditioning) or by inducing ischemia to a distant organ or
tissue (remote preconditioning) before the ischemic event [72]. The potential effects of IPC
to protect the heart from acute myocardial infarction have been known and exploited since
the pioneering work of Reimer and Murry [73].

It is well known that IPC reduces the initial burst of ROS and RNS, diminishing the
deleterious effects of oxidative and nitrosative stress at reperfusion [74]. More important is
the demonstration that low levels of ROS and RNS during IPC maneuvers activate redox
signaling and trigger protective mechanisms or adaptive responses [49].

Numerous studies have shown that cGMP-dependent effects of NOS/NO signaling
play a key role in IPC-induced cardioprotection [75]. However, while eNOS is not nec-
essary for the early phase of IPC, the NO produced by eNOS is essential to trigger late
IPC as well as the delayed activation of iNOS [76]. In this respect, NO mediates IPC-
induced endothelial protection in the model of transient left anterior descending (LAD)
coronary artery ligation [77] and increases cardiac contractility after global IR in isolated
rat hearts [78]. The beneficial effects of IPC disappear when NOS inhibitors, including
L-NAME, NG-nitro-L-arginine (L-NNA), and the sGC inhibitor ODQ (1H-[1,2,4]oxadiazolo-
[4,3-a]quinoxalin-1-one), are used [79]. Conversely, the administration of exogenous NO
mimics the protective effects of late IPC. For example, SNAP pretreatment reduces in-
farction in isolated rabbit hearts [80], whereas GTN infusion protects against myocardial
stunning in an in vivo model of acute myocardial infarction [81]; importantly, the protec-
tion was equivalent to that observed during the late phase of IPC, and it was mediated by
a PKC-dependent signaling mechanism [80].

Guo et al. (1999) demonstrated that iNOS is an essential mediator in the cardioprotec-
tion afforded by the late phase of IPC, since targeted ablation of the iNOS gene abrogates
late IPC and the infarct-sparing effect in iNOS−/− mice [82]. Besides, iNOS expression was
upregulated in the late phase of IPC in mice cardiomyocytes and conscious rabbits [83].
IPC-induced iNOS attenuated infarct size in a rabbit model of myocardial infarction, but
such effect was lost when the iNOS inhibitors dexamethasone or aminoguanidine were
administrated [84]. Moreover, Wang et al. (2004) identified in conscious rabbits that the
cardioprotection observed in the final stage of late IPC is mediated by nNOS in concert
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with cyclooxygenase-2 (COX-2), not by iNOS, since the selective inhibition of nNOS with N-
propyl-l-arginine or S-ethyl N-[4-(trifluoromethyl)phenyl]isothiourea completely blocked
the protection [85].

Antioxidants 2021, 10, x FOR PEER REVIEW 7 of 24 
 

equivalent to that observed during the late phase of IPC, and it was mediated by a PKC-
dependent signaling mechanism [80]. 

 
Figure 2. Ischemic preconditioning and ischemic postconditioning confer cardioprotection by activating nitric 
oxide synthase (NOS)/nitric oxide (NO)/S-nitrosylation-mediated pathways . NO and their derivatives reduce 
the initial burst of reactive oxygen species (ROS) and reactive nitrogen species (RNS), activate redox signaling, 
and trigger protective mechanisms or adaptive responses that culminate at the mitochondrial level, inhibiting 
Complex I-induced ROS generation, reducing adenosine triphosphate (ATP) synthesis, preventing calcium 

Figure 2. Ischemic preconditioning and ischemic postconditioning confer cardioprotection by activating nitric oxide synthase
(NOS)/nitric oxide (NO)/S-nitrosylation-mediated pathways. NO and their derivatives reduce the initial burst of reactive
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oxidized glutathione; GTP, guanosine triphosphate; HK, hexokinase; iNOS, inducible nitric oxide synthase; IP3R, inositol
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dehydrogenase; nNOS, neuronal nitric oxide synthase; PI3K, phosphatidylinositol 3-kinase; PKC, protein kinase C; PKG, protein
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cyclase; SR, sarcoplasmic reticulum; SSM, subsarcolemmal mitochondria; TCA, tricarboxylic acids.
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NO is also produced via the nitrate–nitrite–NO pathway [86]. The inorganic anions
nitrate (NO3¯) and nitrite (NO2¯), endogenous stores of NO, are reduced through the
action of a variety of proteins, including hemoglobin, molybdo-flavoproteins, mitochon-
drial proteins, cytochrome P450 enzymes, and NOS [87]. NO produced by this pathway
has beneficial effects on endothelial dysfunction, protects against myocardial IR injury,
attenuates infarct size, inhibits platelet aggregation, and modulates mitochondrial func-
tion [88]. In particular, the infusion of NO2¯ previous to IR generates NO by xanthine
oxidoreductase activity, reduces infarct size, and improves cardiac function of isolated
perfused rat hearts [89]. Similar functional results were obtained in an open chest mice
model, and several NO derivatives were identified, such as S-nitrosothiols, N-nitrosamines,
and iron-nitrosylated heme proteins [62]. Besides, Shiva et al. (2007) determined that
NO2

−-dependent protection occurs at the mitochondrial level through S-nitrosylation of
CI, giving as a result the attenuation of reperfusion ROS production and aconitase inacti-
vation that, in addition to preventing mPTP opening and cytochrome c release, reduces
infarct size in mice hearts [90].

3.2. Ischemic Postconditioning

Ischemic postconditioning (iPostC), one of the most powerful strategies to reduce
myocardial infarct size, is a mechanical maneuver in which brief cycles of reperfusion/re-
occlusion of the occluded artery are applied after the ischemia and previous to long-lasting
reperfusion [91]. The application of iPostC prolongs acidosis during the first minutes
of reperfusion, preventing calcium (Ca2+) overload, ROS/RNS overproduction, and ulti-
mately mPTP opening [92]. Such effects result from activation of the reperfusion injury
survival kinase (RISK) family, which includes the extracellular signal-regulated kinase 1/2
(ERK1/2), phosphatidylinositol 3-kinase (PI3K/AKT), and protein kinase C (PKC) [93],
but also from the induction of the classical NO/sGC/cGMP signaling pathway [94] and
the maintenance of redox homeostasis by preserving nuclear factor E-2 related factor 2
(Nrf2) activation [95] via the activation of PKC and ERK1/2 by H2O2 [96]. Of note, iPostC
maintains redox homeostasis in reperfused hearts, as evidenced by the administration
of reductive agents such as N-acetyl cysteine [97], 2-mercaptopropionylglicyne [98], and
ascorbic acid [96], which abolish the iPostC-associated cardiac protection.

The cardioprotection associated with iPostC has also been related to decreased ni-
trotyrosine levels in myocardial proteins and increased SNO [99]. Certain metabolic
conditions such as hyperglycemia induce myocardial overexpression of iNOS, abolishing
the protective effect of iPostC in correlation with nitrotyrosine increase due to ONOO−

formation [100]. Interestingly, the administration of pharmacological NO-donors induces
cardioprotection in a similar way to that exerted by iPostC [66].

4. Reversible Oxidative Post-Translational Modifications of Cardiac Proteins during
Myocardial Reperfusion and Cardioprotection

Cysteine residues are modified due to the chemical reactivity of the thiol group. The
nucleophile thiolate, the deprotonated form of the thiol group, reacts with oxidants and elec-
trophilic molecules producing the reversible PTMs, including sulfenic acid, S-nitrosothiol,
disulfides, and S-glutathionylation (SG), which regulate protein activity, stability, compart-
mentalization, and protein–protein interactions [32]. On the other hand, irreversible redox
PTM including 3-nitrotyrosine, protein carbonyl and sulfonic acids are related to protein
aggregation and degradation [101].

4.1. S-Nitrosylation

The biochemistry of SNO is reviewed in detail by Fernando et al. (2019) [102]. Broadly
speaking, several mechanisms of SNO formation have been described, but the most im-
portant one occurs after oxidative reactions. Cellular homeostasis of SNO is regulatedby
at least two mechanisms: (1) transnitrosylation, the reversible transfer of an NO group
from one cysteine residue to another, which propagates SNO-based signals; and (2) deni-
trosylation, the reverse reaction of SNO that removes an thiol-NO group from nitrosylated
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proteins [10]. Experimentally, about 4000 S-nitrosylated sites associated with more than
3000 proteins have been identified and classified in terms of their structural features, their
functionality, their relevance in disease, and the regulatory networks of S-nitrosylated
proteins [10]. In the myocardium, Kohr et al. (2011) characterized both the SNO proteome
and its potential sites of action, highlighting key proteins involved in myocardial con-
traction (e.g., myosin light chain 3), metabolism (e.g., lipid metabolism, cell death), and
cellular signaling (e.g., caveolin-3) [103]. Besides, this group identified approximately
177 S-nitrosylated proteins that contribute to gender-dependent cardioprotection [104].
In this regard, it has been documented that under basal conditions, male and female hearts
contained about 4 pmol of S-nitrosylated proteins per milligram of protein [105].

Hypo- or hyper-SNO contributes to the pathophysiology of several diseases, including
IR [106]. To mention some examples, KO mice of the enzyme GSNO reductase showed
reduced infarct size and preserved cardiac function associated with SNO of the hypoxia-
inducible factor 1 alpha (HIF-1α) and with upregulation of the vascular endothelial growth
factor (VEGF), a mediator of cardiac angiogenesis [107]. Meanwhile, nNOS−/− mice show
hypo-S-nitrosylation of the ryanodine receptor type 2 (RyR2) and loss of diastolic Ca2+ that
concurs with arrhythmias and sudden death [108]. Furthermore, eNOS activity increase
in the VSMCs and endothelium correlates with NO-induced covalent modifications in
sulfhydryl-containing proteins [109]. In this regard, SNO of Cys3635 at the ryanodine
receptor underscores the mechanism of calmodulin-dependent receptor regulation by NO
in the skeletal muscle [110].

On the other hand, SNO shields cysteine residues against potential oxidative damage
from ROS and prevents from further oxidative modifications in proteins that may alter
their structure and function [111,112]. Even more, Sun et al. (2013) suggested that the
IPC-induced protective effect of NO is related primarily to SNO signaling, rather than
to the activity of the sGC/cGMP/PKG pathway [113]. IPC increased SNO content in
isolated mitochondria from rat hearts subjected to IR [114], improving cardiac function
and reducing infarct size in Langendorff perfused mice hearts. Such effects were similar to
those observed when hearts were pretreated with GSNO [60].

In addition, SNO abrogates protein oxidation in isolated hearts subjected to global
ischemia [115]. IPC-induced SNO prevents the degradation of TRIM72, a membrane re-
pair protein, and reduces infarct size in ischemic hearts [116]. IPC also increased SNO
content in isolated mitochondria from rat hearts subjected to IR [114,117]. In this respect,
it was demonstrated that eNOS/NO/SNO signaling is driven through caveolae to mi-
tochondria and that disruption of this structure with the cholesterol sequestering agent,
methyl–β–cyclodextrin (MβCD), inhibits SNO and cardioprotection [118]. Another path-
way described for trans-S-nitrosylation from the cytosol to mitochondria is mediated by the
glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). S-nitrosylated
GAPDH (SNO-GAPDH) enters into the mitochondrial matrix where it interacts with mito-
chondrial proteins and directly transfers the NO moiety to a recipient protein and promotes
SNO [119].

Recently, it was described that cardiac subsarcolemmal mitochondria [120] isolated
from Langendorff perfused mouse hearts are the preferential target for NO/SNO signaling,
and that their proteins are more susceptible to be S-nitrosylated in comparison with inter-
fibrillar mitochondria (IFM) [121]. Pioneering works showed that mitochondrial connexin
43 (Cx43), a gap junction protein exclusively localized in SSM, was involved in infarct
size reduction by IPC [122]. Recently, it was discovered that IPC-increased nitrosation of
Cx43 and regulates mPTP [123]. Chouchani et al. (2013) demonstrated that IPC stimulates
the reversible S-nitrosation of Cys39 on the ND3 subunit of mitochondrial CI and showed
evidence that this modification mediates the inhibition of CI activity, functioning as a molec-
ular switch in the regulation of mitochondrial ROS production and cell death, thereby
limiting IR damage [124]. Some of the IPC-induced SNO proteins include sarcoplasmic
reticulum Ca2+-ATPase (SERCA2a), F1F0-ATPase, NADH:ubiquinone oxidoreductase (CI),
creatine kinase, hexokinase-1, aldehyde dehydrogenase, acyl-CoA dehydrogenase, citrate
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synthase, aconitase, α-ketoglutarate dehydrogenase, malate dehydrogenase, aspartate
aminotransferase, and Trx [60,115,117].

Equally important, the pre-ischemic administration of S-nitroso-2-mercaptopropionyl-
glycine (SNO-MPG) protects perfused hearts and isolated cardiomyocytes from IR injury by
inhibiting CI activity via S-nitrosation and inhibits cellular respiration. In good accordance,
mitochondria isolated from SNO-MPG-treated hearts subjected to ischemia showed im-
proved tolerance to Ca2+ overload and reduced ROS levels [125]. Comparable results were
obtained in a LAD occlusion model [126]. Furthermore, pharmacological preconditioning
with the adenosine A1 receptor agonist N6-cyclohexyl adenosine (CHA) leads to activation
of the PI3K/AKT/eNOS signaling cascade, with the consequent increment of SNO protein
levels and enhanced post-ischemic functional recovery in both male and female hearts [127].
Besides, it has been described that the mechanism of action and protection of statins are
related to SNO. Atar et al. (2006) described that atorvastatin reduces infarct size after
increasing iNOS and COX-2 activity through SNO in rats [128]. Although NO treatments
have been widely used as adjuncts to reperfusion in acute myocardial infarction [129],
the value of these interventions in the clinic is not fully proven, as different confounding
scenarios and co-morbidities prevail in clinical settings. However, it is clear that among
other PTMs, SNO is at the forefront of the redox signaling paradigm in cardiac protection.

4.2. S-Glutathionylation

S-Glutathionylation (SG) is a reversible protein modification that occurs through the
addition of a donor of glutathione to thiolate anions of cysteines in target proteins, which
alters their molecular mass, charge, structure, and function and is directly influenced by
redox homeostasis [130]. SG is catalyzed by glutathione S-transferase and the reverse
reaction by glutaredoxin; therefore, redox signaling-dependent events are controlled by
reduced GSH content, the GSH/oxidized glutathione (GSSG) ratio, and the cellular redox
state. It is known that SG of mitochondrial CI affects ATP production in the cell [131], and
that the activities of both the transcription factor nuclear factor-kappa B (NF-kappa B) and
kinase AKT decreased when these proteins are glutathionylated [132]. On the other hand,
SG activates SERCA [133], as well as the RyR1 in skeletal muscle cells [134], whereas SG
promotes eNOS uncoupling, favoring superoxide anion production [135].

There are few reports on the effect or the prevalence of SG in the cardioprotective
context. It has been reported, for example, that GSNO treatment, the major endogenous
S-nitrosyl donor, provides similar cardioprotective effects to IPC against IR [60] and that
pharmacological preconditioning with apocynin, an NADPH oxidase inhibitor, prevents
SG of RyR2, modulating its activation and calcium release in Langendorff perfused rat
hearts [136]. Moreover, tachycardia-induced preconditioning promotes SG of RyR2 [137],
but also induces SG of cyclophilin-D, which is a crutial component of mPTP, preventing
pore opening and cardiomyocyte apoptosis [138].

4.3. S-Sulfhydration

Protein cysteine residues can also be modified by hydrogen sulfide (H2S) yielding
S-sulfhydration, a redox PTM that confers cardioprotection by regulating angiogenesis,
inflammation, oxidative stress, and apoptosis [139,140]. The effect of H2S is related with
eNOS activation, NO-signaling, and SNO [141].

The protective role of H2S against myocardial reperfusion injury is related to preser-
vation of mitochondrial function [142]. Recently, it was reported that H2S-mediated car-
dioprotection in preconditioned aged hearts is associated with upregulation of HIF-1α
and Nrf2 signaling pathways [143]. H2S also induces a preconditioning-like effect, pre-
venting reperfusion injury in diabetic rat hearts by decreasing infarct size and preventing
mitochondrial dysfunction via PI3K/GSK3β signaling [144].

Furthermore, exogenous H2S restores iPostC-associated cardioprotection in aged car-
diomyocytes, via upregulation of the heparin-binding epidermal growth factor (HB-EGF)/
EGF receptor signaling and the activation of ERK1/2, PI3K/AKT, and glycogen synthase
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kinase-3β (GSK3β) [145]. Indeed, both NO and H2S lead to a synergistic effect to protect
the heart, reducing myocardial infarct size via the increase in SNO [139]. Alternatively,
it is worth to mention that H2S preconditioning in gastric epithelial cells induces Keap-1
S-sulfhydration, which promotes Keap1/Nrf2 disassociation and Nrf2 activation, giving as
a result that H2S prevents I/R-induced oxidative stress [146].

4.4. S-Sulfenylation

Cysteine residues can be oxidized to yield sulfenic acid, another redox switch that
regulates protein function. Sulfenic acid can be further oxidized to higher-oxidation-
state species that are regarded either as reversible or irreversible. On one hand, sulfenic
acid reaction with GSH produces S-glutathionylated cysteines [147], whereas sulfonic or
sulfinic acid are irreversible modifications and markers of oxidative damage. Cysteine S-
sulfenylation has been identified as a redox sensor in an increasing number of proteins. For
example, it favors the degradation of the voltage-gated potassium channel Kv1.5 in hearts
from patients with chronic atrial fibrillation [148]. Due to its short life, S-sulfenylation has
been proposed as an intermediate modification that induces conformational changes in
proteins, enabling its adaptation to myocardial redox environment changes [149].

5. Signal Delivering: The Role of Caveolae and Caveolins

Caveolae (50–100 nm) are the most abundant and striking features of the plasma
membrane (PM) in many cell types. They are bubble-like invaginations composed of
specific proteins and lipids [150], located in the plane of the PM or as detached vesicles.
They can fuse and form grape-like or tubule-like structures with sizes significantly larger
than 100 nm [151]. Caveolae occupy up to 50% of the surface of some mammalian cells,
such as skeletal muscle, and adopt a uniform shape resembling an omega [152]. The
caveola is laterally oriented due to the coordinated action of integral membrane proteins
(caveolin) together with peripheral membrane proteins (cavin) that integrate the caveolar
bulb [150]. Other caveolar components include the EH domain-containing protein 2 (EHD2,
a large ATPase located in the caveolar neck), PACSIN2, and the tyrosine kinase-like orphan
receptor 1 (ROR1) that binds caveolin-1 and cavin-1 to facilitate caveolae formation [150].
So far, three caveolin isoforms have been identified, but Cav-1 and 3 are the most relevant
in cardiac muscle under both physiological and pathological conditions [153,154].

These structures are related to the regulation and spatial compartmentalization of
various signaling cascades, such as eNOS [154], serving as platforms to integrate the
activity and/or localization of these molecules and their effectors [155]. Such molecules
bind to Cav-1 through its caveolin scaffolding domain (CSD) and concentrate in caveola
lips rafts where they are activated or deactivated [156]. In this regard, Garcia-Cardeña et al.
(1996) showed that targeted mutagenesis on the caveolin binding motif in eNOS inhibits
its activity. This study demonstrated for the first time the role of Cav-1 as an endogenous
regulator of NOS and, in general, as a regulator of signal transduction [157].

In the context of IR, Ballard-Croft et al. (2006) described that early reperfusion reduces
Cav-3 expression and that disruption of caveolae attenuates cardiomyocyte protection
during ischemia [158]. Cav-3−/− rodents are refractive to isoflurane-induced cardiopro-
tection [159], supporting the participation of caveolin in myocardial protection. On the
other hand, Cav-3 overexpression increases caveolae formation, reduces infarct size, and
boosts phosphorylation of kinases involved in cardioprotection. Thus, Cav-3 can protect
from IR to an extent comparable to that induced by preconditioning [160]. Indeed, sub-
cellular redistribution of caveolin-3 is a key mechanism in cardiac protection. Data from
our group show that ERK1/2 is associated with Cav-3-enriched vesicles and delivered to
mitochondria in iPostC hearts [161]. Subsequently, García-Niño et al. (2017) confirmed
that caveolae formation is related to Cav-3 upregulation and ERK1/2 activation in SSM
and IFM mitochondria and hence with cardioprotection [162]. Other caveolae-associated
signaling proteins include AKT, GSK-3β, and some PKC isoforms [161], not to mention
their association with eNOS in SSM mitochondria from iPostC hearts [121].



Antioxidants 2021, 10, 749 12 of 23

Sun et al. (2012) reported that caveolar disruptionwith MβCD blocks cardioprotective
eNOS/NO/SNO signaling to mitochondria. Furthermore, it diminishes the levels of SNO
proteins and inhibits preconditioning-induced protection [118]. Additionally, this group
reported that subsarcolemmal mitochondria are preferential targets of modifications by
SNO derived from sarcolemmal signaling in IPC-mediated cardioprotection, due to the
proximity of this type of mitochondria to the sarcolemmal caveolae [121].

On the other hand, in hearts from wild-type female mice treated with isoproterenol be-
fore IR, Sun et al. (2006) reported a dramatic increase in S-nitrosylation content, specifically
in the L-type Ca2+ channel, suggesting an elevation in eNOS levels; the authors confirmed
that this augment is due to eNOS association with Cav-3 in female hearts. Interestingly, the
hearts from eNOS−/− mice do not show differences in SNO levels [105].

6. Post-Translational Modifications in Mitochondria: The Ultimate Cardioprotection Target

PTMs are a primary mechanism for mitochondria to communicate with the rest of
the cell [163]. The mitochondrial proteome is subjected to multiple reversible PTMs that
modify relevant functions as energy generation, cell death regulation, Ca2+ transport,
and production/metabolism of ROS [164]. SNO has been documented as the more com-
mon redox-based PTMs occurring in mitochondrial proteins, for example the components
of the mPTP and the respiratory chain complexes. It is also known that the nitrosative
agent GSNO leads to S-nitrosylation of the ATPase, the adenine nucleotide translocase
(ANT), and the voltage-dependent anion channel (VDAC) when administrated to iso-
lated mitochondria. These proteins have been pointed out as major components of the
mPTP [165], a non-specific mega channel, that induces depolarization of the mitochondrial
inner membrane leading to ATP depletion and enhanced colloidal osmotic pressure in the
mitochondrial matrix, producing matrix swelling and rupture of the mitochondrial outer
membrane [166]. SNO of ANT and VDAC correlates with Ca2+-dependent swelling of
isolated rat heart mitochondria and with cyclosporine A-sensitive-cytochrome c release in
perfused hearts [167]. In addition, SNO of Cys203 in cyclophilin D (CypD), the main mPTP
regulator, has been suggested to have a similar effect on mPTP opening to that observed
with CypD deletion [168].

The mPTP is considered the end target in cardioprotection; however, to date it is
not completely clear whether SNO plays a role in physiological mPTP regulation. In this
sense, it has been shown that NO signaling prevents reperfusion damage by both cGMP-
dependent and SNO pathways [113], reporting increased SNO levels after blocking the
sGC/cGMP/PKG signaling pathway in correlation with IPC-mediated cardioprotection;
whereas our group found the partial recovery of heart function and lower rates of mPTP
opening when the NO donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino] diazen-
1-um-1,2-diolate (DETA-NO) was administrated to postconditioned hearts in which sGC
was inhibited [94].

Although these results suggest a major role of the SNO pathway in the observed
cardioprotection, SNO could modify other mitochondrial functions or even extramito-
chondrial targets that contribute to regulate mPTP opening. For example, the activation
of calpain-1, a Ca2+-dependent cysteine protease, is related to mitochondrial-dependent
apoptosis and with necrotic processes driven by calcium overload and mPTP opening. We
recently found that increased SNO in the small subunit of calpain-1 induced by S-nitroso-
N-acetylpenicillamine concurs with diminished cardiac calpain activity in postconditioned
hearts [66]; whereas Thompson et al. (2016) demonstrated that the calpain inhibitor
improves mitochondrial Ca2+ retention capacity from ischemic/reperfused hearts and
therefore prevents mPTP opening [169].

On the other hand, S-nitrosothiols and IPC produce the reversible inhibition of CIby
SNO of its 75 kDa subunit in heart mitochondria [114] and protects perfused hearts from IR
injury. It is suggested that such an effect is related to reduction of ROS production by slow-
ing the re-entry of electrons to the respiratory chain during early reperfusion [125], a mecha-
nism also proposed in iPostC-mediated cardioprotection [170]. Years later, Chouchani et al.
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(2013) demonstrated that Cys39 within the ND3 subunit of CI is S-nitrosylated by the mito-
chondrial targeted S-nitrosothiol, MitoSNO, inhibiting ROS production and diminishing
IR injury [124].

Mitochondrial CI is also a target of thiol-modification SG, but the physiological mean-
ing of such PTMs is far from being understood. Even though the complex activity is
strongly inhibited in cardiac mitochondria under conditions of oxidative stress [171], glu-
tathionylation reactions also occur when GSH/GSSG is high [172]. Even more, different
studies have found that SG at CI can increase or decrease O2

•− formation [173]. A rele-
vant finding is that the Ndusf1 subunit and other mitochondrial proteins are reversibly
S-glutathionylated by glutaredoxin-2 (Grx2) [174], which opens the exciting possibility that
this protein could be a bona fide redox sensor/regulator of mitochondrial ROS production
and redox variations.

Conversely, it has been observed that SG of the FAD-binding subunit in Complex II
activates the enzyme in vivo, and that under stress conditions deglutathionylation of the
complex concurs with its inactivation and increased ROS production in hearts subjected to
IR [175].

The mitochondrial matrix is a highly reducing environment that contains high levels of
GSH and exposed protein thiols. These unique biochemical properties and redox conditions
in mitochondria favor SG. Even more, ROS enhances such reactions by oxidizing cysteine
thiols or increasing GSSG levels [172]; therefore, it is not surprising that many mitochondrial
proteins are susceptible to be S-glutathionylated depending on ROS levels, cell type, or the
physiopathological state. Aconitase [176], α-ketoglutarate dehydrogenase [177], Complex
IV and Complex V [178], uncoupling protein 2 (UCP2) [179], the ANT [180], mitofusin 1
and 2 [181], and superoxide dismutase [182] are examples of such proteins. However, no
reports have addressed the impact that the glutathionylated state of these proteins has on
mitochondrial function and cell signaling in the context of cardioprotection.

7. Therapeutic Strategies: Antioxidants or Nitric Oxide Donors

Although reperfusion injury is closely associated with ROS overproduction, protective
strategies using antioxidants have not shown absolute efficacy [183] because ROS/RNS
also exert physiological functions depending on their concentration and temporal action.
Antioxidant therapies might produce pro-reductive conditions, which also induces cellular
damage. This condition, termed reductive stress, has gained notoriety, contributing to
understanding the paramount role of redox homeostasis and that any unbalance either
towards oxidative or reductive stress can lead to detrimental cellular effects (Figure 3).

7.1. Reductive Conditions, an Alternative Therapy against Oxidative Stress?

The search for cardiac protective strategies that maintain reductive conditions without
reaching reductive stress underlies many unsuccessful treatments of cardiac pathologies
involving oxidative stress. It is known that cellular pro-oxidative status leads to the
activation of transcription factors such as Nrf2, which constitutive activation may produce
reductive stress in the myocardium, inducing deregulation of the antioxidant and metabolic
response, inhibiting detoxifying enzymes, alterating the unfolded protein response (UPR),
and overall of redox signaling. Nrf2, the master regulator of the antioxidant system in the
cell, is regulated by its repressor Keap1 [184], which acts as a redox sensor. Oxidation of
its reactive cysteine residues (on positions 151, 273, and 288) promotes the dissociation of
Nrf2 and its nuclear accumulation. There, it heterodimerizes with transcriptional cofactors
to promote the expression of antioxidant and electrophilic response elements (ARE/EpRE)-
containing genes [93]. Once the redox state is re-established in the cell, Nrf2 is repressed by
Keap1. Therefore, any condition that alters Nrf2 regulation might induce reductive stress.

Heart-specific genetic mouse models constitutively expressing active Nrf2 (caNrf2)
have been employed to induce pro-reductive and reductive stress [185]. The detrimental
effects triggered by caNrf2-driven reductive stress include pathological cardiac remod-
eling [120,185] along with cytoskeletal alterations, deregulation of Ca2+ handling, and
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alteration of the contractile apparatus [120]. Recently, it has been reported that the mesen-
cephalic astrocyte-derived neurotrophic factor (MANF), an endoplasmic reticulum (ER)
resident, exerts an adaptive response to reductive stress, improving ER protein folding and
cardiac myocyte viability during IR [186].
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Reductive stress may lead to detrimental cellular effects. Therefore, we should be
aware that antioxidant therapies are not innocuous, since unspecific ROS removal may
affect essential processes such as metabolism, Ca2+ homeostasis, vascular function, inflam-
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mation, and a wide range of signaling pathways that affect the cardiovascular system. So
far, strategies to prevent reperfusion injury might consider Nrf2 regulation as a key target.

7.2. Nitric Oxide Donors

It has been well established that nitric oxide donors can induce cardiac protection.
DETA-NO protects from reperfusion injury, enhancing NO levels associated with caveolin-
3 and regulating the extracellular matrix metalloproteinase (MMP) inducer, involved in
MMP2 and MMP9 expression [187]. In addition, the nitric oxide donor 5-phenyloxyphenyl-
5-aminoalkyl nitrate barbiturate inhibits MMP-2 and prevents reperfusion injury in both
ex vivo and in vitro models [188]. The mechanisms behind the cardioprotective effect of
SNAP in isolated rabbit hearts are reported to be independent of PKG and downstream
of AKT and ERK signaling [189]. This NO donor along with sodium nitroprusside and
3-morpholinosydnonimine also regulate iron metabolism and activate redox metabolism,
triggering cardioprotection in rat hearts [190]. Although it is clear that nitric oxide induces
cardioprotective signaling and diminishes reperfusion damage, it should be highlighted
that such an effect depends on its concentration and on the redox environment that, if
unbalanced towards oxidative conditions, could lead to RNS production.

8. Conclusions

Substantial progress has been made in understanding how redox PTMs modulate
important cellular functions in cardiac physiopathology, highlighting the paramount role of
redox homeostasis. NO and its derivatives are fundamental in IPC- and iPostC-induced car-
dioprotection, whereas reversible SNO of mitochondrial proteins is crucial for preventing
structural and functional changes of ROS/RNS-modified proteins. Downstream signaling
pathways that reduce Ca2+ overload, prevent mPTP opening, and attenuate cell death
point out the central role of mitochondria in both cardioprotective maneuvers. The intricate
network of mitochondrial SNO proteins involved in these mechanisms requires further
studies to elucidate the impact of such post-translational modifications on mitophagy,
fusion/fission processes, and proteasomal degradation in the setting of acute myocardial
infarction. In addition, recognition of the relevance of caveolae on NO signal delivery to
mitochondria further addresses the physiological and pathological importance of these
modifications in heart disease and may be a potential therapeutic target for preventing
and/or treating reperfusion damage.
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