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Abstract

Motivation: Nucleosome positioning plays significant roles in proper genome packing and its

accessibility to execute transcription regulation. Despite a multitude of nucleosome positioning

resources available on line including experimental datasets of genome-wide nucleosome occu-

pancy profiles and computational tools to the analysis on these data, the complex language of

eukaryotic Nucleosome positioning remains incompletely understood.

Results: Here, we address this challenge using an approach based on a state-of-the-art machine learn-

ing method. We present a novel convolutional neural network (CNN) to understand nucleosome posi-

tioning. We combined Inception-like networks with a gating mechanism for the response of multiple

patterns and long term association in DNA sequences. We developed the open-source package LeNup

based on the CNN to predict nucleosome positioning in Homo sapiens, Caenorhabditis elegans,

Drosophila melanogaster as well as Saccharomyces cerevisiae genomes. We trained LeNup on four

benchmark datasets. LeNup achieved greater predictive accuracy than previously published methods.

Availability and implementation: LeNup is freely available as Python and Lua script source code

under a BSD style license from https://github.com/biomedBit/LeNup.

Contact: jhzhang@bit.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Nucleosome positioning broadly indicates where nucleosomes are

located with respect to the genomic DNA sequence (Struhl and

Segal, 2013). Composed of DNA and a protein core, nucleosomes

are about 10 nm in diameter and are the fundamental repeating unit

of chromatin structure of eukaryotic DNA (Kornberg and Lorch,

1999; Richmond and Davey, 2003). The core is an octamer contain-

ing two copies each of histones H2A, H2B, H3 and H4. The histone

octamer forms a wedge-shaped disk, around which 147 base pairs

of DNA are tightly wrapped in approximately 1.7 turns in a left-

handed superhelix (Luger et al., 1997). The DNA segment connect-

ing two adjacent nucleosomes is referred to as a linker. Nucleosome

positioning is critical to various biological processes, primarily

because this precise positioning modulates the accessibility of under-

lying genomic sequence to DNA-binding proteins to regulate tran-

scription (Liu M. et al., 2015; Schones et al., 2008; Tilgner et al.,

2009; Whitehouse et al., 2007), genetic replication (Eaton et al.,

2010; Liu et al., 2017; Vasseur et al., 2016), and recombination

(Pulivarthy, 2016; Smagulova et al., 2011). Therefore, the identifica-

tion of nucleosome positioning along genomic sequences may allow

an in-depth understanding of various biological outcomes. Although

many studies provide for support that the genome-wide pattern of

nucleosome positioning is associated with DNA sequence, nucleo-

some remodelers and transcription factors including activators,
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components of the preinitiation complex and elongating Pol II

(Segal and Widom, 2009; Struhl and Segal, 2013), the determinant

factors of the nucleosome positioning are still far from a quantitative

understanding. The intrinsic DNA sequence preferences of nucleo-

somes may be a dominant role in the nucleosome organization

(Kaplan et al., 2009). Early discoveries indicate that distinctive

sequence motifs play an important role in nucleosome positioning.

Part of these discoveries include 10-bp interval repetition of AA/TT/

TA dinucleotides (Ioshikhes et al., 1996; Satchwell et al., 1986), and

TATAAACGCC repeat sequence (Widlund et al., 1999). Some

research results establish that nucleosome organization is encoded in

eukaryotic genomes and that this intrinsic organization can explain

approximately 50% of the in vivo nucleosome positions (Segal

et al., 2006). Another work claimed that about 75% of nucleosomes

are characterized by sequences (Ioshikhes et al., 2011).

In the last decade, high-throughput genome-wide data with

respect to nucleosome positioning come from a number of related

techniques, such as MNase-seq (Jiang and Pugh, 2009; Kaplan

et al., 2009; Weiner et al., 2009), DNase-seq (Bell et al., 2011;

Guertin and Lis, 2013; Liu et al., 2016; Zhong et al., 2016) and

ChIP-seq (Schones et al., 2008). These techniques have an idea in

common to cut DNA between nucleosomes and map protected

DNA regions. High-resolution genome-wide nucleosome maps were

obtained for several organisms including yeast (Brogaard et al.,

2012; Lee et al., 2007; Yuan et al., 2005), drosophila (Mavrich

et al., 2008a), Caenorhabditis elegans (Valouev et al., 2008) and

human (Barski et al., 2007; Schones et al., 2008; Valouev et al.,

2011). The high-resolution data have been deeply promoting the

development of computational methods for accurately predicting

nucleosome positioning (Awazu, 2017; Chen et al., 2012; Guo

et al., 2014; Gupta et al., 2008; Morozov et al., 2009; Segal et al.,

2006; Van der Heijden et al., 2012; Wang et al., 2012; Xi et al.,

2010).

Assuming that each 147-bp sequence in favor of histone-DNA

interaction is a Markov chain, Segal et al. proposed a probabilistic

model (Segal et al., 2006) to predict genome-wide nucleosome posi-

tioning in yeast. The model was improved by incorporating the

information of linker sequences (Field et al., 2008). N-score (Yuan

and Liu, 2008) distinguished nucleosomal sequences from non-

nucleosome sequences adopting a wavelet analysis based model and

a logistic regression model for predicting nucleosome positions from

DNA sequence. NuPoP (Xi et al., 2010) models the DNA sequence

with a duration hidden Markov model of two alternative states:

nucleosome (N) and linker (L). A fourth order time-dependent

Markov chain was trained for the N state, and a homogeneous

fourth-order Markov chain for the L state. NuPoP outputs nucleo-

some occupancy score and nucleosome affinity score. Stimulated by

the PseAAC approach (Chou, 2001; Chou, 2005), a sequence-based

predictor called iNuc-PseKNC (Guo et al., 2014) for nucleosome

positioning in genomes with pseudo k-tuple nucleotide composition

was proposed. Here, the samples of DNA sequences were formu-

lated using six basic DNA local structural properties and a support

vector machine (SVM) classifier was trained on datasets from

H. sapiens, C. elegans and Drosophila melanogaster. It was shown

that iNuc-PseKNC had better performance in the prediction of

nucleosome positioning than previously developed predictors.

Furthermore, using the similar methodology to iNuc-PseKNC, more

recently improved models (Awazu, 2017; Chen et al., 2016) were

developed for the prediction of nucleosome positioning.

The computational methods and tools promoted and advanced

the understanding on nucleosome positioning. However, most

of these algorithms deeply depend on either the recognition of

distribution of the nucleotides in nucleosome sequences (Awazu,

2017; Guo et al., 2014; Segal et al., 2006; Van der Heijden et al.,

2012; Wang et al., 2012; Xi et al., 2010) or the measurement of bio-

physical and(or) physicochemical properties (Chen et al., 2012;

Minary and Levitt, 2014). As Nucleosome positioning is strongly

affected by DNA sequence (Gonzalez, 2016; Miele et al., 2008;

Segal and Widom, 2009; Struhl and Segal, 2013; Zhang et al.,

2009), computers may automatically learn the representation of

Nucleosome positioning from the DNA sequences. This idea can be

achieved by deep learning (Hinton and Salakhutdinov, 2006; Kelley

et al., 2016; LeCun et al., 2015; Leung et al., 2014) that allows com-

putational models to learn representations of data (Bengio et al.,

2013) from multiple levels of abstraction. Deep learning has pro-

duced extremely promising results in image recognition (Krizhevsky

et al., 2012), speech recognition (Hinton et al., 2012), natural lan-

guage understanding (Collobert et al., 2011a), genetic variants scor-

ing (Xiong et al., 2015), Go play (Silver et al., 2016) and cancer

classification (Esteva et al., 2017).

In this study, a novel nucleosome positioning predictor was

developed based on the convolutional neural networks (CNN). We

set up a rigorous intellectual deep-learning network mainly com-

posed by GoogleNet Inception convolutional neural network archi-

tecture (Szegedy et al., 2016) and gated convolutional networks

(Dauphin et al., 2016). After training, the performance of the system

was measured on a different set of examples called a test set. This

predictor exhibited more excellent performance than the recently

developed predictors for the same benchmark datasets of human,

worm, fly and yeast genomes.

2 Materials and methods

To learn nucleosome positioning, we introduce a new deep convolu-

tional architecture which is composed by the Inception deep convo-

lutional architecture (Szegedy et al., 2015) and gated convolutional

networks (Dauphin et al., 2016). Gated convolutional networks

(Dauphin et al., 2016) were originally introduced for language mod-

eling which outperformed strong recurrent models on language

modeling.

2.1 Benchmark datasets of nucleosome positioning and

nucleosome-disfavoring sequences
The benchmark datasets of nucleosome positioning and

nucleosome-disfavoring sequences were downloaded from the

Supplementary Material of two published papers (Chen et al., 2016;

Guo et al., 2014). These datasets involve H. sapiens, C. elegans,

D. melanogaster (Guo et al., 2014) and Saccharomyces cerevisiae

(Chen et al., 2016). Only the low-biased benchmark datasets were

used to train and test LeNup in this study.

2.2 Principle of a deep learning network for one-

dimensional sequences
In a deep learning network, one processing step is usually called a

layer, which could be a convolution layer, a ReLU layer, a pooling

layer, a dropout layer, a normalization layer, a fully connected

layer, a loss layer, etc. Unlike the three-dimensional feature tensor

of an image, a one-dimensional DNA sequence has only a two-

dimensional feature matrix. The width and depth of the matrix cor-

respond with the number of row and column of the feature matrix.

There is no height of a 2D matrix, but we say that the height is equal

to 1 to be consistent with 3D feature tensors. Figure 1 illustrates the

process of multiple convolutions, ReLU and pooling to the sequence
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feature matrix. Suppose we are considering the l–th layer, whose

inputs form a two-dimensional feature matrix Xl with Xl 2 Rm�N.

Assuming D filters are used and each filter is of spatial span m�k

(for instance, k¼3), we pad the feature matrix by adding k
2 columns

with all elements being zero to the head and tail of the matrix.

Therefore, the width of new features after convolutional operation

with stride 1 is still N. The rectified linear unit (ReLU) f(z)¼max(0, z)

is applied in the networks. Pooling operations where every two adjacent

elements are merged into one element. As shown in Figure 1, the out-

puts form the two-dimensional feature matrix Xlþ1 with Xlþ1 2 RD�N
2 .

2.3 Inception networks
Starting in 2014, the quality of network architectures significantly

improved by utilizing deeper and wider networks. The Inception

architecture of GoogLeNet (Szegedy et al., 2015) performed well

even under strict constraints on memory and computational budget.

The Inception models used to be trained in a partitioned manner,

where each replica was partitioned into a multiple sub-networks in

order to be able to fit the whole model in memory (Szegedy et al.,

2016). A practically useful aspect of the Inception-style networks is

that it aligns with the intuition that nucleosome positioning infor-

mation should be processed at various scales and then be aggregated

so that the next stage can abstract features from different scales

simultaneously. Figure 2 shows the original Inception model

(Szegedy et al., 2015) in visual recognition.

2.4 Gated convolutional networks
Gates allow a network to control which information should be

propagated in the hierarchy of layers (Dauphin et al., 2016). This

mechanism makes it easier to catch long-range dependencies for lan-

guage modeling as it allows the model to select which words are rel-

evant to predict the next word.

Figure 3 shows that a DNA sequence is converted to a ‘one hot

code’ representation, where each position has a four-element vector

with one component set to one and the others set to zero. Further,

the sequence is converted to the data in hdf5 format. Figure 3 illus-

trates that we compute the hidden layers H0,. . ., HL as

Xlþ1 ¼ Wl �Xl þ bl
� �

� r Vl �Xl þ cl
� �

(1)

where Xl 2 Rm�N is the input of layer Hl, that is either the vector

sequence converted from nucleosome nucleotide sequence or the

output of previous layers, Wl 2 Rm�k�D; bl 2 RD; Vl 2 Rm�k�D;

cl 2 RD are the learned parameters, r is the sigmoid function, � is

the element-wise product between matrices, m�k is the size of fil-

ters (convolutional kernels) and D is the number of filters. Initially,

N is the length of nucleosome DNA sequence and m¼4. The pool-

ing operation maps all elements in a window with the width w into

a single value. A row of new features obtained by the convolution is

pooled by maximum or average pooling with the width w and the

stride s as follows,

maximum pooling : Yi ¼ max
0� j<w

Xi�sþj

average pooling : Yi ¼
1

w

X
0� j<w

Xi�sþj

(2)

where 0� i<N – sþ1 for no pad feature matrix, and 0� i<N for

the padded feature matrix. Figure 1 shows that the concatenation

operator put all the convolution and pooling results together to

Fig. 1. The schema of convolution, ReLU and pooling in a deep learning net-

work for one-dimensional sequence

Fig. 2. Original Inception module for classification and detection in the

ImageNet Large-Scale Visual Recognition Challenge 2014

Fig. 3. Each nucleotide of the sequence is converted to a four-element vector

with one element setting to one and others setting to zero. The output of each

hidden layer is a gated convolutional layer where one convolution layer is

modulated by another convolution layer through a sigmoid gate

LeNup: learning nucleosome positioning 1707



form a new feature matrix with D rows and N=2 columns, here the

pooling stride s¼2.

2.5 Gated inception networks
The advantages of the Inception models and gated convolutional

networks inspired us to design a new network in order to fuse these

advantages. This network architecture enables the predictor to seize

local motifs of nucleosome DNA sequences as well as to capture the

long-range association between nucleotides. We have tried dozens of

versions of network structure. The version finally selected as the net-

work of LeNuP is depicted in Figure 5. Figure 4a–c show the

detailed components used in Figure 5. Some details of the LeNup

structure partially shown in Figures 4 and 5 are explained and sum-

marized as follows:

1. Each input tensor is 147 in width, 1 in height and 4 in depth.

2. The convolution operation comes in pairs. As a gate limitation,

one of them passes through a sigmoid function to control

another operator result.

3. All convolution results in Figure 4a–c are passed through the rec-

tified linear unit (ReLU) for activation, which are not shown in

these figures.

4. m � 1, such as 1 � 1, 3 � 1, means that the filter has m in width

and 1 in height. The depth of filters is not shown here, which

depends on how many filters used in the previous layer. The

number 128 or 96 in the parenthesis beneath m � 1 means the

convolution with 128 filters or 96 filters. Therefore, the depth of

the output of this layer will be 128 or 96.

5. An average pooling layer or a maximum pooling layer with m �
1 means that the pooling stride is m.

6. The block of Filter Concat in all figures means that the operation

stacks all features from each branch together. For instance,

Figure 4a shows that each gated convolutional subnetwork pro-

duces 128 features. We get 128 � 3 ¼ 384 features through the

filter concatenation.

7. The output such as 73 � 1 � 384 in Figure 5 means that the

dimension of feature maps is 73 in width, 1 in height and 384 in

depth.

8. One dropout layer with 30% of dropped outputs was performed

after each pooling operation in LeNup.

9. We used a linear layer with sigmoid loss as the classifier.

2.6 Training methodology
We have trained our networks running on a single NVidia Quadro

M5000 GPU and implemented our models with stochastic gradient

descent with momentum in Torch7 (http://torch.ch). Torch7 is a ver-

satile numeric computing framework and machine learning library

that extends Lua. We paid attention to exploring the hyperpara-

meter space of models to identify a compact model with good gener-

alization performance. Our experiments used momentum with a

decay of 0.98. We used a learning rate of 0.002, and decayed every

epoch using an exponential rate of 0.97.

3 Results and discussion

3.1 Rule of performance evaluating
We used training datasets to train the predictor based upon our

gated Inception networks. To survey the generalization perform-

ance, the predictor was tested by test datasets which are independent

on training datasets. We defined the nucleosome-forming sequences

as positive samples and the nucleosome-inhibiting sequences as neg-

ative samples. In this work, we adopted the sensitivity (Sn), the spe-

cificity (Sp), the accuracy (ACC) and the Matthew’s correlation

(a)

(b)

(c)

Fig. 4. The schema of Gated Inception blocks used in Figure 5: (a) Gated convo-

lution-A block; (b) Gated convolution-B block; (c) Gated convolution-C block

Fig. 5. The overall schema of LeNup. For the detailed modules, please refer to

Figure 4a–c for the detailed structure of the various components
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coefficient (MCC) to score the predictive performance of the corre-

sponding method. They are defined as follows:

Sn ¼
Tp

Tp þ Fn

Sp ¼
Tn

Tn þ Fp

ACC ¼ Tp þ Tn

Tp þ Fn þ Tn þ Fp

MCC ¼ Tp � Tn � Fp � Fnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tn þ Fnð Þ � Tn þ Fp

� �
� Tp þ Fn

� �
� Tp þ Fp

� �q

(3)

where Tp, Tn, Fp and Fn are the numbers of true positives, true nega-

tives, false positives and false negatives, respectively. Sn 2 [0, 1],

Sp 2 [0, 1], ACC 2 [0, 1] and MCC 2 [– 1, 1]. Sn¼0 means that all

positives predict to the negatives. When all predictions are incorrect,

therefore, Tp¼0 and Tn¼0, we have Sn¼0, Sp¼0, ACC¼0 and

MCC¼ – 1. When all predictions are correct, thus Fp¼0, and

Fn¼0, we have Sn¼1, Sp¼1, ACC¼1 and MCC¼1. When all

positives are correctly predicted and all negative predictions are

wrong, we have Sn¼1, Sp¼0 and MCC¼0. When all negatives are

correctly predicted and all positive predictions are wrong, we have

Sp¼1, Sn¼0 and MCC¼0. When
Tp

Fn
¼ Fp

Tn
¼ 1, therefore,

Sn¼ Sp¼ACC¼MCC¼0.5, the predictor is not better than a ran-

dom choice. We calculated all evaluation indices according to the

test result.

We also used ROC curve (receiver operating characteristic curve)

to illustrate the performance of the binary classifier LeNup. The

curve is created by plotting the sensitivity (Sn) against the false-

positive rate (1–Sp) at various threshold settings. The area under the

curve (AUC) represents the probability that a classifier will rank a

randomly chosen positive instance higher than a randomly chosen

negative one. Usually 0.5<AUC<1. The closer the AUC value is to

1, the better the classifier performance.

3.2 LeNup performance
We utilized the 20-fold cross validation to evaluate our predictor.

The benchmark datasets of each organism (Guo et al., 2014), that is,

H. sapiens, C. elegans and D. melanogaster, were randomly divided

into 20 data subsets of approximately equal size. We trained the net-

work 20 times. For every training, one of the 20 sub-datasets was

used as the test dataset and the others were combined to form the

training dataset. All evaluation indices of our predictor, that is, Sn,

Sp, ACC, MCC and AUC, are calculated according to test results in

our work. The average values of four metrics Sn, Sp, ACC and MCC

defined in Equation (3) over 20 test datasets are listed in Table 1 for

the LeNup predictor. Figure 6 shows the ROC curves. The area

under the curves, or AUC, is 0.9412, 0.9653 and 0.9401 for H. sapi-

ens, C. elegans and D. melanogaster, respectively.

3.3 Comparison of LeNup predictions to other

algorithms
We compared the performance of our predictor to two recently pub-

lished predictors with the same benchmark datasets. 3LS was devel-

oped by the linear regression model. iNuc-PseKNC is based on SVM.

Table 2 shows that the performance of LeNup is much better than

3LS, iNuc-STNC (Tahir et al., 2016), and iNuc-PseKNC for C. ele-

gans and D. melanogaster. For D. melanogaster, compared with 3LS,

and iNuc-PseKNC, Matthew’s correlation coefficient (MCC)

increased by 17.1% and 30.4%, respectively, the accuracy (ACC)

increased by 6.06%, and 10.63%, respectively. For C. elegans,

compared with 3LS and iNuc-PseKNC, MCC increased by 11.4%,

and 14.1%, respectively, ACC increased by 4.57%, and 5.73%,

respectively. For H. sapiens, compared with iNuc-PseKNC, MCC

increased by 8.3% and ACC increased by 3.03%. For H. sapiens,

LeNup performs slightly worse than 3LS, MCC and ACC decreased

by 1.24%. LeNup exhibited perfect performance for the nucleosome

positioning prediction. Using the benchmark dataset of yeast genome

(Chen et al., 2016), we achieved Sn¼ Sp¼ACC¼MCC¼1.0 using

20-fold cross validation. For the same benchmark dataset, the predic-

tor based on DNA deformation energy (Chen et al., 2016) had

Sn¼0.982, Sp¼0.980, ACC¼0.981, MCC¼0.963.

3.4 Impact of cross-validation
3LS and iNuc-PseKNC used a Jackknife test for the cross-validation.

During the process of the Jackknife test, each sequence is singled out

Fig. 6. ROC curves obtained from 20-fold cross-validation tests using the

genome dataset of H. sapiens, C. elegans and D. melanogaster

Table 1. LeNup performance measured by four metrics via 20-fold

cross validation

Species Sn Sp ACC MCC AUC

H. sapiens 0.9212 0.8562 0.8889 0.7906 0.9412

C. elegans 0.9339 0.9041 0.9188 0.8444 0.9653

D. melanogaster 0.8974 0.8713 0.8847 0.7828 0.9401

Note: The datasets were downloaded from the Supplementary Material of

Guo et al., 2014.

Table 2. Comparison of LeNup predictions to other predictors

Species Predictor Sn Sp ACC MCC AUC

H. sapiens LeNup 0.9212 0.8562 0.8889 0.7906 0.9412

3LS 0.9169 0.8835 0.9001 0.8006 0.9588

iNuc-PseKNC 0.8786 0.8470 0.8627 0.73 0.925

iNuc-STNC 0.8931 0.8591 0.8760 0.75

C. elegans LeNup 0.9339 0.9041 0.9188 0.8444 0.9663

3LS 0.8654 0.8921 0.8786 0.7576 0.9505

iNuc-PseKNC 0.9030 0.8355 0.8690 0.74 0.935

iNuc-STNC 0.9162 0.8666 0.8862 0.77

D. melanogaster LeNup 0.8974 0.8713 0.8847 0.7828 0.9401

3LS 0.8407 0.8274 0.8341 0.6682 0.9147

iNuc-PseKNC 0.7831 0.8165 0.7997 0.60 0.874

iNuc-STNC 0.7976 0.8361 0.8167 0.63

LeNup: learning nucleosome positioning 1709
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in turn as a test sample, the remaining sequences are used as training

set to calculate test sample’s membership and predict the class. The

convolutional neural network as shown in Figures 4 and 5 includes

2 026 880 filter parameters. Training them is very time-consuming,

therefore, it is unrealistic to adopt the Jackknife test for the cross-

validation. The Jackknife test used by 3LS and iNuc-PseKNC is the

extreme situation of k-fold cross validation where k is equal to the

total number of sequences in the dataset. We chose k¼5, 10, 20

and 40 to survey the effect of k in k-fold cross validation. Table 3

shows the performance of LeNup with the different k for H. sapiens.

As we thought, the performance if gradually improved with the

increase of k, because of the training dataset including more training

samples with a bigger k. The Matthew’s correlation coefficient of

LeNup is 2.32% higher than 3LS predictor, and 12.2% higher than

iNuc-PseKNC predictor for the 40-fold cross validation. It is highly

possible that the performance of LeNuP can be further improved if

we expand the training dataset.

3.5 SVM classification and Jackknife test
Support vector machine is a more powerful classifier, and it has

excellent generalization ability. However, if we used SVM as the

classifier instead of the sigmoid function during the training of

LeNup, the training time of the model could be several years. We

can use LeNup to output the final features of DNA fragment, and

then employ SVM to classify the features. Therefore, We used

LeNup as a tool to automatically extract features from DNA frag-

ments with 147 bp in length. All 384 features (Supplementary

Material) for every DNA fragment in the benchmark datasets of

nucleosome forming and inhibiting sequences (Awazu, 2017; Guo

et al., 2014) were output from the full connected layer as shown in

Figure 5 once the prediction accuracy converged or the overfitting

occurred in the test dataset. The overfitting means that the classifica-

tion accuracy in the training dataset is much better than the test

accuracy in the test dataset when we performed LeNup through

k-fold cross validation, k¼20 here. After that, the LIBSVM 3.22

package (Fan et al., 2005) was employed as an implementation of

SVM with the Gaussian kernel function. The Jackknife test was

adopted to examine the performance, where each feature vector in

the dataset was in turn singled out as an independent test sample

and performed the model training on the remaining data. Sn, Sp,

ACC and MCC were evaluated for human, worm and fly genome

benchmark datasets (Table 4). The prediction evaluation index

shown in Table 4 indicates that the performance of LeNup

combining with SVM is far beyond the performance of the recently

proposed predictors which are shown in Table 2.

3.6 Robustness of LeNup prediction
A benchmark dataset is randomly partitioned into k subsets of

approximately equal size to generate the training dataset and the

test dataset. The randomness of the data partition leads to the per-

turbation of training datasets and test datasets between different

batches of data partition. To survey the effect of dataset random

partition. We produced 5 batches datasets which included 20 sub-

sets from the benchmark dataset of H. sapiens. We trained and

tested LeNup using each dataset with 20-fold cross validation.

Supplementary Table S1 shows the sample variance of Sn, Sp, ACC

and MCC. These variances are five to six orders of magnitude

smaller than the average value shown from Tables 1–3. Therefore,

we believe that the effect of the randomness of the data partition can

be ignored.

3.7 LeNup validates the preference of nucleotide and

dinucleotide in nucleosome regions
We scanned the human genome with the previously trained LeNup.

The sequence of human chromosome 20 from hg18 version was

scanned with stride 1 to 62 435 819 DNA fragments, and the length

for each of them is 147 bp. LeNup output the probability of each

DNA fragment. We assume that a DNA fragment is a nucleosome

preferred position if the probability is greater than 0.85, or it is a

nucleosome undesirable position if the probability is less than 0.15.

We obtained 25 250 319 nucleosome preferred fragments and

26 950 803 nucleosome undesirable fragments. We calculated the

percentage of every nucleotide and dinucleotide in two sorted frag-

ments (Fig. 7). The content of A, T, G, C in the nucleosome pre-

ferred fragments is 25.32%, 25.22%, 24.87% and 24.58%,

respectively, and the content of A, T, G, C in the nucleosome

Table 3. LeNup performance measured by four metrics via 5, 10,

20, 40-fold cross validation

k Sn Sp ACC MCC

5 0.9024 0.8511 0.8768 0.7695

10 0.9092 0.8486 0.8786 0.7726

20 0.9212 0.8562 0.8889 0.7906

40 0.9335 0.8756 0.9045 0.8192

Table 4. SVM classification and Jackknife test

Species Sn Sp ACC MCC

H. sapiens 0.9825 0.9827 0.9826 0.9653

C. elegans 0.9961 0.9938 0.9949 0.9899

D. melanogaster 0.9949 0.9943 0.9942 0.9884

(a)

(b)

Fig. 7. The preference of nucleotide and dinucleotide in nucleosome preferred

regions and nucleosome undesirable regions

1710 J.Zangh et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty003#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty003#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty003#supplementary-data


undesirable fragments is 30.18%, 30.65%, 19.61% and 19.65%,

respectively, (Fig. 7a). Figure 7 indicates that nucleosomes preferen-

tially associate with DNA segments exhibiting high CC and GG con-

tent, with some degree of exclusion from corresponding A, T, AA

and TT rich regions. These predictions are consistent with other

publications (Bernstein et al., 2004; Valouev et al., 2011).

3.8 LeNup predicts nucleosomes near transcription

start sites
We downloaded 1215 transcription start sites (TSSs) for human

chr20 genome from UCSC Genome Browser (http://genome.ucsc.

edu/cgi-bin/hgTables). The nucleosome distribution profiles between

–1000 bp to 1000 bp around each TSS were predicted by the previ-

ously trained LeNup. Supplementary Figure S1 shows the average

distribution profile of nucleosome near the TSSs. LeNup predicts

that nucleosomes are depleted in the region near the TSSs (Rach

et al., 2011). The region may be nucleosome free for expressed genes

(Lee et al., 2004; Valouev et al., 2011). Supplementary Figure S1

shows well-positionedþ1 nucleosome in the promoter regions. The

prediction indicates that the –1 nucleosome probability is intensively

lower thanþ1 nucleosome probability, which has been confirmed

existing simultaneously in the active and inactive promoters

(Schones et al., 2008), suggesting a potential role in maintaining the

nucleosome free region.

3.9 LeNup was further tested by MNase-seg results
We compared our model predictions with MNase-seg results

(Supplementary Table S2). Nucleosome score profile for human

chr20 in activated CD4 cell was downloaded from https://dir.nhlbi.

nih.gov/papers/lmi/epigenomes/hgtcellnucleosomes.aspx. There is a

score every 10 base span from nucleotide base position 8006 to

62435275. In general, the higher the score value, the bigger the pos-

sibility which the position is occupied by a nucleosome. We

obtained nucleosome-preferring sequences by scanning the score

profile with a score threshold, mapping the local peak positions of

the profile to the genome sequence to get the centers of the nucleo-

some sequences and extending 73 bases at each side of the centers.

We took the score threshold as 2, 5, 10, 15, 20, 25, and 30, and

got 143 189, 119 857, 67 569, 28 706, 11 209, 3807 and 1375

nucleosome-preferring sequences, respectively. We input these

sequences to the previously trained LeNup with the training dataset

mentioned in Table 1. Corresponding to these input nucleosome

sequences, our model predicted that 109 930, 99 107, 61 730,

27 467, 10 794, 3744, 1362 sequences are nucleosome-preferring

sequences among them. The ratio of the predictions to MNase-seg

experiments are 0.768, 0.827, 0.914, 0.957, 0.963, 0.984 and

0.991, respectively.

We scanned the zero score regions in the score profile and

mapped the regions to the genome to obtain nucleosome-inhibiting

sequences. We got 80 563 sequences with a length of 147 bp in this

way. We input these sequences to the same model used above. It out-

put 66 421 nucleosome-inhibiting sequences among them, and the

ratio of the model predictions to MNase-seq results is 0.825.

4 Conclusion

Our results yield a solid evidence that Inception-like convolutional

neural network with a gating mechanism is a viable method for

improving the prediction of nucleosome positioning. The main

advantage of this method is automatically learning the feature repre-

sentation compared to other classification algorithms such as

support vector machine depending on the external feature extrac-

tion. Furthermore, it can be noted that our method has the competi-

tive advantage over other recently published methods. This success

suggests promising opportunities for understanding the genetic

determinants.
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