
Descriptor
Codabench: Flexible, easy
-to-use, and reproducible
meta-benchmark platform
Highlights
d Codabench facilitates flexible, easy, and reproducible

benchmarking

d Organizers can customize benchmark design and

submission format

d Organizers may host their own platform instance or use the

public instance

d Four use cases in diverse domains are introduced to

demonstrate the key features
Xu et al., 2022, Patterns 3, 100543
July 8, 2022 ª 2022 The Authors.
https://doi.org/10.1016/j.patter.2022.100543
Authors

Zhen Xu, Sergio Escalera,

Adrien Pavão, ..., Quanming Yao,

Huan Zhao, Isabelle Guyon

Correspondence
xuzhen@4paradigm.com (Z.X.),
guyon@chalearn.org (I.G.)

In brief

Fair and flexible benchmarking is a

common issue in data-science

communities. We develop the

Codabench platform for flexible, easy,

and reproducible benchmarking. It is

open sourced and community driven.

With Codabench, we are able to fairly and

easily compare algorithms as well as

datasets under diverse protocols. The

reproducibility is also guaranteed.
ll

mailto:xuzhen@4paradigm.�com
mailto:guyon@chalearn.�org
https://doi.org/10.1016/j.patter.2022.100543
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2022.100543&domain=pdf

OPEN ACCESS

ll
Descriptor

Codabench: Flexible, easy-to-use,
and reproducible meta-benchmark platform
Zhen Xu,1,7,* Sergio Escalera,2 Adrien Pavão,3 Magali Richard,4 Wei-Wei Tu,1 Quanming Yao,5 Huan Zhao,1

and Isabelle Guyon3,6,*
14Paradigm, Beijing 100085, China
2Computer Vision Center, Universitat de Barcelona, 08007 Barcelona, Spain
3LISN/CNRS/INRIA, University Paris-Saclay, 91190 Gif-sur-Yvette, France
4University Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
5Tsinghua University, Beijing 100084, China
6ChaLearn, Berkeley, CA, USA
7Lead contact
*Correspondence: xuzhen@4paradigm.com (Z.X.), guyon@chalearn.org (I.G.)

https://doi.org/10.1016/j.patter.2022.100543
THE BIGGER PICTURE In almost all communities working on data science, researchers face increasingly
severe issues of reproducibility and fair comparison. Researchers work on their own version of hard-
ware/software environment, code, and data, and consequently, the published results are hardly compara-
ble. We introduce Codabench, a meta-benchmark platform, that is capable of flexible and easy bench-
marking and supports reproducibility. Codabench is an important step toward benchmarking and
reproducible research. It has been used in various communities including graph machine learning, cancer
heterogeneity, clinical diagnosis, and reinforcement learning. Codabench is ready to help trendy research,
e.g., artificial intelligence (AI) for science and data-centric AI.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Obtaining a standardized benchmark of computational methods is a major issue in data-science commu-
nities. Dedicated frameworks enabling fair benchmarking in a unified environment are yet to be developed.
Here, we introduce Codabench, a meta-benchmark platform that is open sourced and community driven for
benchmarking algorithms or software agents versus datasets or tasks. A public instance of Codabench is
open to everyone free of charge and allows benchmark organizers to fairly compare submissions under
the same setting (software, hardware, data, algorithms), with custom protocols and data formats. Coda-
bench has unique features facilitating easy organization of flexible and reproducible benchmarks, such as
the possibility of reusing templates of benchmarks and supplying compute resources on demand. Coda-
bench has been used internally and externally on various applications, receiving more than 130 users and
2,500 submissions. As illustrative use cases, we introduce four diverse benchmarks covering graph machine
learning, cancer heterogeneity, clinical diagnosis, and reinforcement learning.
INTRODUCTION

The methodology of unbiased algorithm evaluation is crucial for

machine learning and has recently received renewed attention in

all data-science scientific communities. Often, researchers have

difficulties understanding which dataset to choose for a fair eval-

uation, with which metrics, under which software/hardware con-

figurations, and on which platforms. The concept of a bench-
This is an open access article und
mark itself is not well standardized and includes many settings.

For instance, the following may be referred to as a benchmark:

a set of datasets, a set of artificial tasks, a set of algorithms,

one or several dataset(s) coupled with reference baseline algo-

rithms, a package for fast prototyping algorithms for a specific

task, or a hub for compilation of related algorithm implementa-

tions. In addition, many benchmarks often integrate new prog-

ress by manual verification instead of automatic submission
Patterns 3, 100543, July 8, 2022 ª 2022 The Authors. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:xuzhen@4paradigm.com
mailto:guyon@chalearn.org
https://doi.org/10.1016/j.patter.2022.100543
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2022.100543&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Table 1. Comparison of various reproducible science platforms

Platform

Flexibility Easy to use

ReproducibilityBundle

Result/code

submit

Dataset

submit Easy creation

Open source/

free API access

Compute

queue

Kaggle 7 U 7 U 7 U U U

Tianchi 7 U 7 U 7 7 U U

CodaLab U U 7 U U 7 U U

UCI 7 7 U 7 U 7 7 U

OpenML 7 U U U U U 7 U

PapersWithCode 7 U 7 U U 7 7 U

DAWNBench 7 U 7 7 U 7 7 U

Codabench U U U U U U U U

Different features are introduced in the section key features of Codabench. Bundle means whether a wrap up is provided for a benchmark such that we

could reuse or share. Result/code/dataset submit meanswhether different submissions are supported to enable flexible tasks. Compute queuemeans

where public or private computation resources could be provided or linked for convenient deployment.

ll
OPEN ACCESS Descriptor
and execution, which delays the benchmark update and requires

extra human efforts.

Typical examples of existing frameworks addressing such

needs are inventoried in Table 1, including competition platforms,

repository hubs, and domain-specific benchmarks. Firstly,

competition platforms focus on the participants and provide

limited support for organizing general tasks. Famous platforms

like Kaggle (https://www.kaggle.com/), Tianchi (https://tianchi.

aliyun.com/), and CodaLab (https://codalab.lisn.upsaclay.fr/)

organize many data-science challenges, attracting a large num-

ber of participants. However, the platform providers retain

somecontrol: the organizers donot have full flexibility and control

over their competitions. Thus, the experience for organizers is not

enjoyable. A comparison between competitions and bench-

marks is given in Table S1. Secondly, repository hubs such as

UCI repository (https://archive.ics.uci.edu/ml), OpenML,1 and

PapersWithCode (https://paperswithcode.com/) also play an

important role for benchmarks and research. They collect large

numbers of datasets, methods, and results from academic pa-

pers, but reproducibility by running code in given containers (or

similar ways) is not guaranteed. Besides the above-mentioned

platforms, many domain-specific benchmarks exist, e.g.,

DAWNBench2 and KITTI Benchmark Suite.3 These benchmarks

usually focus on a couple of closely related tasks but are not de-

signed to host general benchmarks. In addition, they require re-

petitive efforts to develop and maintain, which is not always

affordable by data-science teams. Thus, to facilitate bench-

marking, we need a platform to allow users to flexibly and easily

create benchmarks with custom evaluation protocols and

customdata formats, with execution in a controlled, reproducible

environment, that is totally free and open sourced.

To answer these unmet needs, we developed Codabench, a

meta-benchmark platform (Figure 1). A meta-benchmark plat-

form is designed to support general-purpose benchmarks

and to facilitate the organization and usage of benchmarks. Co-

dabench takes into account three types of contributors: bench-

mark participants, benchmark organizers, and platform devel-

opers. Benchmark participants submit to different

benchmarks, which are prepared and owned by different

benchmark organizers. Reproducibility is required at this stage

for fair benchmarking. Platform developers contribute different
2 Patterns 3, 100543, July 8, 2022
features to Codabench to support diverse benchmarks instead

of one specific benchmark, i.e., Codabench is at the meta level

of benchmarks. Flexibility and easiness to organize and use

benchmarks are thus required at this stage. Codabench real-

izes these features by implementing an ingestion/scoring pro-

gramming paradigm, supporting multiple benchmark creation

methods and application programming interface (API) access,

and using Docker to guarantee reproducibility. Codabench

has received over 130 users and 2,500 submissions on 100

tasks including automated machine learning (AutoML),4 graph

machine learning,5 reinforcement learning (RL),6 detecting can-

cer heterogeneity, and training clinicians (https://cancer-

heterogeneity.github.io/). Multiple illustrative use cases are

introduced. Codabench is an important step toward reproduc-

ible research and should meet the interest of all areas of data

science.

Method: Design of Codabench
Codabench is a meta-benchmark platform that provides a flex-

ible, easy-to-use, and reproducible benchmarking service that

is publicly and freely available for everyone. In Codabench,

benchmarks are implemented by benchmark bundles, which

contain one or several tasks. The concept of a task is newly intro-

duced, which is the minimal unit for composing a benchmark

(bundle). A task consists of an ‘‘ingestion module’’ (including

an ingestion program and input data), a ‘‘scoring module’’

(including a scoring program and reference data, invisible to

the participant’s submission), a baseline solution with sample

data, and meta-data information if needed. Tasks in Codabench

may be programmed in any programming language in any

customway and are run in a docker specified by organizers. Fig-

ure 2 provides a detailed description of Codabench internal inter-

action logistics.

Take supervised-learning tasks as an example. A typical us-

age is that benchmark participants submit a class (e.g., a Py-

thon object) ‘‘z’’, with 2 methods, z.fit and z.predict, similarly

to scikit-learn objects.7 The ingestion program reads data,

calls z.fit with labeled training data and z.predict with unla-

beled test data (labeled training data and unlabeled test

data being part of the so-called ‘‘input data’’), then outputs

predictions. The scoring program reads the predictions and

https://www.kaggle.com/
https://tianchi.aliyun.com/
https://tianchi.aliyun.com/
https://codalab.lisn.upsaclay.fr/
https://archive.ics.uci.edu/ml
https://paperswithcode.com/
https://cancer-heterogeneity.github.io/
https://cancer-heterogeneity.github.io/

Figure 1. Overview of Codabench

A meta-benchmark platform has three types of

contributors: platform developers (in yellow),

benchmark organizers (in green), and benchmark

participants (in red). Codabench is at the meta

level to support diverse benchmarks. Each

benchmark is implemented by a benchmark

bundle that contains one or more tasks.

ll
OPEN ACCESSDescriptor
evaluates them based on custom scoring metric(s) using the

test labels (called ‘‘reference data’’). Other application usages

are possible, including transposed benchmarks, where data-

sets are submitted by participants instead of algorithms, while

the organizers supply a set of algorithms, and RL bench-

marks, where the ingestion program plays the role of an agent

wrapping around the submission of the participant and inter-

acting with a world (scoring program) in a specific way.

The reader is referred to the Codabench official repository

(https://github.com/codalab/codabench/), where the code

and complete documentation are found. In the supplemental

information, we also include instructions and references to

get started. To use the public instance of Codabench, please

visit the Codabench website. To test and install locally, the in-

structions are given in the README file of the official reposi-

tory. The Codabench code is released under an Apache 2.0

license.

RESULTS

Key features of Codabench
Codabench is task oriented. Using tasks, the organizers have the

flexibility of implementing any benchmark protocol, with any da-

taset format and API, or even using data-generating models, al-

lowing them to organize RL challenges. In this section, we intro-

duce the key features of Codabench contributing to its flexibility,

ease, and reproducibility, as shown in Figure 1. Codabench also

supports custom leaderboards and has full documentation

of usage.

Flexibility

Codabench supports flexible benchmark types including results

submission, code submission, and even dataset submission.

Benchmarks on Codabench are organized by bundles contain-

ing all the information of a benchmark.

Bundle (hosting a benchmark): a benchmark bundle is a zip file

containing all necessary constituents of a benchmark, including

tasks, documentation, and configuration settings (such as leader-

board settings). A Codabench bundlemay include a single ormul-

tiple tasks. A classical benchmark is usually single task while
AutoML,4 transfer learning,8 and meta

learning9 benchmarks are multitask.

Results or code submission: ‘‘classic’’

Codabench benchmarks are either with

result or code submission. On one

hand, result submissions are used

when organizers wish that participants

use their own computational resources.

In supervised-learning competitions,

participants would supply, e.g., predic-
tions of output values on some test datasets. Other types of

results may be supplied, for instance, high-resolution images

in a hyper-resolution challenge for which inputs are low-resolu-

tion images. On the other hand, if the organizers wish to run all

algorithms in a uniform manner on the platform, Codabench al-

lows the participants to make code submissions. The submit-

ted software is run in a docker supplied by the organizers,

either on the default compute worker or on compute workers

supplied by the organizers. This code-submission design al-

lows organizers to provide suitable computational resources

(e.g., GPUs) and improve reproducibility.

Dataset submission: the role of the dataset and algorithm can

be transposed with Codabench to facilitate data-centric artificial

intelligence (AI) (https://datacentricai.org/), which is a trending

research topic that cares about the quality and usage of data.

In a classic benchmark, organizers provide datasets, and partic-

ipants submit algorithms. In a transposed benchmark, partici-

pants submit datasets, and organizers provide reference algo-

rithms. A classic benchmark will have a leaderboard with

datasets in columns that grows by adding more lines as algo-

rithm submissions are made. In a transposed dataset-submis-

sion benchmark, the leaderboard will have algorithms in col-

umns, and lines are added as more datasets are submitted.

With Codabench’s transposed benchmark, it is easier to try

different data-augmentation and -processingmethodswith fixed

algorithms as test cases.

Easy to use

To facilitate an easiness of using the system, we provided

several tools to help the benchmark organizers create a bench-

mark. A platform editor is provided to develop a benchmark,

which provides simple user interfaces to prepare data, code,

and other configurations. As a second option, the user can up-

load a locally prepared benchmark bundle to facilitate local de-

bugging and testing. Once uploaded, a benchmark can further

be modified using the platform editor. An existing benchmark

can be saved as another bundle, which facilitates sharing and

portability. Similar benchmark bundles can be easily prepared

with shared template bundles. Codabench is open sourced

and free to use.
Patterns 3, 100543, July 8, 2022 3

https://github.com/codalab/codabench/
https://datacentricai.org/

Figure 2. Operational Codabench workflow

Left: task module specified by the benchmark

organizers, executed on the platform. Right: web

interface with participants permitted to make

submissions and retrieve results. Numerated

blocks are specified by the benchmark organizers.

They include (1) a scoring module, (2) an ingestion

module, (3) and public information. An intermedi-

ate block also exists for information exchange of

time budget, scoring, input data, ground-truth

data, and predictions. Red bottom-right block:

participant prepares a submission ‘‘z’’ uploaded to

the platform. The submission is then executed by

the ingestion program. The role of the scoring

program is to produce scores that are then dis-

played on the leaderboard.

ll
OPEN ACCESS Descriptor
APIs to external clients: we provide APIs for interacting with

the platform, including ‘‘robot’’ submissions via command lines,

without going through the regular Codabench web interface, and

this is likewise a programmatic way of recuperating results

directly without going through the leaderboard.

Dedicated computing queues: the public instance of Coda-

bench provides default compute workers. Organizers can also

create a dedicated job queue and connect it to their own CPU

or GPU compute workers.

Reproducibility

Codabench makes extensive use of dockers (https://www.

docker.com/) to guarantee reproducibility. Benchmark orga-

nizers specify the docker image by providing its docker hub

name and tag. Docker wraps all the software dependencies

into a lightweight virtual image. Once a docker is provided by

the benchmark organizer, the program can be run inside a

docker that contains exactly the same installed packages. This

docker will be pulled every time a benchmark’s program is

executed. Different benchmarks could use different dockers,

which are usually provided by organizers. We also provide a

default docker for more general benchmarks’ usage or people

who are not familiar with dockers.

Other features

Custom leaderboard: to better facilitate benchmarks, the lead-

erboard is fully customizable and can handle multiple datasets

and multiple custom scoring functions. We provide multiple

ways to display submissions (best per participant, multiple sub-

missions per participant, etc.), and the leaderboard can flexibly

rank submissions by average score, per task, per submetric of a

certain task, etc.

Documentation: the documentation (https://github.com/

codalab/codabench/wiki) provides detailed help for different

types of contributors. For benchmark participants, we provide

instructions to join and submit to a benchmark. For bench-

mark organizers, we provide annotated instructions for orga-

nizing benchmarks. Several benchmark-bundle templates,

from simple to advanced, are also available to ease the tech-

nical aspects of building a benchmark and to let people
4 Patterns 3, 100543, July 8, 2022
concentrate on scientific aspects of

the benchmark. For platform devel-

opers, we explain more technical spec-

ifications on technology stack and pro-
vide ways to integrate to the project. Platform developers

are contacted via the GitHub issues and pull requests to solve

issues encountered in daily usage.

Use cases of Codabench
Codabench has been used not only internally at 4Paradigm and

LISN Lab for tasks of AutoML,4 graph machine learning,5 RL,6

speech recognition,10 and weakly supervised learning11 but

also externally by University Grenoble Alphes for hosting scien-

tific benchmarks in cancer heterogeneity and training clinicians.

Codabench has received more than 130 users and 2,500 sub-

missions distributing on various applications. In this section,

we introduce 4 use cases of Codabench, aiming at demon-

strating different Codabench features and capabilities. A visual

illustration is given in Figure 3.

Use case 1: AutoGraph benchmark

In this section, we introduce automated graph machine learning

(AutoGraph) benchmark, which targets automated node classifi-

cationmethods on diverse dataset scenarios.With this use case,

we show a set of fundamental features of Codabench: (1) the

code submission mode, (2) reproducibility guaranteed by

docker, (3) flexible benchmark-bundle configuration with multi-

ple tasks, and (4) customizable computational resources.

Background: graph machine learning has been a very hot topic

due to the ubiquity of graph-structured data, e.g., social net-

works,12 molecule graphs,13 knowledge graphs,14 etc. Typical

tasks of graph data include node level (node classification), edge

level (link prediction), and graph level (graph regression/classifica-

tion). The task of our benchmark here is node classification, i.e.,

given a graph where some nodes are labeled and the rest are un-

labeled, we want to predict the classes of the unlabeled nodes. In

addition, we require the algorithm to performwell on a set of data-

sets instead of just one dataset. This leads to automated-graph-

machine-learning problem, which we call AutoGraph.

Implementation: the AutoGraph benchmark is a typical code-

submission use case. It focuses on AutoML methods,4 which re-

quires more than one dataset to be evaluated together. A Coda-

bench bundle is, by design, flexible with multiple tasks, each of

https://www.docker.com/
https://www.docker.com/
https://github.com/codalab/codabench/wiki
https://github.com/codalab/codabench/wiki

A

C D

B

Figure 3. Use-case illustrations

Four use cases are introduced: (A) AutoGraph, (B) DECONbench, (C) COMETH, and (D) job scheduling. The use-case details are introduced in the section Use

cases of Codabench.

ll
OPEN ACCESSDescriptor
which contains a separate dataset. We also provide a docker

hosted on DockerHub, which could be pulled automatically by

the Codabench platform to run each algorithm submission and

be used for researchers’ local development. Every time a new

method is uploaded, a new docker container instance will be

called to independently run the method for each dataset. In this

way, we make sure every algorithm is fairly run under the same

setting and that the whole process can be fully reproduced on

other machines. Codabench is designed to adapt to any docker-

enabled computational resource (local machine, cluster server,

cloud machines, etc.). We currently host the AutoGraph bench-

mark on Codabench with free computational resources thanks

toGoogle’ssponsorship,encouragingeveryone tocontribute.Be-

sides, the datasets are also available to the public for local usage

and further benchmarking on GitHub (https://github.com/

AutoML-Research/AutoGraph-KDDCup2020) and Kaggle. We

uploaded the solutions of the winners of the challenge as base-

lines. Since the benchmark datasets are already released, users

canalso runcomplementary experiments on their local computers

and debug mode easily, thus making progress more rapidly. With

the AutoGraph benchmark, we provide researchers and practi-

tioners the possibility to showcase results in a public venue.
Use case 2: DECONbench benchmark

In this section, we introduce the DECONbench benchmark.15

DECONbench aims at benchmarking algorithms inferring tumor

cellular composition frommolecular data. Here, we highlight two

features of Codabench: (1) flexibility of benchmark bundles (in

this use case, another task and programming language R sup-

ported) and (2) reusability and portability of benchmark bundles.

Background: successful treatment of cancer is still a challenge,

and this ispartlydue toawideheterogeneity of tumorcellular com-

positions across patient population. Tumors are made up of cells

with different identities and origins. Cancer cells evolving in a dy-

namic environment consist of aberrant non-cancerous cells,

such as blood vessels or immune cells. Tumor cellular composi-

tion is difficult to observe and quantify, as it is hidden inside the

bulk molecular profiles of the samples, with millions of cells pre-

sent in the tumor (and not only cancer cells) contributing to the

bulk recorded signals. Taking advantage of the large amount of

molecular data publicly available, a wide number of supervised

and unsupervised algorithmshavebeen recently developed to es-

timate tumorcellular composition.16–18DECONbench isaseriesof

benchmarksdedicated to thequantificationof tumorcomposition,

focusing on estimating cell types and proportion in biological
Patterns 3, 100543, July 8, 2022 5

https://github.com/AutoML-Research/AutoGraph-KDDCup2020
https://github.com/AutoML-Research/AutoGraph-KDDCup2020

Figure 4. Bundle structure

The details of benchmark.yaml is given in Data S1.

ll
OPEN ACCESS Descriptor
samples using multimodal molecular data. Participants have to

identify an estimation of the tumor composition, i.e., a matrix of

the estimated proportion of each deconvoluted cell type (rows)

for each sample (columns). The discriminating metric is the

mean absolute error (MAE) between prediction and ground-truth

matrix. Note that the DECONbench series is optimized to run

methods developed in the statistical programming language R.

Implementation: using the Codabench platform, the COMETH

consortium firstly developed a benchmark for continuous evalu-

ation of computational methods based on epigenomic data

(https://www.codabench.org/competitions/174). Since we are

at the same time interested in other modalities of data under

similar tasks, it would be ideal to reuse previously created bun-

dles instead of going through everything again. Thanks to the

portability of the Codabench bundle design, we only need to

replace the data files and adjust slightly the protocol code. All

other configuration files can be reused. As a result, this first

benchmark was easily cloned and extended to similar bench-

marks using other types of data, e.g., all-cell-type transcriptomic

data (https://www.codabench.org/competitions/147), immune-

cell-type transcriptomic data (https://www.codabench.org/com

petitions/148), and all-cell-type multimodal transcriptomic and

epigenomic data (https://www.codabench.org/competitions/

237).

Use case 3: COMETH benchmark

In this section, we introduce the COMETH benchmark, which is

motivated by real clinical application and is an exciting step to-

ward data-centric AI. With this use case, we show that (1) Coda-

bench supports a transposed benchmark consolidating data-

centric AI and (2) the provided API interaction opens a window

for other customization scenarios.

Background: when it comes to clinical application, it is often

necessary for health-data scientists and clinicians to identify

the most suitable existing method to be applied on a given data-

set. In this case, we focusmore on the data instead of algorithmic

development, which alignswith data-centric AI. Usually, the clini-

cians do not (need to) know much about the algorithm details.

Instead, they have access to newly available data and want to

apply the most relevant algorithms on their new data. There is

thus a need to provide an effective tool displaying the evaluation

of state-of-the-art algorithms on reference datasets and enabling

their application on newdatasets. Thiswill guide and facilitate the

appropriate use of these algorithms by non-expert clinicians.

Note that thesealgorithmsareusually providedbybenchmark or-

ganizers who are domain experts on certain tasks.
6 Patterns 3, 100543, July 8, 2022
Implementation: to solve this question, the COMETH con-

sortium developed the COMETH benchmark (https://www.

codabench.org/competitions/218), a transposed challenge in

which datasets should be submitted to be evaluated against ex-

isting algorithms (i.e., tasks in the Codabench design). For

instance, the COMETH benchmark provides a series of recent

deconvolution algorithms that are able to quantify tumor hetero-

geneity.16–18 Clinicians aiming to quantify tumor heterogeneity

from molecular data can submit their dataset of interest to the

COMETH benchmark and retrieve the corresponding outputs

in a fully reproducible environment. To facilitate the use of this

functionality by clinicians who are less familiar with data-science

programming details, the COMETH benchmark has been con-

nected to an external client displaying a user-friendly web dash-

board. The external client is able to send requests to users

directly on the COMETH benchmark using APIs provided by Co-

dabench and return the generated results from all reference al-

gorithms. This feature strongly contributes to a direct transfer

of knowledge between data scientists and healthcare profes-

sionals. This design was used at a winter school for training cli-

nicians and data scientists (https://cancer-heterogeneity.github.

io/cometh.html).

Use case 4: Job scheduling benchmark

We lastly introduce another use case, the job scheduling bench-

mark, which focuses on RL and operational research. With this

use case, we show that Codabench is RL friendly with the help

of flexible designs of benchmark bundles.

Background: we consider the problem of dynamic job shop

scheduling.19–21 The task is to allocate a set of jobs to a set of

machines to achieve the shortest execution time, i.e., makespan.

Each job has a pre-determined operation sequence to be

executed on certain machines. To mimic real-life scenarios, we

add stochastic machine-down events to the problem. This task

is usually formulated as a sequential decision-making problem

and fits easily to RL. We thus expect an agent making decisions

on how to better schedule the jobs in minimal time. The reward

depends on the makespan.

Implementation: as explained in the section method: design of

Codabench, our design of bundles and an ingestion/scoring pro-

gram makes it very natural and flexible for RL problems. We

easily use the scoring program as an environment that evaluates

a job schedule and returns a makespan as reward. The ingestion

program serves as an agent and makes decisions on job sched-

uling based on the received reward.

A concrete benchmark-bundle example
In this section, we provide a concrete benchmark-bundle

example to show how simple it is to organize benchmarks onCo-

dabench. A bundle consists of five parts, as in Figure 4: (1) a

YAML configuration file (https://yaml.org/), (2) an ingestion pro-

gram, (3) a scoring program, (4) data, and (5) additional files for

description.

The ingestion program usually reads data and a participant’s

submission. It calls the participant’s method on the dataset

and produces predictions to a shared space. The scoring pro-

gram usually reads the ingestion program’s output and evaluates

with respect to (w.r.t.) ground truth according to an organizer’s

customized metric. It finally writes scores to a text file, which

will be read by the platform and be displayed on a leaderboard.

https://www.codabench.org/competitions/174
https://www.codabench.org/competitions/147
https://www.codabench.org/competitions/148
https://www.codabench.org/competitions/148
https://www.codabench.org/competitions/237
https://www.codabench.org/competitions/237
https://www.codabench.org/competitions/218
https://www.codabench.org/competitions/218
https://cancer-heterogeneity.github.io/cometh.html
https://cancer-heterogeneity.github.io/cometh.html
https://yaml.org/

ll
OPEN ACCESSDescriptor
The data contain input data (in supervised learning, they are usu-

ally X_train, y_train, and X_test) and reference data (in supervised

learning, it is usually y_test). Both are zipped into separate files.

The additional files are just text or figure files for organizers to

provide other information, e.g., instructions, references, logo,

etc. A final YAML file connects all previous parts and provides

more configurations for the benchmark. A simplified YAML file

is given in Data S1. It contains general configurations like title,

logo image, docker image, which HTMLs are to be displayed,

leaderboard configuration (e.g., which metrics will be used in

the leaderboard), and tasks. Each task is by itself a complete

unit for running. It contains name, ID, ingestion program, scoring

program, input data, reference data.

DISCUSSION

Codabench is a newmeta-benchmark platform for data-science

communities. Codabench is compatible with diverse tasks

(including supervised learning and RL) and supports result,

code, and dataset submission. It is easy to use Codabench,

and reproducibility is guaranteed by dockers. Codabench has

a public instance free for use, deployed at Université Paris-Sa-

clay, but can also be deployed locally with the technology stack

provided in documentation. Hosting, maintaining, and further

developing the platform is funded by grants and donations. As

real-world scenarios, we introduce 4 benchmark use cases illus-

trating the flexibility, ease of use, reproducibility, and other fea-

tures of Codabench. We also note that tremendous other tasks

could be integrated into Codabench as well including electroen-

cephalogram (EEG) classification, drug discovery and property

prediction, and dynamic simulation for weather, traffic, fluid,

etc., which are important tasks toward AI for science.

The current limitations of Codabench are mainly as follows.

First, since it is relatively new, we do not have yet an active com-

munity of organizers and benchmark participants.We needmore

users’ feedback to polish up our user interface and documenta-

tion. Second, although supported by design, we have not yet had

a distributed computation scenario where complex multi-node

compute workers are used. This could enrich our benchmark

template library with benchmarks for algorithm parallelization.

Thirdly, although Codabench supports both code and dataset

submissions, we do not currently allow users to extend the lead-

erboard in both directions simultaneously, i.e., it does not allow

users to submit both code and datasets at the same time. This

feature could largely increase the user experience of the plat-

form. Lastly, Codabench does not yet support hardware-related

benchmarks or human-in-the-loop benchmarks, which could be

interesting to consider in the future.

Potentially harmful uses of Codabench could result from poor

benchmark designs (e.g., no scientific question is asked by host-

ing a benchmark) or bad data collections (e.g., data license, data

quality), as in any machine-learning project. We are working on

an open-access book (to appear in 2022) on best practices for

designing challenges and benchmarks including data prepara-

tion, task evaluation, etc. and for post-challenge/post-bench-

mark analysis.

Further works include providing more comprehensive usage

templates illustrating features such as (1) splitting an algorithm

workflow into submodules and scoring the effectiveness of the
modules individually (e.g., with ablation or sensitivity analysis),

(2) providing templates of fact sheets to extract information

about algorithms (similar to datasheets for datasets but for

algorithms), and (3) providing guidelines to benchmark partici-

pants to produce enriched detailed results, amenable to meta-

analyses.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact is Zhen Xu (xuzhen@4paradigm.com), who is a research sci-

entist at 4Paradigm, Beijing, China.

Materials availability

This study did not generate new materials.

Data and code availability

The code of Codabench is available at https://github.com/codalab/

codabench. This work does not introduce new datasets. For creating bench-

marks, organizers should prepare their own datasets.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100543.

ACKNOWLEDGMENTS

The Codabench project shares the same community governance as CodaLab

Competitions. The openness of Codabench is total: an Apache 2.0 license is

used, the source code is on GitHub, and the development framework and all

the used components are open sourced. Codabench has received important

contributions from many people who did not co-author this paper, and we

would like to thank their efforts inmaking Codabenchwhat it is today, including

early CodaLab Competitions developers and contributors (listed alphabeti-

cally): Pujun Bhatnagar, Justin Carden, Richard Caruana, Francis Cleary, Xia-

wei Guo, Ivan Judson, Lori Ada Kilty, Shaunak Kishore, Stephen Koo, Percy

Liang, Zhengying Liu, Pragnya Maduskar, Simon Mercer, Arthur Pesah, Chris-

tophe Poulain, Lukasz Romaszko, Laurent Senta, Lisheng Sun, Sebastien Tre-

guer, Cedric Vachaudez, Evelyne Viegas, Paul Viola, ErickWatson, Tony Yang,

Flavio Zhingri, and Michael Zyskowski. We would like to particularly thank the

people who contributed to the design, development, and testing of Coda-

bench including (listed alphabetically) Alexis Arnaud, Xavier Baró, Feng Bin,

Yuna Blum, Eric Carmichael, Laurent Darré, Hugo Jair Escalante, Sergio Esca-

lera, Eric Frichot, Yuxuan He, James Keith, Anne-Catherine Letournel, Shoux-

iang Liu, Zhenwu Liu, Adrien Pavao, Magali Richard, Tyler Thomas, Nic

Threfts, Bailey Trefts, Catherine Wallez, and Lanning Wei. The Université

Paris-Saclay is hosting the main instance of Codabench. Funding and support

have been received via several research grants, including Big Data Chair of

Excellence FDS Paris-Saclay, Paris Région Ile-de-France, EU EIT projects

HADACA and COMETH, United Health Foundation INCITE project, ANR Chair

of Artificial Intelligence HUMANIA ANR-19-CHIA-0022, the Spanish project

PID2019-105093GB-I00, ICREA under the ICREA Academia program,

INSERM Cancer project ACACIA 232717, MIAI @Grenoble Alpes (ANR-19-

P3IA-0003), 4Paradigm, ChaLearn, Microsoft, andGoogle.We also appreciate

the following people and institutes for their open-source datasets that are used

in our use cases: AndrewMcCallum, C. LeeGiles, Ken Lang, TomMitchell, Wil-

liam L. Hamilton, Maximilian Mumme, Oleksandr Shchur, David D. Lewis, Wil-

liam Hersh, Just Research and Carnegie Mellon University, NEC Research

Institute, Carnegie Mellon University, Stanford University, Technical University

of Munich, AT&T Labs, and Oregon Health Sciences University. We are also

very grateful to Joaquin Vanschoren for fruitful discussions.

AUTHOR CONTRIBUTIONS

Conceptualization, Z.X., S.E., A.P., and I.G.; methodology, Z.X. and I.G.; vali-

dation and investigation, all authors; resources and data curation, Z.X., M.R.,

W.-W.T., and I.G.; writing – original draft, all authors; writing – review & editing,
Patterns 3, 100543, July 8, 2022 7

mailto:xuzhen@4paradigm.com
https://github.com/codalab/codabench
https://github.com/codalab/codabench
https://doi.org/10.1016/j.patter.2022.100543
https://doi.org/10.1016/j.patter.2022.100543

ll
OPEN ACCESS Descriptor
Z.X., Q.Y., M.R., and I.G.; visualization, Z.X., Q.Y., and I.G.; supervision and

project administration, I.G.; funding acquisition, W.-W.T. and I.G.

DECLARATION OF INTERESTS

Z.X., W.-W.T., and H.Z. are employed by 4Paradigm, China. I.G. is president of

ChaLearn, a not-for-profit organization dedicated to running challenges in ma-

chine learning. ChaLearn is a tax-exempt not-for-profit organization under

section 501(c)(3) of the US IRS code of the United States. It derived no profit

from sponsoring this research.

Received: February 25, 2022

Revised: March 21, 2022

Accepted: June 3, 2022

Published: June 24, 2022

REFERENCES

1. Vanschoren, J., van Rijn, J.N., Bischl, B., and Torgo, L. (2014). Openml:

networked science in machine learning. SIGKDD Explor. 15, 49–60.

https://doi.org/10.1145/2641190.2641198.

2. Coleman, C., Kang, D., Narayanan, D., Nardi, L., Zhao, T., Zhang, J., Bailis,

P., Olukotun, K., Christopher, R., and Zaharia, M. (2019). Analysis of dawn-

bench, a time-to-accuracy machine learning performance benchmark.

ACM SIGOPS Oper. Syst. Rev. 53, 14–25. https://doi.org/10.1145/

3352020.3352024.

3. Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous

driving? The KITTI vision benchmark suite. In IEEE Conference on

Computer Vision and Pattern Recognition (IEEE Computer Society),

pp. 3354–3361.

4. F. Hutter, L. Kotthoff, and J. Vanschoren, eds. (2019). Automated Machine

Learning - Methods, Systems, Challenges (Springer).

5. Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., and

Leskovec, J. (2020). Open graph benchmark: datasets for machine

learning on graphs. In Advances in Neural Information Processing

Systems.

6. Sutton, R.S., and Barto, A.G. (2018). Reinforcement Learning: An

Introduction, Second edition (The MIT Press).

7. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011).

Scikit-learn: machine learning in python. J. Mach. Learn. Res.

8. Pan, S.J., and Yang, Q. (2009). A survey on transfer learning. In IEEE

Transactions on Knowledge and Data Engineering (IEEE).
8 Patterns 3, 100543, July 8, 2022
9. Vilalta, R., and Drissi, Y. (2002). A perspective view and survey of meta-

learning. Artif. Intell. Rev. 18, 77–95. https://doi.org/10.1023/a:10199563

18069.

10. Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N.,

Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., et al. (2011). The kaldi

speech recognition toolkit. In IEEE workshop on automatic speech recog-

nition and understanding.

11. Zhou, Z.-H. (2018). A Brief Introduction to Weakly Supervised Learning

(National Science Review).

12. Hamilton, W.L., Ying, R., and Leskovec, J. (2017). Representation learning

on graphs: methods and applications. IEEE Data Eng. Bull. 40, 52–74.

13. Mansimov, E., Mahmood, O., Kang, S., and Cho, K. (2019). Molecular ge-

ometry prediction using a deep generative graph neural network. Sci. Rep.

9, 1–13.

14. Antoine, B., Usunier, N., Garcia-Duran, A., Weston, J., and Yakhnenko, O.

(2013). Translating embeddings for modeling multi-relational data. Adv.

Neural Inf. Process. Syst. 26, 2787–2795.

15. Decamps, C., Arnaud, A., Petitprez, F., Ayadi, M., Baurès, A., Armenoult,

L., Escalera, S., Guyon, I., Nicolle, R., Tomasini, R., and de Reyniès, A.

(2021). Deconbench: a benchmarking platform dedicated to deconvolu-

tion methods for tumor heterogeneity quantification. BMC Bioinf. 22,

473. https://doi.org/10.1186/s12859-021-04381-4.

16. Avila Cobos, F., Alquicira-Hernandez, J., Powell, J.E., Mestdagh, P., and

De Preter, K. (2020). Benchmarking of cell type deconvolution pipelines

for transcriptomics data. Nat. Commun. 11, 1–14.

17. Cantini, L., Kairov, U., de Reyniès, A., Barillot, E., Radvanyi, F., and

Zinovyev, A. (2019). Assessing reproducibility of matrix factorization

methods in independent transcriptomes. Bioinformatics 35, 4307–4313.

https://doi.org/10.1093/bioinformatics/btz225.

18. Decamps, C., Privé, F., Bacher, R., Jost, D., Waguet, A., Houseman, E.A.,

Andres Houseman, E., Lurie, E., Lutsik, P., Milosavljevic, A., et al. (2020).

Guidelines for cell-type heterogeneity quantification based on a compar-

ative analysis of reference-free dna methylation deconvolution software.

BMC Bioinf. 21, 16. https://doi.org/10.1186/s12859-019-3307-2.

19. Aydin, M.E., and Öztemel, E. (2000). Dynamic job-shop scheduling using

reinforcement learning agents. Robot. Autonomous Syst. 33, 169–178.

20. Jain, A.S., andMeeran, S. (1999). Deterministic job-shop scheduling: past,

present and future. Euro. J. Operat. Res. 11, 390–434.

21. Ramasesh, R. (1990). Dynamic job shop scheduling: a survey of simulation

research. Omega 18, 43–57.

https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/3352020.3352024
https://doi.org/10.1145/3352020.3352024
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref3
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref3
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref3
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref3
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref4
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref4
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref5
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref5
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref5
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref5
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref6
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref6
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref7
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref7
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref7
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref8
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref8
https://doi.org/10.1023/a:10199563<?show [?tjl=20mm]&tjlpc;[?tjl]?>18069
https://doi.org/10.1023/a:10199563<?show [?tjl=20mm]&tjlpc;[?tjl]?>18069
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref10
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref10
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref10
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref10
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref11
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref11
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref12
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref12
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref13
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref13
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref13
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref14
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref14
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref14
https://doi.org/10.1186/s12859-021-04381-4
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref16
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref16
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref16
https://doi.org/10.1093/bioinformatics/btz225
https://doi.org/10.1186/s12859-019-3307-2
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref19
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref19
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref20
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref20
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref21
http://refhub.elsevier.com/S2666-3899(22)00146-5/sref21

	PATTER100543_proof_v3i7.pdf
	Codabench: Flexible, easy-to-use, and reproducible meta-benchmark platform
	Introduction
	Method: Design of Codabench

	Results
	Key features of Codabench
	Flexibility
	Easy to use
	Reproducibility
	Other features

	Use cases of Codabench
	Use case 1: AutoGraph benchmark
	Use case 2: DECONbench benchmark
	Use case 3: COMETH benchmark
	Use case 4: Job scheduling benchmark

	A concrete benchmark-bundle example

	Discussion
	Experimental procedures
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References

