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a b s t r a c t

Objective: The role of plate configuration was found inconclusive on the biomechanical effects of the
plate size and hole number for dual plate constructions in humeral shaft fractures. The purpose of this
study was to test the biomechanical stability of various dual plate constructions.
Methods: Twenty-four left humeri (4th Generation Composite Humerus, Sawbones, Malm€o, Sweden)
with comminuted midshaft humeral fracture were used. Four groups of plate constructs were tested:
laterally fixed 8-hole locking plate and screws were combined with anteriorly locking plates containing
0, 4, 6, or 8 holes in groups I, II, III, and IV, respectively. The alterations in axial, bending, and torsional
angles were recorded.
Results: There were no fixation failures during axial, bending, or torsional stiffness testing within the
elastic behavior limits. Axial stiffness was highest in Group IV. Torsional stiffness, posterior-to-anterior
bending stiffness, lateral-to-medial bending stiffness, and medial-to-lateral bending stiffness were
lowest in Group I.
Conclusion: The similar stiffness values for the 8-to-4 hole and 8-to-6 hole plate constructions indicate
that the 8-to-4 hole construction is an option in young adults, while the stiffest 8-to-8 hole combination
may be an option for osteoporotic patients.
© 2016 Turkish Association of Orthopaedics and Traumatology. Publishing services by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
Introduction

Diaphyseal humeral fractures are seen relatively more
frequently in the elderly population.1 Even though nonoperative
treatment is preferable, osteopenia as a result of lack of use leads to
the need for options for internal fixation to avoid high levels of
disability associated with humeral shaft nonunion.2

In humeral shaft fractures managed by surgery, the conven-
tional manner for internal fixation is the use of large fragment
plates. However, the variable size and shape of the humerus creates
difficulties during the procedure in determining the appropriate
combination of plate size and screw number.3 The recent literature
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indicates that the use of dual plate yields better results in terms of
mechanical properties than does the use of large fragment plate.4 In
the use of dual plate, the layout angles of the plates relative to the
humeral shaft is controversial. Placement of the anterior and lateral
plates at 90� was found to be best configuration for dual plating.5

Despite the increased usage of locking plates in osteoporotic
humeral shaft fractures, the few studies on the plate configuration
were inconclusive regarding the biomechanical effects of plate size
and hole number in dual plate constructions. The purpose of this
study was to test the biomechanical stability of various dual plate
constructions.

Patients and methods

Twenty-four left humeri (4th Generation Composite Humerus,
Sawbones, Malm€o, Sweden) were used in the present study. The
specimens were embedded in cement at both ends, which were cut
into a cylindrical shape to facilitate insertion into the testing grips.
The center of the bone was determined by vernier calipers, and a
rvices by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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Fig. 2. Axial load was applied to the cylindrical potted end.

A. Karakasli et al. / Acta Orthopaedica et Traumatologica Turcica 50 (2016) 432e436 433
comminuted midshaft humeral fracture was modeled with a 1-cm
midshaft gap created with a surgical reciprocating saw.6e8 All
specimens were prepared by the same 2 orthopedic surgeons.
Standard technique for plate fixation was performed, placing all of
the screws bicortically. The osteotomy provided a noncontact sit-
uation, allowing for isolated testing of the plate constructs.

Four groups of plate constructs were tested. Group I specimens
were fixed laterally by an 8-hole 3.5-mm locking plate (8hLP) (all
locking plates used in this studywere produced byMed TıpMedical
Device Company A.S., Izmir, Turkey), Group II specimens were fixed
laterally with an 8hLP and anteriorly with a 4hLP, Group III were
fixed laterally with an 8hLP and anteriorly with a 6hLP, and Group
IV were fixed both laterally and anteriorly with an 8hLP (Fig. 1).

All tests were performed with a mechanical test machine (AG-IS
10 kN, Shimadzu, Kyoto, Japan). The humeral bone models were
fixed to the load cell of the test machine. The axial load was applied
to the cylindrical embedded end (Fig. 2). In all tests, the alterations
in axial, bending, and torsional angles were recorded both in loaded
and unloaded states.

The bone-plate constructs were tested under axial loading with
the embedded humeral head. While simultaneously recording the
vertical displacement and strain, 500 N for 5000 cycles at 3 Hzwere
applied. Displacement was recorded.4

A 4-point bending model was used for the anterior-posterior,
posterior-anterior (sagittal plane), medial-lateral, and lateral-
medial (coronal plane) testing. In each bending test, a maximal
load of 250 N was applied at 10 mm/min. Bending moment was
applied to the same point by centering the device on the midpoint
of the fracture gap. Load versus displacement values were recorded
to calculate the bending stiffness and flexibility.

Torsion test was performed with a servo sync torque machine
(SQM132, 245 Nm 100 rpm, ELSIM Elektroteknik A.S, Istanbul,
Turkey). The torsion tests were conducted in the displacement
control mode with a maximum moment of 4.5 Nm in both di-
rections; the premoment was 0 Nm, and the test velocity was 0.3�/
second. The testing cycle was applied from 0 to 4.5 Nm. Torque
versus the degree of angle deformation values were recorded.7e9
Fig. 1. Schematic illustration of the plate configurations.
Each specimen was tested 3 times in bending and torsion tests
to ensure reproducibility of the results. All tests were performed
within the elastic behavior limits of the construct; the
loadedeflection data did not show any sign of plastic or permanent
deformation for any of the constructs in any orientation. The testing
was performed in the same order for each sample. Statistical
analysis was conducted with ManneWhitney U test by using SPSS
software (version 15.0, SPSS Inc., Chicago, IL, USA). The level for
significance was defined as p < 0.05.
Results

There were no fixation failures during axial, bending, or
torsional stiffness testing within the elastic behavior limits. Mean
stiffness values of all groups are presented in Table 1. Axial stiffness
in Group IV was 706.2 N/mm, which was significantly higher than
in Group I (475.6 N/mm, p ¼ 0.004), Group II (516.6 N/mm,
p ¼ 0.025), and Group III (543.5 N/mm, p ¼ 0.006) (Fig. 3).

For torsional stiffness measurements, stiffness in Group I was
6.31 N/degree, which was significantly lower than in Group II
(12.16 N/degree, p ¼ 0.01), Group III (11.51 N/degree, p ¼ 0.01), and
Group IV (15.10 N/degree, p ¼ 0.006) (Fig. 4).

Bending stiffness was also compatible with the previously
described results. By all of the measured parameters of stiffness
(posterior-anterior bending, lateral-medial bending, medial-lateral
bending) results for Group I were significantly lower than for all of
the other groups (Fig. 5).
Discussion

Plate fixation is the gold standard for treatment of humeral
nonunion. It enables compression, correction of malalignment, and
stimulation of osteogenesis (grafting) in a single procedure.10 Hu-
meral nonunion can be severely disabling. Although several au-
thors have recommended plate fixation for the management of
nonunion at midshaft level, inappropriate plate fixation techniques
are one of the main reasons that fractures fail to heal.11e16 Foster
et al reported that the most common indication for surgical man-
agement of a humeral shaft fracture is a concurrent multiple injury,
and the second is nonunion of humeral shaft fracture. They re-
ported a 96% success rate for union in their study, using both single-
and dual-plate constructs either with or without lag screws.11

Murray et al pioneered the use of double-plate constructs for



Table 1
Mean stiffness values of all testing groups.

Axial stiffness (N/mm) Bending stiffness (N/mm) Rotational stiffness (N/º)

A-P P-A L-M M-L

Group I 475,6 ± 63 340,4 ± 37 285,8 ± 24 134,5 ± 4 196,55 ± 28 6,3 ± 2
Group II 516,6 ± 124 372,7 ± 41 424,8 ± 39 413,1 ± 23 382,3 ± 17 12,1 ± 3,9
Group III 543,5 ± 102 330,4 ± 39 430,8 ± 125 373,3 ± 46 411,9 ± 100 11,5 ± 4,3
Group IV 706,2 ± 78 414,6 ± 96 509,1 ± 135 410,3 ± 69 496,9 ± 174 15,1 ± 5,7

Fig. 3. Axial stiffness according to groups.

Fig. 5. Bending stiffness according to groups.
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nonunion in 1964. Using an anterolateral approach, they placed 1
plate on the lateral side of the humerus and the other on the pos-
terior aspect. They suggested that this method provides a more
stable construct than that achieved with single plates because of
the biplanar control provided by dual plates at right angles to each
other.14

In our study, we investigated the in vitro mechanical stability of
different dual plate constructs. It is apparent in the literature that
use of the dual plate construct in the treatment of humeral frac-
tures has a significantly higher mechanical stability compared to
the single plate application.6 Similar to the published results, our
study confirmed that the dual plate construct had a significantly
higher stability than single plate fixation.

In the treatment of nonunions, which arise from simple trans-
verse fractures of long bones like the humerus and ulna, the
increased stability with dual plates may lead to union.17 Egol et al
suggested a theoretical concern for the amount of soft-tissue
dissection and revascularization needed to place a second plate at
a 90� angle to the first.18,19 Although this is a concern in the
treatment of acute fractures, in the case of nonunions, the dissec-
tion needed to correct the deformity and debride the fibrous tissue
Fig. 4. Torsional stiffness according to groups.
allows application of the second plate without additional exposure.
Furthermore, a study by Rubel et al showed that the addition of a
second plate did not increase the rate of treatment failure.20 The
results of our biomechanical tests in the gap model suggest that
higher axial and rotational stiffness is achieved with a dual plate
construct. It has been shown that a dual plate construct is some-
times helpful when bone quality is poor and pseudoarthrosis is
present or when the stability achieved by the first plate is not
clinically sufficient.11 The use of dual plate provided healing in
nonunion patients in such situations. In our study, performed on
the humerus transverse fracture model, 8-hole single plate fixation
(Group I) showed statistically significant lower stiffness than the
dual plate (Group II, Group III, Group IV) constructions. There were
no statistical differences between the 8-hole lateral plate fixation
combinedwith a second 90 anterior platewith 4 holes (Group II) or
with 6 holes (Group III). The plate combinations with 8-hole plate
lateral and 8-hole plate anterior construct (Group IV) had signifi-
cantly higher axial stiffness. However, Group IV showed excessive
stiffness, in which the fixation construct reduces stress and strain
on the bone and may lead to bone resorption.20

Construct stiffness is highly important. It governs the perfor-
mance of the fixation system, using the other interrelated out-
comes measures reported (bone stress shielding, hardware stress,
and interfragmentary strain),4,7 which eventually causes screw
loosening and construct failure.21e23 However, excessive reductions
in stiffness may lead to increased screw and plate stress and early
fatigue failure of the construct.22e24 Stiffness resulting from the
compressive loading simulations of the humerus may be especially
important during crutch weight-bearing.8,22 Moreover, torsional
loading also is of interest in the analysis of humeral fracture fixation
constructs because it has been reported as a predominant loading
mode and possible cause for nonunion of humeral fractures.22,24,25

Hertel et al recommended obtaining a minimum of 3 cortices per
segment.26 In good quality bone, Gautier and Sommer recom-
mended using a minimum of 2 screws per segment, with at least 3
cortices for simple fractures and 4 cortices for comminuted
̊
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fractures. In other cases such as osteoporotic bone, they recom-
mended a minimum of 3 screws per segment.22 Stoffel et al found
that axial stiffness and torsional rigidity were mainly influenced by
the distance between the fracture site and the closest screw. After
moving the screw 1 hole farther from the fracture, the construct
became almost twice as flexible in compression and torsion.23 The
development of locking plates has provided an alternative to
standard compression plates. Locking plates can provide fracture
fixation without the undesirable effects on periosteal vasculariza-
tion and mechanical drawbacks that are encountered with stan-
dard compression plates.24

Biomechanics of the fixation device is only one of many factors
to be considered in the operative treatment of humeral fractures.
Although numerous factors affect operative treatment decisions, it
is helpful for the orthopedic surgeon to have comparative biome-
chanical information of different plating constructs. Because the
amount of motion at the fracture site influences the biologic reac-
tion of bone, the biomechanical stability of a fracture fixation
implant plays an important role in fracture healing.21,27e29

This biomechanical study might have a critical role in deter-
mining the appropriate construction in the treatment of humeral
shaft nonunion. Our results suggest that, depending on the fracture
type, in young adult patients, lateral 8-hole and anterior 4-hole
plate constructions may be used, while in osteoporotic patients,
lateral 8-hole and anterior 6-hole plate constructions may be uti-
lized. Aziz et al reported that the strengths of the cortical screws are
significantly lower according to their pullout tests on osteoporotic
bone.30 In osteoporotic bone, insufficient screw purchase leads to
loosening of nonlocking screws and levering of the plate away from
the bone. Loosening of nonlocking screws in osteoporotic bone is an
important factor in implant failure in humeral shaft fracture fixa-
tion.31 The stability of the fixation system is influenced by hardware
factors including the number of screws, type of screws (i.e.,
bicortical, unicortical), working length, plate offset from the bone
cortex, and placement of the hardware.8,22,32 Ideal plate fixation in
shaft fractures should have at least 6 (or preferably 8) cortex fixa-
tions above and below the fracture line.33 In addition to plate
placement, the hardware variables were controlled in this study
based on recommendations from the literature.17,21 In our study, all
of the lateral locked plates used 4 screws per fragment, based on
the literature findings that additional screws did not show a sig-
nificant increase in torsional stiffness.5,23

In conclusion, in the treatment of nonunion or pseudoarthrosis
of humeral fractures, dual plate fixation is a technique that in-
creases the stability and healing rates. As shown in our results of
similar stiffness values for the 8-to-4 hole and 8-to-6 hole plate
construction, an 8-to-4 hole construction may be suggested as an
option in young adults, while an 8-to-8 hole combination, the
overall stiffest combination, may be an option for osteoporotic
patients. Further studies are required to understand the biome-
chanical behavior of osteoporotic bones on dual plate fixation.
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