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Analysis of single-cell RNA sequencing (scRNA-seq) data of immune cells from the

tumor microenvironment (TME) may identify tumor progression biomarkers. This study

was designed to investigate the prognostic value of differentially expressed genes

(DEGs) in intrahepatic cholangiocarcinoma (ICC) using scRNA-seq. We downloaded

the scRNA-seq data of 33,991 cell samples, including 17,090 ICC cell samples and

16,901 ICC adjacent tissue cell samples regarded as normal cells. scRNA-seq data were

processed and classified into 20 clusters. The immune cell clusters were extracted and

processed again in the same way, and each type of immune cells was divided into several

subclusters. In total, 337 marker genes of macrophages and 427 marker genes of B cells

were identified by comparing ICC subclusters with normal subclusters. Finally, 659 DEGs

were obtained by merging B cell and macrophage marker genes. ICC sample clinical

information and gene expression data were downloaded. A nine-prognosis-related-gene

(PRG) signature was established by analyzing the correlation between DEGs and overall

survival in ICC. The robustness and validity of the signature were verified. Functional

enrichment analysis revealed that the nine PRGs were mainly involved in tumor immune

mechanisms. In conclusion, we established a PRG signature based on scRNA-seq data

from immune cells of patients with ICC. This PRG signature not only reflects the TME

immune status but also provides new biomarkers for ICC prognosis.

Keywords: intrahepatic cholangiocarcinoma, single-cell RNA sequencing, immune cells, differentially expressed

genes, progression

INTRODUCTION

Intrahepatic cholangiocarcinoma (ICC) is the second most prevalent type of primary liver cancer
worldwide (Massarweh and El-Serag, 2017) and accounts for 10–15% of malignant hepatic tumors.
ICC arises from bile duct epithelial cells and is characterized by insidious onset and rapid
progression. The 3- and 5-year survival rates for ICC are only 30 and 18%, respectively (Bartella
and Dufour, 2015). Moreover, only 30% of patients with ICC have the opportunity to undergo
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surgical resection, and the post-operative recurrence rate is high
(Chun and Javle, 2017; Rahnemai-Azar et al., 2017). Worldwide,
the morbidity and mortality of ICC have increased over the past
few decades (Rizvi et al., 2018). To this end, accurately predicting
prognosis is of great clinical significance. However, the existing
ICC prognostic markers cannot precisely predict the prognosis
because of their poor sensitivity and specificity (Qin and Song,
2020), which may greatly affect the choice of treatment strategies.

The immune system, as major components of the tumor
microenvironment (TME), largely determines the development
and progression of cancer by regulating various immune cells
(Angell and Galon, 2013). Genetic heterogeneity means that
patients with ICC sometimes suffer significantly different clinical
outcomes, despite having the same condition and treatment.
Immune cells play a pivotal role in the prognosis of ICC
(Loeuillard et al., 2019). Single-cell RNA sequencing (scRNA-
seq), a new technique allowing high-throughput sequencing
analysis of the genome, transcriptome, and epigenome at
the single-cell level, can reveal the gene structure and gene
expression state of single cells and uncover intercell heterogeneity
(Yu et al., 2018), making up for the limitations of traditional
high-throughput sequencing (Nguyen et al., 2018). scRNA-
seq has been successfully applied in a variety of malignant
tumors (Chung et al., 2017; Peng et al., 2019) to analyze
intratumor heterogeneity, monitor circulating cancer cells, and
predict tumor prognosis (Navin, 2015). However, no models
based on scRNA-seq have been developed to reliably predict
ICC prognosis.

This study was designed to identify new biomarkers to
assess the ICC tumor immune microenvironment status and
accurately predict the prognosis for patients with ICC. In this
study, differentially expressed genes (DEGs) were screened by
comparing immune cell scRNA-seq data in ICC tissue with that
in ICC adjacent tissue. The correlation between DEGs and ICC
prognosis was analyzed to develop a prognostic signature.

MATERIALS AND METHODS

Acquisition of Cell Samples and ICC
Population Cohorts
The GSE138709 single-cell transcriptome profiles of ICC
and adjacent tissue cell samples were downloaded from the
Gene Expression Omnibus (GEO) database. The adjacent
tissue was regarded as normal tissue. ICC sample clinical
information and gene expression data were downloaded from
The Cancer Genome Atlas (TCGA) data portal and GEO

Abbreviations: TME, tumor microenvironment; ICC, intrahepatic

cholangiocarcinoma; scRNA-seq, single-cell RNA sequencing; DEGs, differentially

expressed genes; PRGs, prognosis-related genes; OS, overall survival; PRG,

prognosis-related gene; TCGA, The Cancer Genome Atlas; GEO, Gene Expression

Omnibus; TCGA-ICC, intrahepatic cholangiocarcinoma samples from The

Cancer Genome Atlas; GEO-ICC, intrahepatic cholangiocarcinoma samples

from Gene Expression Omnibus; GSEA, gene set enrichment analysis; adjPval,

adjustment of P-value; ROC, receiver operating characteristic; AUC, area under

the curve; PC, principal component; PCA, principal component analysis; t-SNE,

t-distributed stochastic neighbor embedding; HCC, hepatocellular carcinoma;

AJCC, American Joint Committee on Cancer.

database (GSE107943) in August 2020. All the data in this study
were obtained directly from the public database, and the relevant
guidelines were strictly followed, allowing ethical approval to be
exempted. The workflow is shown in Figure 1.

Processing of scRNA-Seq Data
R language scripts were written to analyze scRNA-seq data.
The counts files were read into R and formatted; averages
were obtained for duplicated genes, and transcriptome sequence
data of ICC cells and adjacent tissue cells were merged into a
matrix. We used the statistical R package “Seurat” to process
the data, including data quality control, gene and cell filtration,
normalization, variable gene finding, data scaling, principal
component analysis (PCA), and t-distributed stochastic neighbor
embedding (t-SNE) algorithms. All default parameters were
left unchanged unless otherwise specified. First, the single-cell
data were processed by CreateSeuratObject function (arguments:
min. cells = 3, min. features = 200) to create the object.
Meanwhile, cells with poor quality were excluded. Only genes
detected in more than three cells and cells with more than 200
detected genes were used in the following analysis. We conducted
quality control using PercentageFeatureSet function (arguments:
pattern=

∧MT-), which could calculate gene number, gene types
number, and percentage of mitochondrial genes. The correlation
between sequenced genes number and sequenced genes types
was calculated with FeatureScatter function. The results were
also visualized. Second, to exclude non-cells or cell aggregates,
subset function was used to further screen samples with the
selective criteria of gene expression types of more than 500, gene
expression levels of more than 1,000 and fewer than 20,000, and
mitochondrial proportion restricted to <20%. The data were
log-normalized with NormalizeData function, and the top 1,500
variable genes were identified using the FindVariableFeatures
function (arguments: selection.method = vst, nfeatures = 1,500)
for subsequent analysis. Third, we used the ScaleData function
(vars.to.regress= percent.mt) to mitigate this source of variation
in the dataset. PCA was performed by RunPCA function
for dimension reduction. After calculation with the JackStraw
function, the JackStrawPlot (dims = 1:20) and ElbowPlot
functions (ndims = 40) were used to identify the number of
significant principal components (PCs) to use for clustering.
Through plot visualization, the top 20 PCs were selected for
the next analysis. Lastly, cell populations were clustered by
t-SNE algorithm. FindClusters function with resolution of 0.5
was performed, and RunTSNE function was used to generate
clusters. The FindAllMarkers function (arguments: min.pct =
0.25, logfc.threshold = 0.25) was used to find markers by
comparing each cluster with all others; different genes between
two identities were identified using the FindMarkers function.
The feature plot and heatmap visualization of gene expression
were generated using the Seurat function FeaturePlot and
DoHeatmap, respectively. Cell type–specific marker genes were
taken from published literature (Zhang et al., 2020) and were
compared with our analysis results to define the cluster type.
Clusters consisting of immune cells were extracted and processed
again in the same way as above, and each immune cell type was
further divided into subclusters. Marker genes of each immune
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FIGURE 1 | Flowchart of the study. The scRNA-seq data of 33991 cell samples were downloaded, nine prognosis-related genes (PRGs) were identified and the

robustness and validity verified.
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cell type were identified by comparing ICC subclusters with
normal subclusters, and adjustment of P-value (adjPval) < 0.05
was regarded as the cutoff criteria. The marker genes of each
immune cell type were incorporated as DEGs.

Development of a Prognostic Signature
The ICC samples from TCGA (TCGA-ICC) were regarded as
the training set for prognostic signature establishment; the ICC
samples from the GEO database (GEO-ICC) were used as the
testing set. The testing and training sets were merged as an entire
set. The testing set and the entire set were employed to validate
the predictive ability of established signature. Univariate Cox
regression was used to analyze the relationship between DEGs
and overall survival (OS) in the training set. Finally, prognosis-
related genes (PRGs) were further identified from the DEGs
most associated with prognosis by multivariate Cox regression
analysis. The prognostic genes risk scores were determined based
on gene expression multiplied by a linear regression coefficient
combination. The formula for risk score calculation for all
patients was as follows:

Survival risk score (SRS)=

k∑

i=1

(Ci ∗ Vi)

In the formula, k represents the number of mRNA, Ci represents
the coefficient of mRNA in multivariate Cox regression analysis,
and Vi represents the mRNA expression level.

PRGs Signature Validation
To verify the power of the PRG signature, patients with ICC were
divided into high- and low-risk groups based on the median risk
scores in the training, testing, and entire sets. OS was compared
in high- and low-risk groups using Kaplan–Meier analysis.
Survival analysis was also conducted using each of the PRGs in
the training and testing sets. Receiver operating characteristic
(ROC) curve analysis based on the risk scores of PRGs was
performed in the three sets with R package “survivalROC”
(arguments: method = KM), and the value of the area under the
curve (AUC) was determined to verify the model sensitivity and
accuracy. Finally, the survival status map showed the distribution
of death endpoint events based on the risk scores of PRGs.

Comparison Between the PRG Signature
and Clinical Features in the TCGA-ICC and
GEO-ICC Cohorts
We used survivalROC function (arguments: method = KM)
to assess the prognostic ability of the PRG signature and the
clinical variables provided in the clinical data. The ability of
the prognostic predictors was compared by ROC analysis, and
the value of the AUC was determined for each parameter.
Utilizing the generalized linear model regression algorithm, the
PRG nomogram model was established through the risk score of
the GEO-ICC.

Functional Pathway Enrichment Analysis
The TCGA-ICC cohort was divided into two groups with
high and low PRG risk score levels, and gene set enrichment

analysis (GSEA) was performed using the PRG risk score as
the phenotype.

Statistical Analysis
Single-cell sequencing data were analyzed using the Seurat
package. The ggplot2 package was used to produce the single-
cell analysis graph. Cox regression analysis was performed
using the glmnet and survival packages. The nomogram model
was established by the rms package. The survival curve was
generated by the survival package. P < 0.05 was regarded as
statistically significant. All the statistical analyses were performed
by R language, version 3.6.1.

RESULTS

Profiling of scRNA-Seq and Screening of
Marker Genes
In total, 33,991 cell samples that comprised 17,090 tumor cells
and 16,901 normal cells from eight patients with ICC were
obtained from the GEO database (Table 1). The quality control
chart shows the detected gene number range, sequence count for
each cell, and the percent of mitochondrial genes (Figure 2A).
There was a positive association between detected gene counts
and sequencing depth with Pearson r = 0.94 (Figure 2B). After
filtering out the poor-quality cells, gene expression data from
29,263 cells were used for further analysis. The top 10 genes,
including IGJ, IGLL5, COL3A1, ACTA2, and COL1A1, with
significant differences across the cell samples are shown in
Figure 2C. PCA was performed to preliminarily classify the
cells (Figure 2D), and a Jack Straw Plot showed the P value
distributions for each PC (Figure 2E). The dot plot shows the
top 20 genes, and the top 30 significantly correlated genes were
shown via heatmap (Supplementary Figures 1A,B). The scree
plot displayed how much variation each PC captured from
the data (Supplementary Figure 1C). Furthermore, the t-SNE
algorithm was used to further precisely cluster the cells, and the
samples were successfully classified into 20 clusters (Figure 2F,
Supplementary Table 1). The marker genes identified in our
study were compared with those reported in the original article,
and the clusters were named using the same markers: malignant

TABLE 1 | In total, 33,991 cells from eight ICC patients were analyzed in

this study.

Patient Cell count Percentage (%)

18N 10,317 30.35

18T 4,963 14.60

20T 2,714 7.98

23N 4,425 13.02

23T 3,504 10.31

24T1 3,468 10.20

24T2 2,441 7.18

25N 2,159 6.35

Total 33,991 100

Frontiers in Genetics | www.frontiersin.org 4 February 2021 | Volume 11 | Article 615680

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Su et al. Prognostic Signature in ICC

FIGURE 2 | Characterization of scRNA-seq from 33,991 cells. (A) Quality control of scRNA-seq in ICC cell and normal cell samples. (B) The detected gene numbers

positively correlated with sequencing depth. T represents cells derived from ICC tissue; N represents cells derived from normal cell samples. (C) In total, 1,500 gene

symbols with significant differences across cells were identified, and the characteristic variance diagram was drawn. (D,E) PCA was conducted to identify the

significantly available dimensions of data sets with estimated P value. Cells were classified by PCA. (F) Based on the available significant components from PCA,

t-SNE algorithm was performed, and cells were further divided into 20 clusters. (G) Cells derived from ICC or normal tissue are shown. (H) The top 85 marker genes

across the 20 clusters are exhibited.

cells (clusters 2, 3, 4, 8, and 19), cholangiocytes (cluster 13),
endothelial cells (cluster 11), hepatocytes (cluster 14), fibroblasts
(cluster16), B cells (clusters 17 and 18), T cells and natural
killer (NK) cells (cluster 0, 1, 7, 9, and 10), and macrophages
and dendritic cells (clusters 5, 6, 12, and 15). Cells derived
from ICC or normal tissue are shown in Figure 2G. The

heatmap displayed the top 85 differential genes in the 20
clusters (Figure 2H). Cluster maps were used to show the
top four genes with significant correlation to each cluster
(Supplementary Figures 2–5).

We processed the immune cells as described above.
Macrophages and dendritic cells, consisting of clusters 5, 6,
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FIGURE 3 | Characterization of scRNA-seq from immune cells and screening of marker genes. (A) Macrophages and dendritic cells were processed by PCA.

(B) Macrophages and dendritic cells were further classified into 15 subclusters by t-SNE algorithm. Subclusters 5, 6, 10, 11, 12, and 13 were identified as dendritic

cells; subclusters 0, 1, 2, 3, 4, 7, 8, 9, and 14 were identified as macrophages. (C) Macrophages and dendritic cells derived from ICC or normal tissue are shown.

(D) B cells were processed by PCA. (E) B cells were further classified into six subclusters by the t-SNE algorithm. (F) B cells derived from ICC or normal tissue are

shown. (G) T cells and NK cells were processed by PCA. (H) T cells and NK cells were further classified into 13 subclusters by the t-SNE algorithm. (I) T cells and NK

cells derived from ICC or normal tissue are shown.

12, and 15, were preliminarily processed using PCA (Figure 3A)
and were further classified into 15 subclusters using the t-SNE
algorithm (Figure 3B, Supplementary Table 2). Subclusters 5,
6, 10, 11, 12, and 13 were identified as dendritic cells, and the
remaining subclusters were macrophages. The macrophages
derived from ICC tissue could be easily distinguished from those
derived from normal tissue (Figure 3C), and 337 macrophage
marker genes were identified by comparing subclusters 0, 2, and
8 with subclusters 1, 3, 4, 7, 9, and 14. Other relevant single-cell
analysis results are shown in Supplementary Figures 6, 7. We

processed the clusters 17 and 18 B cells by PCA (Figure 3D)
and successfully classified them into six subclusters using
the t-SNE algorithm (Figure 3E, Supplementary Table 3). B
cells derived from ICC tissue could be distinguished from
those derived from normal tissue (Figure 3F). We compared
subcluster 1 with subclusters 0, 2, 3, 4, and 5 and identified
427 B cell marker genes. Other relevant single-cell analysis
results are displayed in Supplementary Figures 8, 9. T
cells and NK cells, consisting of clusters 0, 1, 7, 9, and 10,
were processed by PCA (Figure 3G) and further divided
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TABLE 2 | Clinical characteristics of TCGA-ICC and GEO-ICC samples in

this study.

Variables Training group Testing group

(N = 33) (N = 30)

Age(Mean±SD) — 65.60 ± 8.74

Follow-up(y) 1.99 ± 1.51 2.32 ± 1.74

Status

Alive 18 (54.55) 13 (43.33)

Dead 15 (45.45) 17 (56.67)

Gender

Male 14 (42.42) 24 (80.00)

Female 19 (57.58) 6 (20.00)

Stage

I 18 (54.55) 15 (50.00)

II 9 (27.27) 6 (20.00)

III 1 (3.03) 1 (3.33)

IV 5 (15.15) 8 (26.67)

AJCC-T

T1 18 (54.55) —

T2 10 (30.30) —

T3 5 (15.15) —

T4 0 —

Risk-score levels

High 16 (48.48) 18 (60.00)

low 17 (51.52) 12 (40.00)

into 13 subclusters using the t-SNE algorithm (Figure 3H,
Supplementary Table 4). The cells derived from ICC tissue
could not be distinguished from those derived from normal
tissue (Figure 3I). Therefore, we did not screen for marker genes
in the different subclusters. Other relevant results are shown
in Supplementary Figure 10. In total, 427 and 337 marker
genes were identified in B cells and macrophages, respectively,
and were merged together as DEGs. Finally, 659 DEGs were
obtained (Supplementary Table 5).

Development and Validation of a PRG
Signature in ICC Populations
Gene expression data and clinical information from 33 ICC
samples were acquired from the TCGA data portal, and
transcriptome data and clinical data of 30 ICC samples were
obtained from the GEO-ICC. The expression of 659 DEGs were
extracted separately from TCGA-ICC and GEO-ICC and then
merged with survival information. The consolidated TCGA-ICC
and GEO-ICC clinical information is shown in Table 2. Fifteen
DEGs with P < 0.05 were preliminary screened out in the
training set using univariate COX analysis. Finally, nine PRGs
were identified by multivariate Cox regression (Table 3).

Kaplan–Meier analysis revealed that patients with high
PRG risk scores suffered worse outcomes in the training set
(Figure 4A, Supplementary Table 6). The predictive power of
the signature was further validated in the testing set and
the entire set (Figures 4B,C; Supplementary Table 7). Kaplan–
Meier analysis with P < 0.05 for each PRG is shown in

Supplementary Figures 11F–I. The AUCs for 3-year outcome
prediction were 0.943, 0.811, and 0.877 in the training, testing,
and entire sets (Figures 4D–F). These results suggest that the
signature is sensitive. ROC curve analysis using the survival
signature risk score of entire set for 1-, 2-, 4-, 5-, and 6-
year survival is displayed in Supplementary Figures 11A–E. The
survival status maps based on PRG risk scores were generated
for each of the three sets, and the distribution plot shows
that high risk scores were associated with increased death
rates (Figures 4G–I).

Comparison of the PRG Signature and
Clinical Characteristics in the TCGA-ICC
and GEO-ICC Cohorts
The signature always get the greatest AUC value compared with
the other clinical features at 3-year in the two sets, indicating its
better predicting power (Figures 4J,K). The downloaded TCGA-
ICC clinical data included only gender, tumor stage, and T stage
information, so the correlation between risk score and the other
clinical features was not analyzed. The downloaded GEO-ICC
clinical data included sex, age, recurrence, CEA, CA-19-9, class,
and stage. Nine PRGs were used to develop a nomogram model
to predict OS for ICC (Figure 5A).

Functional Enrichment Analysis Revealed
Different States Between High- and
Low-Risk Groups
GSEA results indicated that the response to drugs and positive
regulation of cell proliferation were significantly associated with
the high-risk phenotype. However, the regulation of immune
system process, immune response-activating signal transduction,
immune response-regulating cell surface receptor signaling
pathway, and lymphocyte activation were enriched in the low-
risk group (Figure 5B).

DISCUSSION

The liver cancer immune microenvironment includes almost
all immune cell types (Dadi et al., 2016). The type, density,
and location of immune cells have significant effects on patient
prognosis and tumor evolution (Galon and Bruni, 2019). Some
studies have illustrated the relationship between immune cells
and ICC progression (Sulpice et al., 2016), but most of these
studies screened for biomarkers by comparing tissue sequencing
results of tumor and non-tumor tissues. Conventional tissue
sequencing assays use a mixture of millions of cells, or
more, and the result represents the average transcriptome
expression of a group cells, or the information of the dominant
cells. Using this approach means that there is the potential
to miss significant genes. scRNA-seq is especially useful for
tumors to precisely reflect the heterogeneity within the tumor
cells (Ellsworth et al., 2017). The heterogeneous information
between single cells can be uncovered (Nguyen et al., 2018),
and the significant genes that truly characterize the cells in
cancer can be discovered (Kulkarni et al., 2019). Therefore,
PRG signatures, based on scRNA-seq data of immune cells,
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TABLE 3 | Univariate and multivariate analysis for OS in patients with ICC.

Gene symbol Univariate COX regression Multivariate COX regression

HR (95% CI) P HR (95% CI) P Coefficient

ANXA1 1.019 (1.003, 1.034) 0.019

GLIPR1 1.076 (1.010, 1.146) 0.023

TMEM107 1.295 (1.017, 1.648) 0.036

MT2A 1.004 (1.001, 1.007) 0.009

PMEPA1 1.009 (1.001, 1.018) 0.038

VIM 1.002 (1.000, 1.003) 0.043

SLC16A3 1.070 (1.016, 1.127) 0.010 0.686 (0.538, 0.875) 0.002 −0.377

BNIP3L 1.095 (1.004, 1.194) 0.041 1.239 (1.013, 1.516) 0.037 0.214

TPM2 1.014 (1.003, 1.024) 0.008 1.265 (1.109, 1.442) 0.000 0.235

CLEC11A 1.075 (1.001, 1.155) 0.046 0.767 (0.648, 0.909) 0.002 −0.265

EREG 1.135 (1.018, 1.266) 0.023 1.349 (0.956, 1.904) 0.088 0.300

PMAIP1 1.053 (1.004, 1.103) 0.033 0.397 (0.237, 0.665) 0.000 −0.925

CEBPB 1.020 (1.004, 1.036) 0.016 1.074 (1.032, 1.118) 0.000 0.072

A2M 1.008 (1.001, 1.015) 0.016 1.031 (1.015, 1.047) 0.000 0.030

TUBA1B 1.034 (1.007, 1.063) 0.014 1.129 (1.053, 1.211) 0.001 0.121

can be used as reliable biomarkers to predict prognosis
in ICC.

In this study, the raw scRNA-seq data from 33,991 cells
were analyzed. The cells and genes with poor sequencing quality
were excluded and were a significant confounding factor for the
statistical results. Only cells with high proportions were screened
for further analysis, which ensured the reliability of the analysis
results. The subsequent PCA was performed, which carried
out a linear dimensionality reduction while maintaining data
characteristics as much as possible. Next, the t-SNE algorithm
was used to conduct non-linear dimensionality reduction. The
combination of PCA and t-SNE algorithms ensured the efficiency
and accuracy of dimension reduction. We only get a result
that was very similar to the original paper, because the filter
criteria and processing parameters were different from those in
the original article. Clusters 0, 1, 7, 9, and 10 could roughly be
identified as T cells and NK cells, because gene expression in
these two cell types is almost the same. For our study, the marker
genes provided in the original article were not specific enough
to be used to further subdivide these clusters. We also noticed
that T and NK cells derived from ICC tissue were mixed with
those derived from normal tissue. Similarly, clusters 5, 6, 12, and
15 were roughly defined as macrophages and dendritic cells, but
there was a relative boundary between normal and ICC clusters.
The other clusters precisely identified the cell types, including
cholangiocytes, endothelial cells, fibroblasts, hepatocytes, and
malignant cells. Notably, clusters 17 and 18 were identified as B
cells, and normal B cells were distinguishable from those derived
from ICC. Finally, 659 marker genes were screened out as DEGs
between the ICC and normal groups. These genes represented
the internal heterogeneity of immune cells and might be closely
related to OS in ICC.

DEGs were preliminarily screened by univariate Cox
regression, and multivariate Cox regression was used to

further optimize and select variables. Finally, a prognostic
signature comprising nine PRGs was established. This signature
was validated in the testing and entire sets, suggesting it was
efficacious in predicting prognosis for ICC patients under diverse
clinical conditions. The signature also had higher predictive
accuracy and efficacy than did clinical characteristics. Finally,
the nomogram model was developed and shows promising
application value in clinical practice because of its simplicity and
convenience. Whether the prognostic signature has potential
predictive ability for drug therapy remains to be determined and
deserves further investigation.

The nine PRGs in this nomogram play essential roles
in the development and progression of many malignant
tumors. SLC16A3 is associated with pancreatic cancer and
glioblastoma and can predict tumor metastasis and survival
in lung adenocarcinoma (Zhang et al., 2019; Yu et al., 2020).
BNIP3L is a new prognostic biomarker for melanoma patients
(Kazimierczak et al., 2020) and is related to the development
and metastasis of hepatocellular carcinoma (HCC) and colon
cancer (Chen et al., 2020). TPM2 is related to gastric cancer
(Lin et al., 2019). CLEC11A is linked to the development of a
variety of cancers, including leukemia, multiple myeloma, and
gastrointestinal tumors (Wang et al., 2020). EREG is closely
associated with the progression of various tumors, including
gynecological cancer, rectal cancer, lung adenocarcinoma, breast
cancer, and lung squamous cell carcinoma (Lin et al., 2020; Tao
et al., 2020; Zayed, 2020). PMAIP1 is related to the development
of ovarian cancer and spinal cord glioma cells (Zheng et al.,
2019; Gov, 2020). CEBPB is associated with the development
of various tumors, including osteosarcoma, gastric cancer, HCC,
glioblastoma, and human acute myeloid leukemia (Lu et al.,
2019; Jinesh et al., 2020). A2M was identified as a key gene
associated with various tumors, including non–small cell lung
cancer, bladder cancer, osteosarcoma, and HCC (Ma et al., 2019;
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FIGURE 4 | Validation of a PRGs signature for ICC. (A–C) Survival curves for the low- and high-risk groups of the training, testing, and entire sets. (D–F) ROC analysis

predicted 3-year OS using the risk scores of the training, testing, and entire sets. (G–I) Survival status and duration of the training, testing, and the entire sets. (J,K)

ROC curves validated the prognostic value of the PRGs and clinical characteristics at the 3-year level in the training and testing sets.
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FIGURE 5 | (A) A nomogram model was developed using the PRGs. (B) The significantly enriched biological processes between two risk score levels in the GSEA

of GO.
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Huang et al., 2020). TUBA1B was related to breast cancer, HCC,
and Wilms tumor (Lou et al., 2020; Tian et al., 2020). These nine
PRGs are involved in the pathogenesis and development of many
tumors, supporting their potential as a powerful biomarker to
predict ICC prognosis.

To study the underlying molecular mechanism of the gene
signature prognostic effects, GSEA was conducted. The results
revealed that the pathways were mainly enriched in multiple
tumor immune mechanisms, the regulation of these pathways
can change the tumor cells immunemicroenvironment and affect
the proliferation and migration of tumor cells. Our results also
deepen our understanding of ICC and show that these nine PRGs
possess great predictive value.

This study had several advantages. First, this was the first
study to explore the correlation between DEGs and ICC
prognosis. Second, a novel prognostic signature comprising
nine PRGs, which reflected the immune specificity of each ICC
patient and accurately predicted prognosis, was constructed.
However, there were still several limitations. First, the GEO
and TCGA ICC cohorts were not large enough because ICC
is rare (Esnaola et al., 2016). This may affect the statistical
validity of our results and limit their robustness. Second, relevant
basic experiments are still needed to verify the results and
identify the specific mechanisms of action. In future experiments,
we plan to coculture macrophages and ICC cells. We will
regulate the expression of PRGs in macrophages and observe the
proliferation, migration, and invasion of ICC cells. This will help
to confirm our findings presented here.

In conclusion, this study established a PRG signature based on
scRNA-seq data of immune cells for ICC patients. This signature
reflects the TME immune status and provides new biomarkers for
ICC prognosis.
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Supplementary Figure 1 | The correlated genes in each component from PCA

procedure were exhibited. (A) Correlation analysis of the top 20 relevant genes.

(B) The top 30 significantly correlated genes displayed by cluster analysis across

each component. Colors ranging from purple to golden yellow represent

correlated gene expression levels from low to high. (C) The scree plot shows the

amount of variation each PC captured from the data.

Supplementary Figure 2 | Cluster map displaying the top four significant marker

genes of each cluster. (A) cluster 0, (B) cluster 1, (C) cluster 2, (D) cluster 3, and

(E) cluster 4.

Supplementary Figure 3 | Cluster map displaying the top four significant marker

genes of each cluster. (A) cluster 5, (B) cluster 6, (C) cluster 7, (D) cluster 8, and

(E) cluster 9.

Supplementary Figure 4 | Cluster map displaying the top four significant marker

genes of each cluster. (A) cluster 10, (B) cluster 11, (C) cluster 12, (D) cluster 13,

and (E) cluster 14.

Supplementary Figure 5 | Cluster map displaying the top four significant marker

genes of each cluster. (A) cluster 15, (B) cluster 16, (C) cluster 17, (D) cluster 18,

and (E) cluster 19.

Supplementary Figure 6 | Characterization of scRNA-seq from macrophages

and dendritic cells. (A) scRNA-seq data quality control of macrophages and

dendritic cells for ICC cell and normal cell samples. (B) There was a positive

association between detected gene counts and sequencing depth. (C) In total,

1,500 gene symbols with significant differences across macrophages and

dendritic cells were identified, and the characteristic variance diagram was drawn.

(D) Jack straw plot showing P value distributions for each PC. (E) The scree plot

displayed the amount of variation each PC captured from the data. (F) The top 24

marker genes across the 15 clusters are exhibited. (G) Correlation analysis of the

top 20 relevant genes. (H) The top 30 significantly correlated genes by cluster

analysis across each component. Colors ranging from purple to golden yellow

represent the expression levels of correlated genes from low to high.

Supplementary Figure 7 | Cluster map displaying the top six significant marker

genes of macrophages between ICC and normal tissue. (A) Macrophages derived

from ICC tissue. (B) Macrophages derived from normal tissue.

Supplementary Figure 8 | Characterization of scRNA-seq from B cells. (A)

Quality control of B cell scRNA-seq data. (B) There was a positive association

between detected gene counts and sequencing depth. (C) In total, 1,500 gene

symbols with significant differences across B cells were identified and the

characteristic variance diagram was drawn. (D) Jack straw plot showing P-value

distributions for each PC. (E) The scree plot displayed how much variation each

PC captured from the data. (F) The top 27 marker genes across the six clusters

are exhibited. (G) Correlation analysis of the top 20 relevant genes. (H) The top 30

significantly correlated genes by cluster analysis across each component. Colors

ranging from purple to golden yellow represent the expression levels of correlated

genes from low to high.

Supplementary Figure 9 | Cluster map displaying the top six significant B cell

marker genes between ICC and normal tissue. (A) B cells derived from ICC tissue.

(B) B cells derived from normal tissue.

Supplementary Figure 10 | Characterization of T cell and NK cell scRNA-seq.

(A) scRNA-seq data quality control of T cells and NK cells for ICC cell and normal

cell samples. (B) There was a positive association between detected gene counts

and sequencing depth. (C) In total, 1,500 gene symbols with significant

differences across T cells and NK cells were identified and the characteristic
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variance diagram was drawn. (D) Jack straw plot showing P-value distributions for

each PC. (E) The scree plot displayed how much variation each PC captured from

the data. (F) Correlation analysis of the top 20 relevant genes. (G) The top 30

significantly correlated genes by cluster analysis across each component. Colors

ranging from purple to golden yellow represent the expression levels of correlated

genes from low to high.

Supplementary Figure 11 | (A–E) ROC analysis using the signature risk scores

of the entire set at 1, 2, 4, 5, and 6 years. (F,G) Survival analysis with P-value <

0.05 using each of the PRGs in the training set. (H,I) Survival analysis with P-value

< 0.05 using each of the PRGs in the testing set.

Supplementary Table 1 | Cluster classification of 29263 cells from the t-SNE

algorithm.

Supplementary Table 2 | Cluster classification of macrophages and dendritic

cells from the t-SNE algorithm.

Supplementary Table 3 | Cluster classification of B cells from the

t-SNE algorithm.

Supplementary Table 4 | Cluster classification of T cells and NK cells from the

t-SNE algorithm.

Supplementary Table 5 | Differentially expressed genes in macrophages and B

cells (n = 659).

Supplementary Table 6 | Calculation of PRGs risk scores in training set.

Supplementary Table 7 | Calculation of PRGs risk scores in testing set.
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