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ABSTRACT: Dioxins are ubiquitous endocrine-disrupting substances, but determin-
ing the effects and benchmark doses in situations of coexposure is highly challenging.
The objective of this study was to assess the relationship between dioxin
andgestational diabetes mellitus (GDM), calculate the benchmark dose (BMD) of
dioxin in coexposure scenarios, and derive a daily exposure threshold using an
optimized physiologically based toxicokinetic (PBTK) model. Based on a nested case-
control study including 77 cases with GDM and 154 controls, serum levels of 29
dioxin-like compounds (DLCs) along with 10 perfluoroalkyl acids (PFAAs), seven
polybrominated diphenyl ethers (PBDEs), and five non-dioxin-like polychlorinated
biphenyls (ndl-PCBs) were measured at 9−16 weeks of gestation. Bayesian machine
kernel regression (BKMR) was employed to identify significant chemicals, and probit
and logistic models were used to calculate BMD adjusted for significant chemicals. A
physiologically based toxicokinetic (PBTK) model was optimized using polyfluori-
nated dibenzo-p-dioxins and dibenzofurans (PFDD/Fs) data by the Bayesian−Monte Carlo Markov chain method and was used to
determine the daily dietary exposure threshold. The median serum level of total dioxin toxic equivalent (TEQ) was 7.72 pg TEQ/g
fat. Logistic regression analysis revealed that individuals in the fifth quantile of total TEQ level had significantly higher odds of
developing GDM compared to those in the first quantile (OR, 8.87; 95% CI 3.19, 27.58). The BKMR analysis identified dioxin TEQ
and BDE-153 as the compounds with the greatest influence. The binary logistic and probit models showed that the BMD10
(benchmark dose corresponding to a 10% extra risk) and BMDL10 (lower bound on the BMD10) were 3.71 and 3.46 pg TEQ/g fat,
respectively, when accounting for coexposure to BDE-153 up to the 80% level. Using the optimized PBTK model and modifying
factor, it was estimated that daily exposure should be below 4.34 pg TEQ kg−1 bw week−1 in order to not reach a harmful serum
concentration for GDM. Further studies should utilize coexposure statistical methods and physiologically based pharmacokinetic
(PBTK) models in reference dose calculation.
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1. INTRODUCTION
Polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans
(PCDFs), and biphenyls (dl-PCBs) are persistent organic
pollutants that belong to a family of organic compounds called
dioxins or dioxin-like chemicals (DLCs). These toxic chemicals
are ubiquitous in the global environment, and more than 90%
of human exposure to dioxins is through the diet.1 There is
increasing evidence that certain persistent organic pollutants
(POPs) such as dioxin, polychlorinated biphenyls (PCB),
polybrominated diphenyl ethers (PBDE), and perfluoroalkyl
substances (PFAS) may contribute to the etiology of
gestational diabetes mellitus (GDM).2−8 Dioxins can bind to
aryl hydrocarbon receptors (AHR) with high affinity, activate
transcription of target genes coding for xenobiotic-metaboliz-
ing enzymes in liver, and elicit genomic and nongenomic
pathways in pancreatic β cells.9,10 Emerging evidence has

shown some analogues of PBDE and PCB activated AHR and
had measurable dioxin-like potency.11,12 Dioxin, PBDE, and
PFAS may also interfere with peroxisome proliferator-activated
receptors (PPARs), steroid receptors, and thyroid homeostasis,
leading to glucose metabolism disorders and GDM.13−15

Although mechanisms of POPs leading to GDM are currently
not well documented, it is crucial to identify significant
chemicals and establish safe exposure levels.
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The benchmark dose (BMD) method, commonly used in
toxicology and risk assessment, is a powerful tool for estimating
the dose−response relationship between a chemical and its
associated health effect.16,17 However, its application in
coexposure scenarios, where individuals are simultaneously
exposed to multiple pollutants, has been limited. For chemicals
with similar modes of action (MoA), methods such as the
relative potency factor (RPF) and toxicity equivalency factor
(TEF) can be utilized to calculate the weighted sum of
pollutant concentrations as independent variables in BMD
calculations.18,19 Otherwise, practical statistical methods such
as Bayesian kernel machine regression (BKMR), weighted
quantile sum regressions, and shrinkage methods are used to
estimate health effects of exposure to multipollutant
mixtures.20 Recent studies have emphasized the importance
of utilizing the BMD method in coexposure scenarios, but
there are very few discussions on the exposure threshold of a
single compound in the presence of coexposure of several
kinds of POPs.21,22 Besides, the PBTK model is a more
comprehensive approach that can be taken to assess the risks
associated with dioxin exposure by improving the accuracy of
exposure level estimation and accounting for uncertainties.
Implementing it with the Bayesian Monte Carlo methodology,
the PBTK model can be further enhanced in the Chinese
population and the assessment of polychlorinated dibenzo-p-
dioxins and dibenzofurans (PCDD/Fs).23,24

In our nested case-control study, we collected serum levels
of DLCs, PFASs, PBDEs, and PCBs, as well as gestational
glycemic measurements from 231 pregnant women. Our study
is the first to use the occurrence of GDM to compute the daily
exposure threshold for dioxins with BMD approaches in
coexposure scenarios and an optimized PBPK model for DLCs,
which should provide a reliable estimate for quantifying the
health risks of dioxin exposure.

2. METHODS

2.1. Study Population and Data Collection
The present study utilized exposure data sets from a prospective
nested case-control study, as previously described.2 Briefly, recruit-
ment of participants was carried out at the Maternal and Child Health
Hospital in the Xicheng District of Beijing, China, between August
2013 and June 2015. Eligible participants were healthy pregnant
women without a family history of diabetes or prediabetes.
Participants were enrolled if they agreed to provide a blood sample
between 9 and 13 weeks of gestation and were routinely screened for
gestational diabetes mellitus (GDM) at 24−28 weeks of gestation.
Ultimately, a total of 77 pregnant women were diagnosed with GDM
within the study population, and two healthy women were selected
from the cohort to serve as paired controls for each case.

2.2. Blood Collection and Chemical Analysis
The study analyzed 17 polychlorinated dibenzo-p-dioxins and
dibenzofurans (PCDD/Fs), 12 dioxin-like polychlorinated biphenyls
(dl-PCBs), including four non-ortho PCBs and eight mono-ortho
PCBs, five non-dioxin-like polychlorinated biphenyls (ndl-PCBs), 10
perfluoroalkyl acids (PFAAs), and seven polybrominated diphenyl
ethers (PBDEs). The detection of chemicals in maternal whole blood
samples and detailed lists of chemicals was carried out using high-
resolution gas chromatography/high-resolution mass spectrometry
(HRGC/HRMS), as previously described.25−27 Toxic equivalent
(TEQ) values for PCDD/Fs and dl-PCBs were calculated using the
WHO2005-TEF values (pg TEQ/g fat).19 In addition, serum total
cholesterol and triglycerides were measured using an automatic
biochemistry analyzer, and the total serum lipids were estimated using

the following formula: total lipids (mg/dL) = 2.2 × cholesterol +
triglycerides + 62.3.
2.3. Assessment of Glycemic Measures
A 75 g oral glucose tolerance test (OGTT) without prior plasma
glucose screening was administered for diagnosing GDM. Fasting
venous blood samples were collected before 9 am after an overnight
fast of at least 8 h. Blood samples were then taken at intervals of 1 and
2 h after the administration of a 75 g glucose load to measure
postprandial glucose concentrations. GDM was diagnosed if one or
more of the following threshold values were met or exceeded: 5.1
mmol/L (fasting blood glucose, FBG), 10.0 mmol/L (1 h
postprandial blood glucose, 1h-PBG), and/or 8.5 mmol/L (2 h
postprandial blood glucose, 2h-PBG), in accordance with the criteria
established by the International Association of Diabetes and
Pregnancy Study Groups.28

2.4. Statistical Analyses
2.4.1. Stage I: Estimating Association between Participants’

Outcomes and Serum Dioxin. The participants’ baseline character-
istics were reported as the mean ± standard deviation (SD) for each
group, and the chemical levels were presented as the mean (IQR).
The comparison of the baseline characteristics between the cases and
controls was carried out utilizing the Mann−Whitney U tests for
continuous variables. Individual serum dioxins TEQ for PCDDs,
PCDFs, dl-PCBs, and PCDD/Fs were modeled as continuous
variables for logistic regression and then categorized into quintiles
according to their distributions among the whole population. Simple
and multivariable conditional logistic regression analyses were
conducted to assess the association between dioxins and GDM risk.
Multivariate linear regression models were used to examine the
association between dioxin TEQ and continuous outcomes, such as
fasting blood glucose (FBG), 1 h postprandial blood glucose (1h-
PBG), and 2 h postprandial blood glucose (2h-PBG). The models
were adjusted for body mass index, serum triglyceride, and total
cholesterol in adjusted model 1 and further adjusted for the sum of
PFAS, PBDE, and ndl-PCBs levels in adjusted model 2. Considering
the distributions of dioxin TEQ were right-skewed, they were log
transformed to approximate normal distributions.
2.4.2. Stage II: Bayesian Kernel Machine Regression (BKMR)

Model. BKMR is a nonparametric method used in mixture analysis to
identify and estimate the effects of multiple exposures or predictors on
health outcomes. It extends the kernel machine regression model to
accommodate nonlinear and interactive effects using the Gaussian
kernel.

The BKMR model for continuous variable is given by

Y h z z x( , ..., )i i i i i1 M= + +

where Yi is a continuous, normally distributed health end point, h is a
flexible function (usually a Gaussian kernel) of the predictor variables
zi1,···,ziM, xi is a vector of covariates assumed to have a linear
relationship with the outcomes, and β is the transpose of the vector of
the corresponding coefficients.

The BKMR model for a dichotomous variable is given by29

z x( )i z i x i
1 = + +

where Φ is the cumulative distribution function (CDF) for the
standard normal distribution and μi = P(Yi = 1) is the probability of
an event. Markov chain Monte Carlo (MCMC) sampling with 50,000
iterations was run, and the first 10,000 were dropped. We set the
threshold of the posterior inclusion probability (PIP) to 0.5 and
calculated the PIP for each chemical. The marginal nonlinear dose−
response curve between the individual pollutant and the health
outcome, by fixing the health effect of other mixture components at
the 25th, 50th, and 75th quantiles, was used to find potential
nonlinear associations and interactions. Furthermore, the overall
impact of the mixture was assessed by plotting the expected change in
glycemic measures as the quantiles of all exposure biomarkers
increased simultaneously. The BKMR model fitting was performed
using the bkmr software implemented as an R package.
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2.4.3. Stage III: Benchmark Dose Estimation. For univariate
BMD calculation, dioxin exposures were divided into 10 groups, and
the median concentration of dioxin and the mean and standard
deviation of the outcomes for each group were calculated. US EPA
BMD software 3 (BMDS 3) and a website-based Bayesian BMD
system were used for BMD calculations.30 The benchmark response
(BMR) is a predefined threshold for measuring the magnitude of an
adverse effect compared to the background. In our study, the BMR
level was set at a 10% relative deviation from the background mean
and the BMR type was relative deviation for continuous model and
extra risk for dichotomous model.31

Based on the results of our study, GDM exhibited a lower BMDL, a
suitable BMD/BMDL ratio, and a significantly higher PIP compared
to 1h-PBG and 2h-PBG. As a result, it was chosen as the preferred
end point for subsequent BMD calculations in coexposure scenarios.
A generalized linear model was fitted for the relationship between
GDM and coexposure to POPs, with a probit and a logistic link
function applied for GDM:

z x( )i z i x i
1 = + +

where Φ is the cumulative distribution function (CDF) for the
standard normal distribution, μi = P(Yi = 1) is the probability of an
event, zi is a vector of chemicals, xi is a vector of covariates assumed to
have a linear relationship with the outcomes, and βz and βx are the
transpose of the vectors of the corresponding coefficients. The BMD
and BMDL values for dioxin are calculated while fixing the exposure
levels of other chemicals at specified percentiles. We employed a
Markov chain Monte Carlo (MCMC) simulation procedure using
WinBUGS (MRC Biostatistics Unit, Cambridge, UK). We performed
a convergence test using the Gelman−Rubin method to obtain the
potential scale reduction factors and their 95% confidence interval.
The corresponding BMDL level was determined as the lower 95%
simulated sample value (n = 10,000) upon convergence.

2.5. Estimation of Daily Intake Threshold of Dioxin
2.5.1. Bayesian Optimization of PBTK Model. Our study

utilizes the concentration- and age-dependent model (CADM), which
has been modified and utilized in the European Food Safety Authority
(EFSA) dioxin reference dose derivation.23,24 Partitioning between fat
and liver is concentration-dependent, and the liver burden follows a
Michalis−Menten relationship with body burden, as shown in Figure
S1. This study aimed to optimize the PBTK model for PCDD/Fs and
Chinese residents using the Bayesian−Markov chain Monte Carlo
(MCMC) method. To implement the Bayesian−MCMC method, we
recoded the CADM model using the “mrgsolve” package in R. The
consistency between the original and recorded models was evaluated
by calculating the R2 value, which was greater than 99%. Prior
distributions for parameters were obtained from literature sour-
ces.24,32 We performed an extensive search for dioxin exposure data
sets and collected five population-based PCDD/Fs dietary intake and
human milk concentration data.33−36 In addition, we obtained
unpublished data including 16 individual samples with dietary
exposure and feces concentration measured.

The delayed rejection adaptive metropolis (DRAM) sampling was
used to update parameters. Three Markov chains of 20,000 iterations
were run, with the first 5000 iterations as “burn-in” iterations. The
Gelman−Rubin method was used, and the Gelman−Rubin−Brooks
diagram visually displayed the convergence test results. Three Markov
chains used different parameter starting points, respectively: (1) the
parameter nonlinearly fitted by the Nelder−Mead method; (2) the
parameters used by EFSA; and (3) the lower boundary of the
parameters. Model fitting was assessed using root-mean-squared error
(RMSE). To validate the model, we collected unpublished data from
three districts in Hubei Province, China, which included 46 men (n >
5 per district) with dietary exposure and measured serum PCDD/Fs
concentrations. The optimized model with the best fitting parameters
from three MCMC simulations was used to derive the human
exposure associated with BMD and BMDL at the mean age of
pregnant women (29 years), assuming breastfeeding for 12 months.

2.5.2. Uncertainty Factors and Modifying Factors. To
provide evidence for provisional tolerable weekly intake (PTWI)
calculations, uncertainty factors and modifying factors were applied.
The uncertainty factor used in institutional standards and our studies
was shown in Table S1. For example, a factor of 10 was applied when
extrapolating from LOAEL to NOAEL and a factor of 3 for sensitive
populations (sperm quality in children <10 years old and TSH in
infants) in U.S. Environmental Protection Agency (US EPA) data.37

Due to the large sample size, BMD method, and prospective design in
human studies, an uncertainty factor of 1 was applied in our study.
However, bioaccessibility percentages of PCDD/Fs vary across food
groups such as rice, vegetables, and meat, with boiling resulting in
lower bioaccessibility percentages of 4.9%, 1.9%, and 7.8%,
respectively, and frying resulting in higher percentages of 17.7%,
15.2%, and 26.6%, respectively, which differs from the bioaccessibility
(>95%) in carriers such as corn oil, eggs, and breast milk reported by
EFSA.23,38 Therefore, a modifying factor of 0.5 was applied to account
for these differences.

3. RESULTS

3.1. Demographic Characteristics
The general characteristics of the study participants are shown
in Table 1. Cases and controls were comparable in terms of

age, BMI, and total cholesterol, while triglycerides in GDM
subjects were significantly higher than those in healthy
controls. PCDFs were the major contributors to the TEQ of
dioxins with medians of 4.43 pg TEQ/g fat (IQR, 3.30−5.97),
followed by PCDDs with medians of 1.87 pg TEQ/g fat
(0.88−3.61 pg) and dl-PCBs with medians of 1.06 pg TEQ/g
fat (0.20−1.83) in the study population. The median serum
concentrations of TEQ of PCDDs, PCDFs, dl-PCBs, and
PCDD/Fs and total dioxins in GDM cases were higher than
those in controls and they were statistically significant. For

Table 1. Basic Characteristics and Dioxin Levels among
Women with and without GDMa

variable GDM non-GDM P value

Basic Characteristics
n 77 154
age (years) 29.23 ± 3.12 28.95 ± 2.76 0.73
BMI (kg/m2) 22.38 ± 2.97 21.70 ± 2.77 0.11
triglycerides (mmol/L) 1.67 ± 0.74 1.42 ± 0.52 0.01
total cholesterol
(mmol/L)

4.45 ± 0.97 4.32 ± 0.85 0.28

FBG (mmol/L) 4.84 ± 0.66 4.42 ± 0.37 <0.001
1h-PBG (mmol/L) 10.07 ± 1.59 7.83 ± 1.35 <0.001
2h-PBG (mmol/L) 8.38 ± 1.41 6.59 ± 1.07 <0.001

TEQ Values (pg TEQ/g fat)
PCDDs TEQ 1.70 (0.81, 3.12) 2.67 (1.09, 4.88) 0.009
PCDFs TEQ 4.13 (2.96, 5.53) 5.04 (4.00, 7.01) 0.001
dl-PCB TEQ 0.96 (0.14, 1.70) 1.29 (0.58, 2.22) 0.003
PCDD/Fs TEQ 5.77 (4.73, 8.02) 8.32 (6.08, 11.53) <0.001
DLCs TEQ 6.89 (5.82, 9.22) 9.86 (7.38, 13.17) <0.001
∑ndl-PCBs
(ng/g lipids)

35.92
(25.83, 47.34)

39.54
(27.2, 57.35)

0.10

∑PFAAs (ng/mL) 15.01
(11.10, 18.64)

15.41
(11.92, 19.28)

0.27

∑PBDEs
(pg/g wet weight)

71.69
(53.52, 96.71)

87.37
(62.01, 122.29)

<0.001

aBasic characteristics are presented as mean ± standard deviation
(SD) for each group while chemical levels are presented as mean
(IQR). P value indicates the significance of the difference between the
two groups, as determined by Mann−Whitney U tests.
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Table 2. Association between Dioxin TEQ and GDM: Odds Ratios (ORs) with Corresponding 95% Confidence Intervals
(CIs)a

quintile 1 quintile 2 quintile 3 quintile 4 quintile 5 continuous model

PCDDs
incidence 11/35 14/32 10/36 20/26 22/25
unadjusted reference 1.39 (0.55, 3.57) 0.88 (0.33, 2.35) 2.45 (1.02, 6.14) 2.8 (1.17, 6.99) 1.28 (1.02, 1.63)
adjusted model 1 reference 1.64 (0.64, 4.37) 0.85 (0.31, 2.33) 2.6 (1.05, 6.7) 3.14 (1.27, 8.17) 1.27 (1.01, 1.49)
adjusted model 2 reference 2.12 (0.79, 5.92) 0.98 (0.35, 2.77) 3.04 (1.17, 8.32) 3.77 (1.46, 10.31) 1.30 (1.02, 1.68)

PCDFs
incidence 10/36 10/36 16/30 17/29 24/23
unadjusted reference 1.00 (0.37, 2.72) 1.92 (0.77, 4.98) 2.11 (0.85, 5.45) 3.76 (1.56, 9.61) 2.18 (1.23, 4.01)
adjusted model 1 reference 0.94 (0.34, 2.64) 1.92 (0.75, 5.14) 2.29 (0.89, 6.12) 4.06 (1.63, 10.73) 2.30 (1.27, 1.43)
adjusted model 2 reference 1.00 (0.35, 2.85) 1.95 (0.74, 5.3) 2.44 (0.93, 6.69) 3.48 (1.36, 9.43) 1.99 (1.09, 3.81)

dl-PCBs
incidence 10/36 12/34 18/29 14/31 23/24
unadjusted reference 1.27 (0.49, 3.38) 2.23 (0.91, 5.74) 1.63 (0.64, 4.27) 3.45 (1.43, 8.82) 1.39 (1.12, 1.77)
adjusted model 1 reference 1.14 (0.42, 3.13) 2.09 (0.83, 5.5) 1.72 (0.66, 4.64) 3.61 (1.46, 9.45) 1.42 (1.13, 1.54)
adjusted model 2 reference 1.13 (0.41, 3.14) 2.23 (0.86, 6.02) 1.84 (0.68, 5.15) 3.58 (1.40, 9.72) 1.44 (1.13, 1.86)

PCDD/Fs
incidence 7/39 10/36 15/32 19/26 26/21
unadjusted reference 1.55 (0.54, 4.67) 2.61 (0.98, 7.57) 4.07 (1.55, 11.71) 6.9 (2.68, 19.75) 4.93 (2.42, 10.46)
adjusted model 1 reference 1.68 (0.57, 5.18) 2.61 (0.95, 7.75) 4.32 (1.61, 12.71) 7.89 (2.94, 23.55) 5.50 (2.62, 1.61)
adjusted model 2 reference 1.70 (0.57, 5.33) 3.12 (1.10, 9.57) 4.34 (1.59, 13) 7.06 (2.57, 21.45) 4.84 (2.27, 10.76)

Total TEQ
incidence 7/39 11/35 14/33 17/28 28/19
unadjusted reference 1.75 (0.62, 5.23) 2.36 (0.88, 6.89) 3.38 (1.28, 9.77) 8.21 (3.18, 23.63) 7.18 (3.26, 16.68)
adjusted model 1 reference 1.92 (0.66, 5.93) 2.56 (0.92, 7.69) 3.71 (1.37, 11.01) 10.29 (3.78, 31.4) 8.54 (3.72, 1.68)
adjusted model 2 reference 1.83 (0.61, 5.75) 2.80 (0.99, 8.61) 3.78 (1.36, 11.48) 8.87 (3.19, 27.58) 7.44 (3.19, 18.44)

aAll dioxin TEQ were natural logarithm transformed. The covariates in the first adjusted model consisted of BMI, serum triglyceride, and total
cholesterol. In the second adjusted model, additional covariates such as ∑PFAAs, ∑ndl-PCBs, and ∑PBDEs were included.

Figure 1. Univariate dose−response associations between chemicals and GDM with 95% confidence bands (shaded areas) using BKMR model.
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other POPs, cases and controls were similar in ∑PFAAs and
∑ndl-PCBs, while ∑PBDEs in GDM patients were signifi-
cantly higher than those in heathy controls. Weak correlations
were observed between specific pairs of POPs, such as PCDFs
and ndl-PCBs as well as PCDFs and PBDEs, as shown in
Figure S2.
3.2. Association between Serum Dioxin and Outcomes

Table 2 presents the results of the association between TEQ
and GDM risk in different models. The association remained
positive and statistically significant in both crude and adjusted
models, and the effect estimates were only slightly attenuated
by adjustment for other POPs. In the fully adjusted model,
each unit increase in the log-transformed TEQ of PCDDs,
PCDFs, dl-PCBs, PCDD/Fs, and DLCs was associated with
estimated ORs of 1.30 (95% CI 1.02, 1.68), 1.99 (95% CI 1.09,
3.81), 1.44 (95% CI 1.13, 1.86), 4.84 (95% CI 2.27, 10.76),
and 7.44 (95% CI 3.19, 18.44), respectively. Further analysis of
the ORs of GDM by quintiles showed that individuals in the
highest quintiles of dioxin TEQ of PCDDs (OR = 3.77, 95%
CI 1.46, 10.31), PCDFs (OR = 3.48, 95% CI 1.36, 9.43), and
dl-PCBs (OR = 3.58, 95% CI 1.40, 9.72) had significantly
higher odds of developing GDM compared to those in the
lowest quintiles in the fully adjusted models. Notably, TEQ of
PCDD/Fs and DLCs showed the strongest association with
GDM in the highest quintiles (OR = 7.06, 95% CI 2.58, 21.45;
OR = 8.87, 95% CI 3.19, 27.58) compared to the lowest
quartile. Table S2 shows the unadjusted and adjusted linear
regression coefficients (β) for continuous glycemic outcomes
associated with TEQ of dioxins. The fully adjusted model
demonstrated a significant positive association between the
increase in PCDFs, PCDD/Fs, and total TEQ and the rise in 1
h postprandial plasma glucose. Similarly, a significant positive
association between the increase in PCDDs, PCDD/Fs, and
total TEQ and the elevation in 2 h postprandial plasma glucose
was observed. However, no significant correlation was found
between dioxin TEQ and fasting blood glucose levels.
3.3. Identification of the Most Significant POPs

In Figure 1, it is evident that the total TEQ (PIP = 1.00) and
BDE-153 (PIP = 0.88) demonstrate comparable univariate
dose−response relationships with GDM. However, the PIPs of
the other POPs were less than 0.5. Confident intervals with
high precision were observed for dioxin TEQ, while more
uncertainty was found for BDE-153. Figure S3 depicts binary
interactions between POPs, where we observed no significant
difference in the predictor−response function of total TEQ for
other POPs fixed at different quantiles. Therefore, we excluded
the interaction term in the dioxin TEQ BMD analysis. In
Figure S4, we assessed the combined effects of POPs and
estimated the posterior mean and associated 95% confidence

intervals of the altered GDM risk (expressed as a z-score)
when POPs were fixed at a particular percentile compared to
when they were all at their 50th percentile. Our analysis
revealed a simultaneous increase in GDM risk with an increase
in POPs. For 1h-PBG, dioxin TEQ (PIP = 0.86) were the most
significant POPs, while for 2h-PBG, no chemicals had a PIP >
0.5. Additionally, we found that the estimated 1h-PBG and 2h-
PBG increased with a simultaneous increase in POPs in Figure
S5.

The figure shows the univariate relationship between each
covariate and the outcome, where all of the other exposures are
fixed to a particular percentile.
3.4. Benchmark Dose Calculation

Table S3 summarizes the results of using BMDS software and
the Bayesian BMD website to estimate the univariate
association between total TEQ and glycemic measures in
this study. The probit model had the lowest AIC and the
highest posterior weight (29%) and the logistic model had the
second largest posterior weight (28%), as shown in Figure S6
and Figure S7. Bayesian modeling suggested modest effects of
dioxin TEQ on GDM in various models, while for continuous
outcomes, many models were unable to fit parameters or had
large BMD/BMDL ratios. GDM was the most sensitive
outcome with a reasonable BMD/BMDL ratio, thus further
analysis was conducted on GDM in coexposure scenarios.

Table 3 shows the BMD10 and BMDL10 values for total TEQ
adjusted for BDE-153. In the probit model, the BMD10/
BMDL10 for total TEQ were 6.06/4.98 pg TEQ/g fat at 20%
BDE-153 exposure and 4.15/3.46 pg TEQ/g fat at 80%
exposure. The logistic model had BMD10/BMDL10 values of
6.47/5.34 pg TEQ/g fat at 20% BDE-153 exposure and 4.52/
3.71 pg TEQ/g fat at 80% exposure. Figure S8 shows that
coexposure to BDE-153 can influence the BMD and BMDL for
DLCs, with a decrease in BMD values when assumed BDE-153
exposure increases.
3.5. Bayesian Optimization of PBTK Model and Daily
Exposure Threshold Calculation

Figure S9 shows the Gelman−Rubin−Brooks plots of three
chains, suggesting good convergences among chains for each
parameter. Corrected scale reduction factors were calculated
for the three chains based on the method of Brooks and
Gelman, and the values were between 1.0 and 1.02, which
corresponded to an equilibrium posterior parameter distribu-
tion. The prior and posterior distributions of the means and
standard deviations for the estimated parameters were shown
in Table S4 and Figure S10. The medians of posterior
distributions for K_half, fmin, fmax, and fab were close to prior
estimates, while the standard deviation was substantially lower
than prior distributions. However, the posterior distribution of

Table 3. BMD10, BMDL10, and Corresponding Daily Exposure Threshold of Dioxin TEQ Adjusted for BDE-153

model
BDE-153 exposure

quantile
BMD10

(pg TEQ/g fat)
BMDL10

(pg TEQ/g fat)
unadjusted exposure threshold
(pg TEQ kg−1 bw week−1)

adjusted exposure threshold
(pg TEQ kg−1 bw week−1)

logistic
model

20% 6.47 5.34 3.57 7.14
40% 5.64 4.75 3.08 6.16
60% 5.08 4.26 2.73 5.46
80% 4.52 3.71 2.38 4.76

probit
model

20% 6.06 4.98 3.29 6.58
40% 5.25 4.41 2.87 5.74
60% 4.71 3.96 2.52 5.04
80% 4.15 3.46 2.17 4.34
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ke and ka, rate constants for dioxin elimination, had flatter
distributions and were substantially greater than prior
information, indicating that the PCDD/Fs elimination was
faster and more variational than TCDD. As shown in Figure
S11, the root-mean-square error (RMSE) of the optimized
parameters was lower than the original parameters for
population-based data sets (39.9% improvement), individual
data sets (10.6% improvement), and independent population-
based data sets (66.6% improvement). Therefore, the
optimized model predicted the data reasonably well and can
be used to derive estimated dietary dioxin exposure from
serum dioxin level.

The optimized model was used to derive the human dietary
exposure associated with the BMDs and BMDLs at the mean
age of pregnant women, as presented in Table 3. After
considering the uncertainty and modifier factor, the daily
exposure threshold for dioxin TEQ was 4.76 and 4.34 pg TEQ
kg−1 bw week−1 for the probit and logistic models, respectively,
corresponding to the BMDL when assuming 80% exposure to
BDE-153. Table 4 shows the daily exposure thresholds derived
by different methods in our study, as well as comparisons with
institutional standards. Our PTWI estimate of 4.34 pg TEQ
kg−1 bw week−1 is slightly lower than the PTWI in US EPA
(2010) for sperm concentration, total sperm motility, and TSH
concentration but is higher than the PTWI in EFSA (2018) for
sperm concentration. The flowchart of the process of the
dioxin risk assessment is shown in Figure S12.

4. DISCUSSION
In this study, we revealed a robust positive association between
serum dioxins and GDM and provided an estimation of the
daily exposure threshold for dioxins-induced GDM based on a
nested case control study. We identified new dioxin BMD10
and BMDL10 values of 4.15 and 3.46 pg TEQ/g fat for GDM
adjusted for covariates and coexposure POPs. Furthermore, we
utilized a Bayesian−MCMC optimized PBTK model based on
dioxin TEQ and additional factors to derive a reference dose of
4.34 pg TEQ kg−1 bw week−1. These findings provide crucial
information for future risk assessments and highlight the need
for more comprehensive monitoring and regulation of dioxin
exposure, particularly in vulnerable populations such as
pregnant women.

GDM is defined as glucose intolerance of varying severity in
pregnant women, and its global prevalence has increased
remarkably to 14.0%.39 It has both short-term and long-term
consequences for the mother and child.40 Apart from lifestyle,
age, and genetic factors, a systemic review and meta-analysis
have found exposure to certain POPs, including PCBs, PBDEs,
PFASs, and phthalates (PAEs), increased the risk of GDM.5

Although few studies have explored the association between
dioxins and GDM, the effects of dioxins on glucose metabolism
have been widely studied. It is worth noting that associations
between PCDD/Fs and diabetes are consistent.7,41,42 Two
cohort studies established after dioxin contamination incidents
in Seveso, Italy and Yucheng, Taiwan, China found that high
dioxin levels were associated with diabetes in women but not
in men.43,44 However, determining the direction of the
association between dioxins and diabetes is challenging due
to lipolysis in diabetes patients, which may release tissue dioxin
into the blood and elevate serum dioxin levels.45 Our study
utilized a prospective design to obtain precise estimates of
prediagnosis dioxin levels and provided potential causal
evidence for the associations between exposure to dioxins
and GDM compared to cross-sectional studies. Our results
suggest that exposure to dioxin significantly increases the risk
of GDM, with the strongest associations observed in the
highest quintiles of the TEQ of PCDD/Fs and DLCs.
Moreover, the study provides evidence that dioxin exposure
is associated with postprandial plasma glucose levels but not
fasting blood glucose.

Both in vitro and in vivo studies have demonstrated that
AHR plays a physiological function in glucose metabo-
lism.46−48 Dioxins exert toxicological effects through the
AHR-mediated pathway and then suppress the function of
peroxisome proliferator-activated receptor (PPAR) γ, leading
to insulin resistance.49,50 Dioxin also affects pancreatic β-cells
and reduces their function.10 In addition, POPs are reported to
increase AHR transactivating (AHRT) bioactivity, and a
cohort study has linked serum AHRT activity with an
increased risk of GDM.51−53 However, several POPs, including
PCBs, furans, PAHs, and PBDEs, can activate AHR, albeit with
different potencies.54 For example, in vitro and in silico studies
have promoted the dioxin-like potency of prototype HO and
MeO analogues of PBDEs.55,56 Therefore, it is crucial to
explore the potential synergistic effects of POPs as mixtures

Table 4. Point of Departure of Dioxin in Our Study and Comparisons with US EPA and EFSAa

institution human study outcomes POD type
BMD

software
sample
size

point of
departure

(pg TEQ/g fat)

unadjusted dietary exposure
threshold

(pg TEQ kg−1 bw week−1)

adjusted dietary exposure
threshold

(pg TEQ kg−1 bw week−1)

Our Study
GDM BMDL10 BMDS 231 3.08 1.96 3.92
GDM BMDL10 Bayesian

BMD
231 1.98 1.19 2.38

GDM BMDL10
adjusted for
other POPs

WinBUGS 231 4.30 2.17 4.34

GDM NOAEL - 231 6.39 2.73 5.46
Institutional Standards

US EPA
(2010)

sperm concentration, total
sperm motility, TSH
concentration

LOAEL - 51/71 39 4.7 4.7

EFSA
(2018)

sperm concentration NOAEL - 133 7 2 2

aThe derivations from the point of departure to the dietary exposure threshold in our study and institutional standards is conducted using the
PBTK model. TSH, thyroid-stimulating hormone; NOAEL, no-observed-adverse-effect level; LOAEL, least-observed-adverse-effect level.
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and their mechanisms of action on glucose metabolism and
GDM risk.

Multiple statistical methods have been applied to estimate
the overall effect and identify significant pollutants. Commonly
used methods include nonparametric approaches (e.g.,
classification and regression tree) and regularized regression
methods (e.g., least absolute shrinkage and selection
operator).20 Another approach, Bayesian kernel machine
regression (BKMR), is a flexible tool that can handle nonlinear
and interactive effects between pollutants, control for
confounding variables, estimate overall effects, and allow for
probabilistic inference and uncertainty quantification within a
Bayesian framework.57 Our study found that the chemicals
with the highest PIP for GDM were dioxin and BDE-153 with
similar dose−response curves, suggesting that they may
influence glycemic measures through similar pathways. BDE-
153 has been shown to disrupt glucose homeostasis and alter
lipid metabolism in both animal and human studies.58−60

However, the large uncertainties observed for BDE-153
suggest that further research is needed to better understand
its role in the development of GDM. In our study, identifying
significant chemicals from high-dimensional data and exploring
potential interactions provides the basis for BMD calculations.

Traditionally, the no-observed-adverse-effect level
(NOAEL), or the lowest-observed-adverse-effect level
(LOAEL), is used as the internal exposure limits derivation
for dioxin and other POPs.23,37 However, BMD modeling is
now considered the preferred approach to identify and manage
the risk of many chemicals, which can make use of complete
data and has a higher quantitative sensitivity and accuracy.61

Choosing an appropriate model for BMD calculation depends
on several factors, such as the biological plausibility, the
goodness of fit, and comparison of alternative models. Our
study found that the dose−response relationships for GDM
were robust across models, and probit and logistic models had
the lowest posterior weight. The S-shaped curve is supported
by previous research showing a positive dose−response
relationship between TCDD and health outcomes at low
levels of exposure (<10 pg/g fat) but not at high levels.62

However, in the investigation of continuous outcomes, most
models have failed to fit parameters or have had unreasonably
large BMD/BMDL ratios. It may be due to factors such as
measurement error, nonlinear relationships, inadequate sample
size, and observed chemical concentration range.

Through screening significant chemicals and analyzing
dose−response relationships, we used generalized linear
models to calculate the BMD of dioxins for GDM in
coexposure scenarios. Conventional BMD methods and
software are typically used to estimate the association between
a single exposure and an outcome, which may not be suitable
for addressing the complexities of mixed exposure scenarios in
human populations.17 Limited statistical methods have
estimated BMD in coexposure scenarios, such as the delta
method in BKMR,21 reverse processing in principal compo-
nent analysis (PCA),63 covariate-specific BMD,61 and compar-
isons of BMD intervals.64 A widely accepted method is to
calculate the weighted sums by relative potency and then use a
univariate BMD model.18,19 In our study, when BDE-153 was
assumed at 80% exposure level, BMD10 and BMDL10 were
4.15/3.46 pg TEQ/g fat, respectively. This is the first BMD
value for dioxins in a mixture exposure scenario, and the BMD
estimation was made more accurate by adjusting for levels of
other POPs. It is essential to consider the potential influence of

other pollutants on the target pollutant’s potency when
assessing health risks associated with exposure to environ-
mental pollutants.

PBTK models are essential for connecting dietary exposure
to chemicals with their internal levels in the body. The original
PBTK model for dioxin was developed and optimized on
TCDD while the half-lives for different DLCs differed in a
range of 6.8−11.6 years.24,65,66 Corresponding to BMDs of
dioxin TEQ, a suitable model for PCDD/Fs and dl-PCBs was
of great significance. We applied Bayesian−MCMC methods,
in which the joint posterior distribution of the parameter is
proportional to the prior distribution of the parameter and the
likelihood of PCDD/Fs exposure data of Chinese residents.
The result showed the model performed well in the training
data set and validating data set in estimation of dietary
exposure based on serum concentration. Therefore, the
Bayesian approach holds great promise for advancing PBTK
modeling in risk assessments as it allows for better integration
of animal experiments and population data sets.

In our study, the daily exposure threshold for the total TEQ
of dioxin was 4.34 pg TEQ kg−1 bw week−1. In 2010, the US
EPA set the oral PTWI for TCDD at 4.7 pg kg−1 bw week−1,
based on two studies linking TCDD exposure to decreased
sperm concentration and motility in men and elevated thyroid-
stimulating hormone levels in newborns.37 In 2018, the EFSA
developed an oral PTWI for PCDD/Fs at 2 pg TEQ kg−1 bw
week−1 based on a cohort study that associated serum dioxin
with decreased sperm concentration.23,67 Strict regulatory
controls on major industrial sources and national monitoring
programs have contributed to a significant reduction in human
exposure in recent years, leading to a decrease in plasma and
human milk levels.23,68 In China, the 95th percentile of the
population dietary exposure level to PCDD/Fs and dl-PCBs
was estimated at 0.06 and 1.14 pg TEQ kg−1 bw week−1, so the
probability of the adverse health risk in the Chinese population
is relatively low.68 Our study provides evidence for a newly
proposed PTWI based on endocrine outcomes. However, it is
important to also consider the potential impact of dioxin
exposure on potent and sensitive outcomes, including immune
system impairment, neurodevelopmental effects, carcinogene-
sis, and others, where relatively low POD values might be
identified.61,69,70

There are several strengths in our study. First, the outcomes
of this study were based on a longitudinal study to establish
cause−effect relationships. Second, Bayesian kernel machine
regression and BMD calculation in coexposure scenarios allows
for the identification of significant POPs and the assessment of
their effects while adjusting for the effects of other POPs,
which is a powerful tool for calculating the point of departure
through data sets on mixture exposure. Third, PBTK is a
robust and versatile tool that can be updated continuously to
include new and relevant data, thus improving the accuracy
and relevance of risk assessments. However, limitations do
exist in our study. One is the small sample size, which may
limit the accuracy of coefficient estimation and benchmark
dose analysis. Second, although we were able to adjust for
potential confounding variables, residual confounding by
dietary intake and physical activity may be present and cause
bias in our estimate. Moreover, additional epidemiological
studies are required to confirm the association between dioxin
and GDM.
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■ CONCLUSIONS
In summary, this study provides evidence of a significant
association between dioxin exposure and gestational diabetes
mellitus in pregnant women. The study also demonstrates the
usefulness of coexposure statistical methods and an optimized
physiologically based toxicokinetic (PBTK) model in assessing
the relationship between dioxin and GDM and estimating a
daily exposure threshold. The study found that the daily
exposure threshold for dioxin should be below 4.34 pg TEQ
kg−1 bw week−1 to avoid harmful serum concentrations for
GDM, which is close to EFSA and US EPA’s dioxin reference
dose. Therefore, this study suggests that dioxin reference doses
based on endocrine disruptors should be considered for
pregnant women.
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