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We propose a molecular-level control system view of the gene mutations in DNA replication from the finite field concept. By
treating DNA sequences as state variables, chemical mutagens and radiation as control inputs, one cell cycle as a step increment,
and the measurements of the resulting DNA sequence as outputs, we derive system equations for both deterministic and stochastic
discrete-time, finite-state systems of different scales. Defining the cost function as a summation of the costs of applying mutagens
and the off-trajectory penalty, we solve the deterministic and stochastic optimal control problems by dynamic programming
algorithm. In addition, given that the system is completely controllable, we find that the global optimum of both base-to-base
and codon-to-codon deterministic mutations can always be achieved within a finite number of steps.

1. Introduction

Systems biology is an emerging academic field aiming at
system-level understanding of biological systems. The early
development of systems biology started in the late 1940s
[1]. Recent progress in molecular biology has enabled us to
gain information on the interactions among the underlying
molecules from comprehensive experimental data sets. In
general, a system-level understanding of a biological system
can be derived from insight into four key properties:
(1) the system’s structure, (2) the system dynamics, (3)
the control method, and (4) the design method [2]. Equiva-
lently, identifying related components and their interactions,
gathering qualitative and quantitative information about the
system’s evolution under different circumstances, achieving
the desired outputs by controlling the input with appropriate
definitions of inputs and outputs of the system, and recon-
structing analogous systems by eliminating the undesired
properties are four essential steps in systems biology done
by collaboration among engineers, biologists, and doctors.
Figure 1 shows a typical method of system construction and
verification commonly applied currently. Control engineers
construct models, run simulations, and predict the system
behaviors. Biologists design and carry out the experiments

and measure the output data. Control engineers revise
and verify the models by comparing the predictions and
experimental results.

Systems biology is a cross-cutting research area con-
necting control engineering, biology, and medical science,
as shown in Figure 2. It provides a systematic view of the
biological system and related medical interventions. It aims
at understanding the bare function and integration function
of the cell to reconstruct the biological systems with desired
features. Control and automation play critical roles in this
novel field not only by providing new technology and
equipment for biologists to design and perform meticu-
lous experiments, to take high-throughput measurements,
and to analyze experimental data efficiently, but also by
offering doctors new medical applications and improving
the precision of medical manipulations. The wide range of
aspects which control and automation have been applied to
include, but are not limited to, gene regulation [3, 4], drug
delivery [2, 5], and neuron networks [6, 7]. The equipment
provided by control engineers includes, but is not limited to,
nanodevices, biochips, cuvettes for electroporation, and gene
guns. Biologists perform various biological experiments,
such as protein synthesis and virus DNA modifications, to
gather measurements for model revisions and verifications,
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Figure 1: Typical analysis of biological systems.

to conclude theoretical and practical results from evidence,
and to help medical practice. Doctors use both theoretical
and practical results from biologists to perform tissue
engineering, such as organ transplants and artificial tissue
construction.

According to their scales, biological systems can be
divided into three levels: the molecular level (nm), cellular
level (μm), and tissue level (cm), analogous to the part,
individual, and group, respectively. Molecular-level research
focuses on how, when, where, and to what extent [10] a
gene is expressed. The essential goal is to sketch a complete
blueprint of genes by identifying the control sequences of
coding DNA segments and their interactions. Cellular level
research, in general, treats one cell as a plant in classical
control theory and investigates the reactions of the cell to the
changing environment, for instance, concentration changes
of related chemicals. State-of-the-art medical therapies are
primarily based on experimental results at the cellular level.
Tissue-level research mainly concerns tissue reconstruction,
artificial tissue substitutes, or tissue function recovery. The
cell differentiation process is an important topic at the
tissue level. Typical biological systems are collaboratively
controlled at all three levels. Most current research work
focuses on either cellular level or tissue level systems. Not
much work has been done at the molecular-level. In contrast,
understanding biological systems at the molecular level is
crucial, since species have the same basic inheritance, DNA
macromolecules, and follow a common rule in gene expres-
sion, the central dogma in molecular biology. Molecular level
understanding of biological systems provides instrumental
information about radical causes of many diseases and the
genetic evidence of evolution. It also helps biologists to gain
a better understanding of molecular level interactions, draw
a complete blueprint of gene networks, improve existing

means, create novel means to cure genetic diseases, and to
elaborate on the theory of evolution. Recent technology in
gene sequencing makes it possible to conquer the difficulty
in measurement at the molecular level and to identify the
nucleotide sequences of a particular DNA segment. Targeted
sequencing is the most promising step toward maximizing
the efficiency of the next-generation sequencing technology
using polymerase chain reaction. The availability of DNA
microarray makes it possible to accomplish tens of thousands
of genetic tests for picomoles (10−12) of a specific DNA
sequence.

Researchers have applied various methods to model,
simulate, and control the gene regulation processes. Early
attempts to model and simulate gene regulatory systems
are summarized in [10], including direct graphs, Bayesian
networks, Boolean networks, ordinary and partial differ-
ent equations, qualitative differential equations, quantative
differential equations, stochastic equations, and role-base
formalisms [10]. Other approaches include Petri nets [11],
transformational grammars [12, 13], and process algebra
[14]. Three important modeling methods in recent work
are gene regulatory units viewed under compound control
[4, 15–18], logic network models [19, 20], and base-to-
base molecular-level formulation [21, 22]. The first model-
ing method quantitatively describes chemical concentration
variations corresponding to external environmental changes
at the cellular level. The second qualitatively illustrates the
interactions among operons in gene regulatory units. The last
modeling converts DNA segments to discrete vectors. In our
paper, we adapt the base-to-base molecular level formulation
to express state variables.

Current obstacles in systems biology are obvious. The
structure and dynamics of biological systems are sometimes
unclear. Most existing models are constructed by data-driven
or hypothesis-driven methods, with only partial information
available. Due to the complexity of the systems and incom-
plete information, the mathematical models are usually
formulated by modifying empirical equations or proposing
heuristic equations. The parameters of proposed models are
obtained by estimation methods. Although those models
can disclose significant details of the system’s structure and
dynamics, the inconsistency between theoretical and exper-
imental results creates difficulties for control engineers to
verify the models, develop optimal controls, and reconstruct
systems with desired properties.

In this paper, we use a novel approach to build
up abstract mathematical models at the molecular level
in Section 2.2, based directly on biological theory. With
reasonable assumptions, we can avoid the conventional
obstacles mentioned above. Different from existing methods,
focusing on a gene or changes in chemical concentration,
we emphasize the base change in the nucleotide bases. The
cost function, a summation of costs for applying mutagens
and the off-trajectory penalty, together with the system
equations, formulates the optimal control problem. The
optimal control is then solved by dynamic programming
algorithm in Section 2.3. Section 3 shows simulation results
of the optimal control problem at different scales and is
followed by several important propositions.
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Figure 2: Systems biology is a cross-cutting research area connecting control engineering, biology, and medical science. Sources: protein
synthesis http://www.anticancer.de/, liposome [8], corneal transplant http://www.avclinic.com/, microarray hybridization [9], cuvettes for
electroportation http://www.en.wikipedia.org/, biochip http://www.clemson.edu/, nano robot http://www.molecularlab.it/.

2. System Equations and Generalized
Optimal Control Problem Formulation

The central dogma of molecular biology, first elaborated in
[23] and restated in [24], illustrates the detailed residue-by-
residue transfer of genetic sequential information. Nowa-
days, it is widely recognized as the backbone of molecular
biology. It describes the genetic information flow among
three kinds of biopolymers: DNA, RNA, and protein. In most
living organisms, genetic information transfers from DNA to
RNA, and then to protein. This process is usually irreversible,
thus protein always acts as the sink of information flow.
A codon consists of three consecutive nucleotide bases,
corresponding to one amino acid according to the genetic
codes. Since there are only 20 kinds of amino acids and 64
combinations of codons, there exists redundancy in genetic
codes.

We are particularly interested in mutations that happen
during the process of DNA replication, as DNA serves as
long-term genetic information storage and is the basis of
genetic inheritance, the accuracy of which is particularly
important to ensure the correct expression of genes. DNA
molecules consist of four kinds of nucleotide acids, adenine
(A), thymine (T), guanine (G), and cytosine (C), and a
backbone made of sugars and phosphate. In 1953, James D.

Watson and Francis Crick found the double helix structure
of DNA and the rule of basepairing, known as Watson-Crick
basepairing [25, 26]. A always pairs with T , G always pairs
with C, and vice versa. In nature, replication errors occur at
a very low rate, one error for every 107 nucleotides added
[27]. The redundancy of information caused by the double-
helix structure ensures the accuracy of DNA replication.
Some DNA self-repair mechanisms, listed in [28], such
as proofreading, also help to eliminate errors during the
replication process.

Gene mutations are changes in the nucleotide sequence
of DNA or RNA. Usually, we focus only on mutations
occurring in coding DNA sequences and RNA. Mutations are
caused by various reasons. Induced mutations are caused by
either chemical mutagens or radiation. In general, radiation
induces higher randomness than chemical mutagens. Point
mutation is the simplest form of mutation, involving only
one base. Point mutations can be further divided into
transitions (A ↔ G or C ↔ T) and transversions (A/G ↔
C/T). Transversions are theoretically expected to be twice as
frequent as transitions, but transitions may be favored over
transversions in coding DNA because they usually result in a
more conserved polypeptide sequence [29].

In this section, we first give the problem statement in
Section 2.1, and then we construct system equations for both
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deterministic and stochastic mutations in Section 2.2. At last,
in Section 2.3, we formulate the optimal control problem and
apply dynamic programming algorithm to solve it.

2.1. Problem Statement. Figure 3 shows the system diagram
of restoring an abnormal DNA segment back to a normal
sequence by applying mutagens during the process of DNA
replication. After we obtain a patient’s genome, we compare
the coding DNA segments with normal DNA segments in
our database to figure out the possible range of mutated
segments. Due to the redundancy in genetic codes, as long
as any two DNA segments can be transcribed and then trans-
lated to the same amino acid sequence, the distance reference
between them is considered to be zero. Therefore, instead
of having a predetermined final state or a neighborhood of
a final state, our final state lies in a set where the distance
reference between any sequence in this set and the desired
sequence is zero. We name this set the final desired set. The
prescription is then determined by comparing the current
measurement and every sequence in the desired set. Both
internal noises and external disturbance can be eliminated by
the measurement. We treat DNA sequences as state variables,
the ON/OFF controls of all available mutagens at every spot
on the given DNA segment as inputs, the measurements as
the outputs, and one cell cycle as the step increment in our
system equations.

The objective function is defined as a summation of
the costs (including risks) of applying mutagens and the
off-trajectory penalty. The optimal control sequences are
computed beforehand to let doctors make treatment plans
according to the patient’s condition. In general, the optimal
control sequence and the corresponding optimal trajectory
are not unique because the bases mutate independently in
most cases and the order of mutating different bases does
not matter if the number of medical treatment sessions is not
under a tight restriction. Additional measurements are taken
before and after each treatment, if necessary. In deterministic
cases, the purpose of taking additional measurements is to
check the current sequence and to eliminate both internal
and external disturbances. The treatment plan is adjusted if
the measurement is not the same as expected. In stochastic
settings, the measurements are taken to conquer the ran-
domness caused by both mutagens and other noises. The
treatment is then updated accordingly.

To sum up, our system is a discrete-time dynamic system
with finite state space and output space, and a set of ON/OFF
switches as controls. Our goal is to optimally drive this
system from a given initial state to a desired final set at the
lowest cost.

2.2. System Equations Formulation. We mainly focus on
applying chemical mutagens and radiation to restore the
original amino acid sequence during the process of DNA
replication. Other factors that may affect the gene mutation,
including temperature and electroporation, are not within
our consideration. In addition, we assume that chemical
mutagens or radiation target one and only one nucleotide
base at any preset site, despite the technical limitation, and
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Figure 3: System diagram of restoring an abnormal DNA segment
back to a normal sequence by applying mutagens during the process
of DNA replication.

the results of applying chemical mutagens and radiation
are independent. For simplicity, we normalize the dose
of mutagens to transfer one nucleotide base to another
in one step to 1. In most cases, nucleotide bases mutate
independently, therefore there is no chain effect caused by
mutagens. To avoid reactions among different mutagens,
we require that at most one chemical mutagen and one
radiation be applied in each cell cycle. While constructing
a generalized model, since the order of applying chemical
mutagens and radiation does not affect the results, without
loss of generality, we require they be applied in the order
shown in Figure 4. That is, chemical mutagens are always
applied before the duplication process starts, radiation is
always applied in the middle of the cell cycle, and the
measurements are taken before every replication starts.
Lastly, we assume that the measurements are always correct,
and DNA replication error, background mutation rate, and
other random noise can be eliminated from measurements
by considering them as spontaneous mutation.

2.2.1. Base-to-Base Deterministic Mutations. Denote the tar-
geted DNA segment with n nucleotide bases at kth step by a
column vector xk, as shown in Figure 5. xik is the ith element
of xk. Let P be the transfer matrix from xk to xk+1, for all k,
k ∈ Z+ ∪ {0}, without mutation. Then, the perfect DNA
replication process can be expressed as

xk+1 = Pxk. (1)

Proposition 1. P = −I .

Proof. As no mutation occurs, xk+1 is completely comple-
mentary to xk by Watson-Crick base pairing rule, and xk+2 is
completely complementary to xk+1. Therefore, xk+2 is exactly
the same as xk. thus,

xk+2 = Pxk+1 = P2xk =⇒ P2 = I. (2)

Since every base mutates independently, every element of
xik+1 only depends on the corresponding element of xik, thus P
is diagonal. In addition, xk+1 /= xk, we conclude P = −I .

Based on Proposition 1, we assign values to nucleotide
bases set {A,G,C,T ,O}, where O is an artificial non-
sense base. Define an equivalence relationship between
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Figure 4: The order of taking measurements and applying chemical
mutagens and radiation in a cell cycle.

{A,G,C,T ,O} and {1, 2,−2,−1, 0}, that is, {A,G,C,T ,
O} ⇔ {1, 2,−2,−1, 0}, with

xik =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if A,

2, if G,

−2, if C,

−1, if T ,

0, if O.

(3)

Proposition 2. {1, 2,−2,−1, 0} is a field under proper defini-
tions of addition and multiplication.

Proof. Defining the addition table and multiplication table as
in Tables 1 and 2, we check if the set {1, 2,−2,−1, 0} satisfies
the definition of field.

Closed under Addition and Multiplication. Satisfied obvi-
ously from Tables 1 and 2.

Associativity of Addition and Multiplication. Implicitly satis-
fied by integer addition and multiplication.

Commutativity of Addition and Multiplication. Satisfied as
Tables 1 and 2 are symmetric according to the diagonal.

Additive and Multiplicative Identity. Additive identity is 0,
and multiplicative identity is 1.

Additive and Multiplicative Inverses. Additive inverses pair:
1 ↔ −1, 2 ↔ −2, 0 ↔ 0.

Multiplicative inverses pair: 1 ↔ 1, 2 ↔ −2, −1 ↔ −1.

Distributivity of Multiplication over Addition. Implicitly sat-
isfied by integer addition and multiplication.

We conclude {0, 1, 2, −2,−1} is a field under addition
and multiplication defined by Tables 1 and 2.

From now on, we use F to denote the field {0, 1, 2,
−2,−1}. And xk ∈ F n is the state vector representing a DNA
segment with n nucleotide bases, where F n is the set of F -
valued vectors of dimension n.

Table 1: Addition table for {1, 2,−2,−1, 0}.
+ 1 2 −2 −1 0

1 2 −2 −1 0 1

2 −2 −1 0 1 2

−2 −1 0 1 2 −2

−1 0 1 2 −2 −1

0 1 2 −2 −1 0

Table 2: Multiplication table for {1, 2,−2,−1, 0}.

× 1 2 −2 −1 0

1 1 2 −2 −1 0

2 2 −1 1 −2 0

−2 −2 1 −1 2 0

−1 −1 −2 2 1 0

0 0 0 0 0 0

Table 3: Possible values of Δs and Δw. The corresponding values of
Δs and Δw are obtained by substituting the value of xk and xk+1 into
(4), with Δw /= 0 only if xk = 0.

kth
(k + 1)th

A G C T O

A 2 −2 −1 0 1

1

1

1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Δs
G −1 2 0 −2

C −2 0 2 −1

T 0 −1 −2 2

O 1 2 −2 −1 0}Δw

We start with the simplest form of mutations, point
mutation. Suppose there is a point mutation, we write it
mathematically as

xk+1 = (−I + Δs)xk + Δw, (4)

where xk+1, xk ∈ F , and −I reduces to −1 as only one base is
involved. The corresponding values of Δs and Δw, obtained
by reverse engineering with all possible pairs of xk and xk+1,
are listed in Table 3.

Here, Δs represents the mutation from four normal
nucleotide bases, and Δw corresponds to mutation from
nonsense base, that is, Δw /= 0 only if xk = 0.

Rewriting (4) by collecting all values of Δs and Δw in
Table 3, we get

xk+1 =
⎛

⎝−I +
4∑

j=0

u
j
ks j

⎞

⎠xk +
4∑

j=0

c
j
kwj (5a)

= (−I + uks)xk + ckw, (5b)

where {s0, s1, s2, s3, s4} = {w0,w1,w2,w3,w4} = {0, 1, 2,−2,
−1}, ujk, c

j
k ∈ {0, 1}, representing the on/off controls, uk =

[u0
k u1

k u
2
k u3

k u
4
k], ck = [c0

k c
1
k c

2
k c

3
k c

4
k], and s = w =

[0 1 2 − 2 − 1]T . In (5a), s j and wj are constants for

all k and j. u
j
k and c

j
k, the inputs of the system, are the

on/off controls for chemical mutagens or radiation. Clearly,
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Figure 5: Biological information flow in central dogma of molecular biology.

∑4
j=0c

j
k = 1 only if xk = 0. Equation (5b) is a simplified

version of (5a) as we put u
j
k, s j , c

j
k,wj into vector form

uk, s, ck,w. s and w serve as vector basis for base-to-base
deterministic model. uk and ck are now multi-input controls;
each of them contains 5 on/off controls, corresponding to
all possible transfer patterns. For a particular k, at most one

of u
j
ks and c

j
ks can be 1, as stated in Proposition 3. This is

consistent with the fact that every state can be transferred
to only one of the five states in the state space F with
corresponding mutagens available.

Proposition 3. It is always 1 − 1 transfer when mutation
occurs, that is, one nucleotide base can only transfer to another
one, therefore

(i) if xk = 0 and ck = 0, or ck = [1 0 0 0 0], then
xk+1 = 0,

(ii) if xk /= 0, then ck = 0 and uk is either 0 or a unit row
vector,

(iii) if xk = 0, then uk = 0 and ck is either 0 or a unit row
vector,

(iv) uk + ck is either 0 or a unit row vector, for all k ∈ Z+ ∪
{0}.

Now, suppose for some reason we need to take an
addition, measurement in the middle of the cell cycle, after
the completion of the kth duplication and before the start
of the (k + 1)th. We name this kind of measurement an
intermediate state, and denote by it x′k. Then, we have

xk+1 = (I + Δs′) x′k + Δw′, (6)

where the values of Δs′ and Δw′, listed in Table 4, are
obtained in the same way as getting Δs and Δw in Table 3.

Comparing Tables 3 and 4, we find the collection of Δs
and Δs′, Δw and Δw′, form the same set, respectively. Thus,

Table 4: Possible values of Δs′ and Δw′. The corresponding values
of Δs′ and Δw′ are obtained by substituting the value of x′k and xk+1

into (4), with Δw′ /= 0 only if x′k = 0.

kth
(k + 1)th

A G C T O

A 0 1 2 −2 −1

−1

−1

−1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Δs′
G 2 0 −2 1

C 1 −2 0 2

T −2 2 1 0

O 1 2 −2 −1 0}Δw′

we continue using s and w when rewriting (6) in the form of
(5a) and (5b), that is,

xk+1 = (I + vks)x′k + c′kw, (7)

where vk, c′k are the counterparts of uk, ck, respectively, and
s,w are the same as in (5b).

Similar to Proposition 3, we get Proposition 4.

Proposition 4. vk and c′k in (7) need to satisfy the following
conditions.

(i) If xk = 0 and c′k = 0, or c′k = [1 0 0 0 0], then
xk+1 = 0.

(ii) If xk /= 0, then c′k = 0 and vk is either 0 or a unit row
vector.

(iii) If xk = 0, then vk = 0 and ck is either 0 or a unit row
vector.

(iv) vk + c′k is either 0 or a unit row vector, for all k ∈ Z+ ∪
{0}.
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Now take, both chemical mutagens and radiative rays
under our consideration and apply them in the order as
shown in Figure 4. Then, we can express our system equation
as

x′k =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−I + uks
︸︷︷︸

mutations caused by chemical
mutagens from normal bases

⎞

⎟
⎟
⎟
⎟
⎟
⎠

xk

+ ckw
︸ ︷︷ ︸

mutations caused by chemical
mutagens from O

,

(8a)

xk+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I + vks
︸︷︷︸

mutations caused by radiative
rays from normal bases

⎞

⎟
⎟
⎟
⎟
⎟
⎠

x′k

+ c′kw
︸ ︷︷ ︸

mutations caused by radiative
rays from O

,

(8b)

yk = xk, (8c)

where uk and vk are the inputs of the system and yk is the
measurement. Obviously, (8a) is modified from (5b) and
(8b) from (7).

The two-step mutation and the intermediate state
x′k avoid the case xk is changed to different bases by radiation
and chemical mutagens simultaneously, which causes confu-
sion. Substituting (8a) and (8b), we get

xk+1 = (I + vks)(−I + uks)xk + (I + vks)ckw + c′kw, (9a)

yk = xk. (9b)

Obviously, Proposition 3 still holds for uk and ck, and
Proposition 4 holds for vk and c′k for (9a).

For point mutations, we have 20 on/off controls in total
for every step k, 10 for chemical mutagens as described
before, and the rest for radiation.

2.2.2. Gene-to-Gene Deterministic Mutations. In general,
mutations involve multiple bases. Therefore, large-scale de-
terministic model is necessary. Now, we show how to extend
our model to large-scale systems.

Suppose we have a coding DNA segment with length
n, then xk ∈ F n. Since a coding DNA segment usually
contains integer number of codons, which is made of three
consecutive bases, n is a multiple of 3. Let xik denote the ith
component of xk. This notation is consistent with the one
in Section 2.2.1. Initiated by the base-to-base deterministic

model from Section 2.2.1, we write our system equation for
large-scale system as

x′k =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−I +
n∑

i=1

uikS
i
k

︸ ︷︷ ︸

mutations caused by chemical
mutagens from normal bases

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

xk

+
∑

i∈Ok

cikW
i
k

︸ ︷︷ ︸

mutations caused by chemical
mutagens from O

,

xk+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I +
n∑

i=1

vikQ
i
k

︸ ︷︷ ︸

mutations caused by radiative rays
from normal bases

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

x′k

+
∑

i∈O′
k

bikR
i
k

︸ ︷︷ ︸

mutations caused by radiative
rays from O

,

yk = xk,

(10)

where uik, vik, cik, bik are on/off controls of the ith ele-
ment, Sik,Qi

k are n × n square matrices corresponding to
the mutations between normal bases or from normal bases
by chemicals and radiation, respectively, Wi

k,Rik are n-
dimensional column vectors representing mutations from
nonsense bases by chemicals and radiation, respectively, and
Ok = {i : xik = 0, 1 ≤ i ≤ n}, O′

k = {i : x
′i
k = 0, 1 ≤ i ≤ n}.

Sik and Qi
k are diagonal matrices since each base mutates

independently. The values in the first four rows of Tables 3
and 4 correspond to the diagonal elements of Sik and Qi

k,
respectively. The last rows of Tables 3 and 4 are assigned to
Wi

k and Rik, n-dimensional vectors, at nonsense base’s spots
for xk.

Define S = {s jeieTi ,∀i, j, 0 ≤ j ≤ 4, 1 ≤ i ≤ n}, a
collection of n × n matrices, where s j is the same as in (5a)
and (5b), ei is the unit column vector of length n with ith
component equal to 1 and all other components equal to 0,
and eie

T
i is the square matrix with only the ith element on

the diagonal equals to 1, and 0 otherwise. Then, Sik,Qi
k can be

written as linear combinations of all elements from S, with
the coefficient of each element either 0 or 1 corresponding to

the on/off control u
(i, j)
k and v

(i, j)
k , respectively.

Similarly, define W = {wjei,∀i, j, 0 ≤ j ≤ 4, 1 ≤ i ≤ n},
where wj is the same as (5a) and (5b). Wi

k, Rik can be written
as linear combinations of all components from W , with
coefficient of every component either 0 or 1 corresponding

to the on/off control c
(i, j)
k and c

′(i, j)
k , respectively.

Therefore, instead of using step-varying Sik, Sik,Wi
k,Rik, we

find matrix basis for those four square matrices to make the
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controls to be the only variables depending on k, as we did
for single-base cases. Then, we can, write (10) as

x′k =
⎛

⎝−I +
n∑

i=1

4∑

j=0

u
(i, j)
k s jeie

T
i

⎞

⎠xk +
∑

i∈Ok

4∑

j=0

c
(i, j)
k wjei,

(11a)

xk+1 =
⎛

⎝I +
n∑

i=1

4∑

j=0

v
(i, j)
k s jeie

T
i

⎞

⎠x′k +
∑

i∈O′
k

4∑

j=0

c
′(i, j)
k wjei,

(11b)

yk = xk, (11c)

where u
(i, j)
k , v

(i, j)
k , c

(i, j)
k , c

′(i, j)
k ∈ {0, 1}.

As shown in (11a), (11b), and (11c), multisites mutations
contain 20n controls in total for every step k, where n is the
number of nucleotide bases on the targeted gene. Similar to
point mutations, every single site has 20 controls in each step,
10 for chemical mutagens and 10 for radiation.

We can view uk, vk, ck, c′k as binary matrices of dimension

n×5, and u
(i, j)
k , v

(i, j)
k c

(i, j)
k , c

′(i, j)
k are the corresponding element

of ith row and jth column. Use uik, vik, cik, bik, binary row
vectors of dimension 5, to denote the ith row of uk, vk, ck, c′k,
respectively. Again, s = w = [0 1 2 − 2 − 1]T .

Combining (11a) and (11b), and writing control vari-
ables in vector forms, we get

xk+1 =
⎛

⎝I +
n∑

i=1

vikseie
T
i

⎞

⎠

⎛

⎝−I +
n∑

i=1

uikseie
T
i

⎞

⎠xk

+

⎛

⎝I +
n∑

i=1

vikseie
T
i

⎞

⎠
∑

i∈Ok

cikwei +
∑

i∈O′
k

bikwei,

yk = xk.

(12)

Proposition 5. For large-scale deterministic system, uk, vk, ck,
c′k satisfy conditions below.

(i) If eTi xk = 0, then i ∈ Ok.

(ii) If eTi xk = 0, ci
k = 0 or cik = [1 0 0 0 0], then i ∈ O′

k.

(iii) For all i /∈ Ok, uik is either 0 or a row unit vector and
cik = 0.

(iv) For all i ∈ Ok, cik is either 0 a row unit vector and uik =
0.

(v) For all i /∈ O′
k, vik is either 0 or a row unit vector and

bik = 0.

(vi) For all i ∈ O′
k, bik is either 0 or a row unit vector and

vik = 0.

(vii) For all i, k, 1 ≤ i ≤ n, k ∈ Z+ ∪ {0}, uik + cik is either
0 or a unit row vector and vik + bik is either 0 or a unit
row vector.

The mathematical model (12) is quite flexible and can be
easily extended to many cases, such as transcription process,
multiple spot mutations within one-step or broken DNA
strands.

Take broken DNA strands as an example. DNA strand
breaks due to various reasons. Our system equation can
represent this phenomenon by dividing the whole system
into small subsystems. Significant brokage of DNA strands is
simply eliminated by cell mechanism to ensure the accuracy
to DNA replication. Equation (13) shows the case of one
single DNA strand breaking into two segments by chemical
mutagens

(
x′k(1)

x′k(2)

)

=

⎛

⎜
⎜
⎜
⎝

−Im +
m∑

i=1
uikseie

T
i 0

0 −In−m +
n∑

i=m+1
uikseie

T
i

⎞

⎟
⎟
⎟
⎠

×
(
xk(1)
xk(2)

)

+

⎛

⎜
⎜
⎝

∑

i∈Ok ,1≤i≤m
cikwei

∑

i∈Ok, (m+1)≤i≤n
cikwei

⎞

⎟
⎟
⎠,

xk+1(1) =
⎛

⎝Im +
m∑

i=1

vikseie
T
i

⎞

⎠x′k(1) +
∑

i∈O′
k , 1≤i≤m

bikwei,

xk+1(2) =
⎛

⎝In−m +
n∑

i=m+1

vikseie
T
i

⎞

⎠x′k(2)

+
∑

i∈O′
k , (m+1)≤i≤n

bikwei.

(13)

2.2.3. Gene-to-Gene Stochastic Mutations. In reality, muta-
gens, no matter chemical or radiative, always cause random-
ness in mutation. Therefore, we need to derive the model for
gene-to-gene stochastic mutations.

Introduce new random variables, h
(i, j)
k,l1 , r

(i, j)
k,l2 ,h

′(i, j)
k,l3 ,

r
′(i, j)
k,l4 ∈ {0, 1}, associated with probability p(h)

l1, j , p
(r)
l2, j , p

(h′)
l3, j ,

p(r)
l4, j , for all i, k, 1 ≤ i ≤ n, k ∈ Z+ ∪ {0}, respectively,

where k is the step index, l1, l2 are indices for chemical
mutagens inducing mutation from normal bases and from
O, respectively, l3, l4 are indices for radiation inducing
mutation from normal bases and from O, respectively, i is
the index of DNA segment, and the value of j corresponds
to the transfer pattern, which can be found in Tables 3
and 4. Note different mutagens have different probability
assignments, the probability assignments are only related to
the type of mutagens, and the probability associated with
every kind of mutagens sums up to 1, that is,

4∑

j=0

p(h)
l1, j = 1, ∀l1, 1 ≤ l1 ≤ l,

4∑

j=0

p(r)
l2, j = 1, ∀l2, 1 ≤ l2 ≤ m,

4∑

j=0

p(h′)
l3, j = 1, ∀l3, 1 ≤ l3 ≤ l′,

4∑

j=0

p(r′)
l4, j = 1, ∀l4, 1 ≤ l4 ≤ m′.

(14)
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The controls are uik,l1 , cik,l2 , vik,l3 , bik,l4 ∈ {0, 1}, with the fact
that 1 representing mutagen with corresponding index is
applied at ith spot of DNA segment at kth generation, and
0 representing mutagen with corresponding index is not
applied at spot i at kth step, similar to Sections 2.2.1 and
2.2.2. The mutagen indices l1, l2, l3, l4 can be omitted in
deterministic mutations since given the current state and
control, the next state is unique. However, they are neces-
sary for stochastic mutations, because there exist multiple
possible states for the next stage given the control. In other
words, the next state is determined by random variables

h
(i, j)
k,l1 , r

(i, j)
k,l2 ,h

′(i, j)
k,l3 , r

′(i, j)
k,l4 , given the values of uik,l1 , cik,l2 , vik,l3 , bik,l4 ,

and xk.
Suppose we have (l + m) kinds of chemical mutagens

available, with l kinds to induce mutations from normal
bases and m kinds to induce mutations from O. And we
have (l′ + m′) kinds of radiation available, with l′ kinds to
induce mutations from normal bases and m′ kinds to induce
mutations from O. Therefore, we have total (l +m + l′ +m′)
controls for each spot i at each step k. We can write our
system equation as

x′k =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−I +
l∑

l1=1

n∑

i=1

uik,l1

4∑

j=0

h
(i, j)
k,l1 s jeie

T
i

︸ ︷︷ ︸

mutations caused by chemical
mutagens from normal bases

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

xk

+
m∑

l2=1

∑

i∈Ok

cik,l2

4∑

j=0

r
(i, j)
k,l2 wjei

︸ ︷︷ ︸

mutations caused by chemical
mutagens from O

,

(15a)

xk+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I +
l′∑

l3=1

n∑

i=1

vik,l3

4∑

j=0

h
′(i, j)
k,l3 s jeie

T
i

︸ ︷︷ ︸

mutations caused by radiative
rays from normal bases

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

x′k

+
m′
∑

l4=1

∑

i∈O′
k

bik,l4

4∑

j=0

r
′(i, j)
k,l4 wjei

︸ ︷︷ ︸

mutations caused by radiative
rays from O

,

(15b)

yk = xk. (15c)

Again, we define h
(i, j)
k,l1 , r

(i, j)
k,l2 ,h

′(i, j)
k,l3 , r

′(i, j)
k,l4 the elements at

ith row and jth column of n × 5 binary matrices hk,l1 ,
rk,l2 ,h′k,l3 , r′k,l4 , respectively. hik,l1 , rik,l2 ,h

′i
k,l3 , r

′i
k,l4 , and binary

row vectors of dimension 5 denote the ith row of hk,l1 ,
rk,l2 ,h′k,l3 , r′k,l4 , respectively. Then, we can simplify (15a),
(15b), and (15c) and combine (15a) and (15b) as

xk+1 =
⎛

⎝I +
l′∑

l3=1

n∑

i=1

vik,l3h
′i
k,l3seie

T
i

⎞

⎠

×
⎛

⎝−I +
l∑

l1=1

n∑

i=1

uik,l1h
i
k,l1seie

T
i

⎞

⎠xk

+

⎛

⎝I +
l′∑

l3=1

n∑

i=1

vik,l3h
′i
k,l3seie

T
i

⎞

⎠
m∑

l2=1

∑

i∈Ok

cik,l2r
i
k,l2wei

+
m′
∑

l4=1

∑

i∈O′
k

bik,l4r
′i
k,l4wei,

yk = xk.

(16)

Proposition 6. For large-scale stochastic system, uik,l1 ,hik,l1 ,

cik,l2 , rik,l2 ,vik,l3 ,h
′i
k,l3 , bik,l4 , r

′i
k,l4 follow the rules below.

(i) If eTi xk = 0, then i ∈ Ok.

(ii) If eTi xk = 0 and
∑m

l2=1c
i
k,l2 = 0, then i ∈ O′

k.

(iii) If eTi xk = 0,
∑m

l2=1c
i
k,l2 = 1 and rik,l2 = [1 0 0 0 0],

then i ∈ O′
k.

(iv) For all i, k, l1, 1 ≤ i ≤ n, k ∈ Z+ ∪ {0}, 1 ≤ l1 ≤ l, if
uik,l1 = 1, then hik,l1 is a unit row vector.

(v) For all i, k, l2, 1 ≤ i ≤ n, k ∈ Z+ ∪ {0}, 1 ≤ l2 ≤ m, if
cik,l2 = 1, then rik,l2 is a unit row vector.

(vi) For all i, k, l3, 1 ≤ i ≤ n, k ∈ Z+ ∪ {0}, 1 ≤ l3 ≤ l′, if
vik,l3 = 1, then h

′i
k,l3 is a unit row vector.

(vii) For all i, k, l4, 1 ≤ i ≤ n, k ∈ Z+ ∪ {0}, 1 ≤ l4 ≤ m′,
if bik,l4 = 1, then r

′i
k,l4 is a unit row vector.

(viii) For all i /∈ Ok,
∑l

l1=1u
i
k,l1 = 0 or 1 and cik,l2 = 0,

for all l2, 1 ≤ l2 ≤ m.

(ix) For all i ∈ Ok,
∑m

l2=1c
i
k,l2 = 0 or 1 and uik,l1 = 0,

for all l1, 1 ≤ l1 ≤ l.

(x) For all i /∈ O′
k,
∑l′

l3=1v
i
k,l3 = 0 or 1 and bik,l4 = 0,

for all l4, 1 ≤ l4 ≤ m′.

(xi) For all i ∈ O′
k,
∑m′

l4=1b
i
k,l4 = 0 or 1 and vik,l3 = 0,

for all l3, 1 ≤ l3 ≤ l′′.

(xii) For all i, k, 1 ≤ i ≤ n, k ∈ Z+ ∪ {0}, ∑l
l1=1u

i
k,l1 +

∑m
l2=1c

i
k,l2 = 0 or 1 and

∑l′
l3=1v

i
k,l3 +

∑m′
l4=1b

i
k,l4 = 0 or 1.

We close this section with the definition of controllability
to the system equations proposed above. DNA replication
systems with system equations proposed as (9a), (9b),
(12), and (16) are completely controllable if and only if
for all x0, x2k1 , x2k2+1 ∈ F , k1, k2 ∈ Z+ ∪ {0},∃ at least one
path from x0 to x2k1 and at least one path from x0 to x2k2+1

by applying proper mutagens in the correct order, with k1, k2

finite.

2.3. Generalized Optimal Control Problem Formulation. We
first define our objective function that can be adapted to
all kinds of systems proposed in Section 2.2 with minor
changes. Mathematically, in systems where the controllable
parameters of interest are discrete, the objective function is
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usually a weighted sum representing the number of times
that a piece of equipment is turned “on” or “off” or the
number of resources needed to execute certain tasks in the
frequent cases [30]. In our case, this summation is the
total number of times that different mutagens are applied
weighted by the corresponding cost (including the risk).
Another key factor of objective function is the off-trajectory
penalty. Designing a trajectory beforehand is necessary to
avoid other hidden risks. If the measurement indicates that
the current state is off the predefined trajectory, we include a
distance reference between current state and desired state as
penalty and change the treatment plan accordingly.

Therefore, our objective function can be expressed as

J0(x0)

= min
u,c,v,c′

E
h,h′,r,r′

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

N−1∑

k=0

l∑

l1=1

n∑

i=1

αl1u
i
k,l1 +

N−1∑

k=0

m∑

l2=1

n∑

i=1

βl2c
i
k,l2

︸ ︷︷ ︸

cost of applying chemical mutagens

+
N−1∑

k=0

l′∑

l3=1

n∑

i=1

α′l3v
i
k,l3 +

N−1∑

k=0

m′
∑

l4=1

n∑

i=1

β′l4b
i
k,l4

︸ ︷︷ ︸

cost of applying radiative rays

+
N∑

k=0

d
(

xk,
{

xdk
})

︸ ︷︷ ︸

tracing cost

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(17)

with x0, xdk ∈ F n, 1 ≤ k ≤ N ,n ≡ 0 (mod 3) given. The
physical meaning of uik,l1 , cik,l2 , vik,l3 , bik,l4 , l1, l2, l3, l4 is the same
as in Section 2.2.3. αl1 ,βl2 ,α′l3 ,β′l4 ∈ R, for all l1, l2, l3, l4, 1 ≤
l1 ≤ l, 1 ≤ l2 ≤ m, 1 ≤ l3 ≤ l′, 1 ≤ l4 ≤ m′, are
the corresponding cost of applying chemical mutagens and
radiative rays indexed l1, l2, l3, l4, respectively. {xdk} : F n ×
F n → R+ ∪ {0} denotes the desired set at kth stage,
generated by the DNA sequences representing the same
amino acid sequence as xdk , the desired state at kth step. And
d(xk, {xdk}) is the distance reference of the current state xk to
the desired set {xdk} at kth step. The final penalty, the distance
reference from the final state to the desired set at k = N , is
included in the last term.

In general, βl2 ,β′l4  αl1 ,α′l3 , for all l1, l2, l3, l4, 1 ≤ l1 ≤
l, 1 ≤ l2 ≤ m, 1 ≤ l3 ≤ l′, 1 ≤ l4 ≤ m′, because physically
O is a set of nonsense bases and more details are necessary to
convert an O back to normal bases, for instance, the cost to
identify the exact element in the set O. Our goal is to drive
our system optimally from initial state x0 to the desired final
set {xdN} by applying a sequence of mutagens indexed with
{l1, l2, l3, l4}, at problematic positions i, and in a correct order
k.

In (17), the first four terms inside the expectation do
not depend on random variables hik,l1 , rik,l2 , h

′i
k,l3 , and r

′i
k,l4 ,

for all i, k, l1, l2, l3, l4 as the treatment plan is computed based
on the initial state x0. Given yk, the updated treatment plan
is computed accordingly but still not related to random vari-
ables. The last term inside expectation,

∑N
k=0d(xk, {xdk}), is

the only term in summation that depends on the distribution
of the random variables.

The constraint of the optimal control problem, in
general, is the system equation. We choose multidimensional
stochastic system equation as the generalized constraints as
it can be degenerated to one-dimensional and multidimen-
sional deterministic cases by proper modifications.

Therefore, we can rewrite our objective function and
formulate our optimal control problem as

J0(x0)

= min
{u,c,v,c′}0,1,...,N−1

⎡

⎣
N−1∑

k=0

l′∑

l1=1

n∑

i=1

αl1u
i
k,l1 +

N−1∑

k=0

m∑

l2=1

n∑

i=1

βl2c
i
k,l2

+
N−1∑

k=0

l′∑

l3=1

n∑

i=1

α′l3v
i
k,l3 +

N−1∑

k=0

m′
∑

l4=1

n∑

i=1

β′l4b
i
k,l4

+
N∑

k=0

E
{h,r,h′,r′}0,1,...,N−1

[

d
(

xk,
{

xdk
})]

⎤

⎦,

(18)

subject to

xk+1 =
⎛

⎝I +
l′∑

l3=1

n∑

i=1

vik,l3h
′i
k,l3seie

T
i

⎞

⎠

×
⎛

⎝−I +
l∑

l1=1

n∑

i=1

uik,l1h
i
k,l1seie

T
i

⎞

⎠xk

+

⎛

⎝I +
l′∑

l3=1

n∑

i=1

vik,l3h
′i
k,l3seie

T
i

⎞

⎠
m∑

l2=1

∑

i∈Ok

cik,l2r
i
k,l2wei

+
m′
∑

l4=1

∑

i∈O′
k

bik,l4r
′i
k,l4wei,

yk = xk.
(19)

We need to choose a proper distance reference to quantita-
tively describe the relationship between DNA segments of
same length. We first define the distance reference between
codons, and the distance reference between DNA segments is
a weighted sum of distance reference between every pair of
codons.

The distance reference between codons, d(ϕ1,ϕ2),ϕ1,
ϕ2 ∈ F 3, needs to fulfill the biological requirements as
below.

(1) Nonnegativity: the distance reference between any
two codons is either positive or zero. Mathematically,
d : F 3 ×F 3 → R+ ∪ {0}, d(ϕ1,ϕ2) ≥ 0.
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(2) The distance reference between two codons corre-
sponding to the same amino acid is zero.

(3) Symmetry: the distance reference from codon ϕ1 to
codon ϕ2 equals the distance reference from codon
ϕ2 to codon ϕ1, that is, d(ϕ1,ϕ2) = d(ϕ2,ϕ1).

(4) The distance reference between two codons corre-
sponding to different amino acids should reveal the
chemical and physical differences between two amino
acids.

(5) The distance reference from stop codons to all other
codons is much larger than those between other
codons as early termination of amino acid sequences
is more harmful than other forms of mutations.

All the existing metric defined on the finite field cannot
achieve all the requirements above. The second requirement
violates the identity of indiscernible, that is, d(ϕ1,ϕ2) = 0
if and only if ϕ1 = ϕ2. The redundancy in genetic codes
implies d(ϕ1,ϕ2) = 0 if those two amino acids, ϕ1 and ϕ2,
are translated into the same amino acids. In addition, the
triangular inequality is not necessarily true, according to the
underlying physical meanings. We take the assumption that
the stop codons are of the same distance reference from and
to all other codons.

Important physical and chemical properties are listed in
Table 5. We ignore codons containing O since their chemical
and physical properties cannot be found in literature.

From Table 5, we can see all codons are divided into
different sets with each set corresponding to one amino acid.
The size and the elements in one codon set vary from one
amino acid to another. This implies that the costs of driving
one codon to the desired final set generated by the desired
final state might be different from the costs of driving the
complementary codon to the desired final set generated by
the complementary of desired final state. More discussions
about this issue are presented in Section 3.

The distance reference between any two codons can be
defined by a weighted sum of the differences between phys-
ical and chemical properties or other reasonable functions.
And the distance reference between two DNA sequences
is defined as the sum of distance reference between the
corresponding pair of codons. The biological statics plays
a crucial rule to define this distance function in practi-
cal.

An example of the distance function can be expressed as

d(ξ1, ξ2) = ζpolarity polarity(ξ1, ξ2)

+ ζPH PH(ξ1, ξ2) + ζsize size(ξ1, ξ2),

polarity(ξ1, ξ2)

=
⎧
⎨

⎩

0 if ξ1, ξ2 are both polar or non-polar,

1 if one of ξ1, ξ2 is polar, and the other non-polar,

PH(ξ1, ξ2)

= ∣∣PH value of ξ1 − PH value of ξ2

∣
∣,

size(ξ1, ξ2)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if ξ1, ξ2 are both tiny, small, or normal,

σ1, if one of ξ1, ξ2 is tiny, and the other small,

σ2, if one of ξ1, ξ2 is tiny, and the other normal,

σ3, if one of ξ1, ξ2 is small, and the other normal,

(20)

where ξ1, ξ2 are two amino acids.
d(ξ1, ξ2) is then assigned to d(ϕ1,ϕ2) with ϕ1,ϕ2 corre-

sponding to amino acids ξ1, ξ2, respectively.
Since the generalized optimal control problem in (18)

and (19) is a multistage problem that can be broken down
into simpler steps at different time points. Therefore, we can
solve it by dynamic programming.

For dynamic programming, the optimal control policy is
constructed backward. And Bellman’s principle of optimality
states that the optimal policy for x0 to {xdN} is also the
optimal policy for the tail problem, from xq to {xdN}.

The tail problem is defined as

Jq
(

xq
)

= min
{u,c,v,c′}q,q+1,...,N−1

⎧
⎨

⎩

N−1∑

k=q

l∑

l1=1

n∑

i=1

αl1u
i
k,l1 +

N−1∑

k=q

m∑

l2=1

n∑

i=1

βl2c
i
k,l2

+
N−1∑

k=q

l′∑

l3=1

n∑

i=1

α′l3v
i
k,l3 +

N−1∑

k=q

m′
∑

l4=1

n∑

i=1

β′l4b
i
k,l4

+
N∑

k=q
E

{h,r,h′,r′}q,q+1,...,N−1

[

d
(

xk,
{

xdk
})]

⎫
⎬

⎭
.

(21)

The iterative update equation to find optimal policy can be
expressed by (22), according to the dynamic programming
algorithm in [31].

JN (xN ) = d
(

xN ,
{

xdN
})

,

Jq
(

xq
)

= min
uq ,cq ,vq ,c′q

E
hq ,rq ,h′q ,r′q

⎡

⎣
l∑

l1=1

n∑

i=1

αl1u
i
q,l1 +

m∑

l2=1

n∑

i=1

βl2c
i
q,l2 +

l′∑

l3=1

n∑

i=1

α′l3v
i
q,l3

+
m′
∑

l4=1

n∑

i=1

β′l4c
′i
q,l4 + d

(

xq,
{

xdq
})

+ Jq+1

(

xq+1

)
⎤

⎦
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Table 5: Properties of amino acids.

Amino Acid Abbrev. Codon(s) Polarity PH Size
Alanine Ala GCT ,GCC,GCA,GCG Nonpolar 6.01 Tiny
Arginine Arg CGA,CGG,CGC,CGT , AGA,AGG Polar 10.76 Normal
Asparagine Asn AAC,AAT Polar 5.41 Small
Aspartic acid Asp GAT ,GAC Polar 2.85 Small
Cysteine Cys TGT ,TGC Nonpolar 5.05 Small
Glutamine Gln CAA,CAG Polar 5.65 Normal
Glutamic acid Glu GAA,GAG Polar 3.15 Normal
Glycine Gly GGA,GGG,GGC,GGT Nonpolar 6.06 Tiny
Histidine His CAC,CAT Polar 7.60 Normal
Isoleucine Ile ATA,ATC,ATT Nonpolar 6.05 Normal
Leucine Leu TTA,TTG,CTA,CTG, CTC,CTT Nonpolar 6.01 Normal
Lysine Lys AAA,AAG Polar 9.60 Normal
Methionine Met ATG Nonpolar 5.74 Normal
Phenylalanine Phe TTC,TTT Nonpolar 5.49 Normal
Proline Pro CCA,CCG,CCC,CCT Nonpolar 6.30 Small
Serine Ser TCA,TCG,TCC,TCT , Polar 5.68 Tiny

AGT ,AGC
Threonine Thr ACT ,ACC,ACA,ACG Polar 5.60 Small
Tryptophan Trp TCC Nonpolar 5.89 Normal
Tyrosine Tyr TAC,TAT Polar 5.64 Normal
Valine Val GTA,GTG,GTC,GTT Nonpolar 6.00 Small
Stop codon Term TAA,TAG,TGA — — —

= min
uq ,cq ,vq ,c′q

⎧
⎨

⎩

l∑

l1=1

n∑

i=1

αl1u
i
q,l1 +

m∑

l2=1

n∑

i=1

βl2c
i
q,l2 +

l′∑

l3=1

n∑

i=1

α′l3v
i
q,l3

+
m′
∑

l4=1

n∑

i=1

β′l4c
′i
q,l4

+ E
hq ,rq ,h′q ,r′q

[

d
(

xq,
{

xdq
})

+ Jq+1

(

xq+1

)]
⎫
⎬

⎭
,

q = 0, 1, . . . ,N − 1.

(22)

3. Results and Discussion

In the following examples, we consider applying chemical
mutagens only because the randomness of applying radiation
is much larger and more difficult to control. We also omit the
mutations between a normal base andO because of high-cost
βl2 and the unavailable chemical and physical properties for
codons containing O.

The distance reference between codons used in Sections
3.2 and 3.3 is computed by (20) with ζpolarity = 8, ζPH = 3,
ζsize = 1, σ1 = 2, σ2 = 5 and σ3 = 3. We only keep the
final penalty but omit the off-trajectory penalty along the
trajectory.

3.1. Base-to-Base, Deterministic Optimal Control Problem.
We define the distance reference between bases as

d
(
ψ1,ψ2

) =
⎧
⎨

⎩

0, if xN = xdN ,

∞, if xN /= xdN ,
(23)

with ψ1,ψ2 ∈ F\{0}, where F\{0} denotes the set F excluding
the element 0.

Our optimal control problem for point mutations is

J0(x0) = min
uk,l1 , 0≤k≤N , 1≤l1≤l

⎧
⎨

⎩

N−1∑

k=0

l∑

l1=1

αl1uk,l1

⎫
⎬

⎭
, (24)

subject to

xk+1 =
⎛

⎝−I +
l∑

l1=1

uk,l1s

⎞

⎠xk,

xN = xdN ,

(25)

with x0 given, xk ∈ F\{0}.
Suppose that there are 12 kinds of mutagens (l1 =

12), each corresponding to a specific transfer pattern as in
Table 6, all available controls and the respective costs can be
immediately listed as in Tables 7 and 8.

The elements along the antidiagonal of Table 7, uAT ,
uGC ,uCG, and uTA, are artificially added, because the com-
plementary transfers naturally happen and no mutagen is
necessary. Thus, the costs along the antidiagonal of Table 8
are all zero, that is, αAT = αGC = αCG = αTC = 0.
The equivalence relationship between subscription in two
nucleotide bases and subscription in integer l1(ψ1ψ2) :
{A,T ,G,C} × {A,T ,G,C} → {integers from 1 to 12} is
defined by Table 6.
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Table 6: An example of chemical mutagens and their corresponding transfer patterns in deterministic mutations.

Index (l1) 1 2 3 4 5 6

Transfer pattern A → A A → G A → C G → A G → G G → T

Index (l1) 7 8 9 10 11 12

Transfer pattern C → A C → C C → T T → G T → C T → T

Table 7: Controls corresponding to transfer between bases within
one step. The leftmost column denotes the state kth step, and the
upmost row denotes the (k + 1)th state.

kth
(k + 1)th

A G C T

A uAA uAG uAC uAT
G uGA uGG uGC uGT
C uCA uCG uCC uCT
T uTA uTG uTC uTT

Table 8: Corresponding step cost of controls as shown in Table 7.

kth
(k + 1)th

A G C T

A αAA αAG αAC αAT
G αGA αGG αGC αGT
C αCA αCG αCC αCT
T αTA αTG αTC αTT

Under the above assumptions, we can write update
equation for optimal policy explicitly as

Jq
(

xq
)

=min
uq,l1

{

αxqψ + Jq+1
(
ψ
)
,∀ψ ∈ {A,T ,G,C} ⇐⇒ F\{0}

}

.

(26)

Proposition 7. For the same xdN , Jq(ψ) ≤ Jq+1(ψ), for all
q, 0 ≤ q ≤ N − 1, for all ψ ∈ {A,T ,G,C}, where ψ denotes
the complementary base of ψ. If, in addition, the system is
completely controllable, ∃M, s.t. JM(ψ) is the global minimum
and for all q ≤ M, Jq(ψ) = JM(ψ) if M − q ≡ 1 (mod 2),
and Jq(ψ) = JM(ψ) if M − q ≡ 0 (mod 2). In our example,
M ≥ N − 6.

Proof. This first part is due to the zero cost for the transfers
between complementary bases in the consecutive steps.

For any 0 ≤ q ≤ N − 1, the relationship between
minimal costs in consecutive steps is shown in (26). Since
ψ ∈ {A,T ,G,C}, αψψ + Jq+1(ψ) is one of the four elements
in the set from which the Jq(ψ) is picked. Moreover, αψψ = 0.
Therefore, Jq+1(ψ) is one of the four elements in the set. Since
Jq(ψ) is the minimum picking for a set containing Jq+1(ψ), we
conclude that Jq(ψ) ≤ Jq+1(ψ).

The M value in our example is proved by brute force
method, that is, JN−6(ψ) is a guaranteed global minimum.
For completely controllable systems, this M always exists.

Table 9: Sample step costs.

xk
xk+1

A G C T

A 5.21 6.60 2.33 0

G 6.15 8.95 0 3.82

C 4.61 0 9.17 7.24

T 0 0.64 5.09 10.28

The existence of M implies that for without limitation in the
number of steps, we can reach the global optimal in N −M
steps, 6 steps in our example.

Suppose that q = M, JM(ψ) is the global minimum, thus
JM−1(ψ) ≥ JM(ψ). However, JM−1(ψ) ≤ JM(ψ) according
to the first part of the proposition. Therefore, JM−1(ψ) =
JM(ψ) for the same xdN . Therefore, JM−1(ψ) is also a global
minimum.

By backward induction, suppose for q = q1, the
statement is true, that is, Jq1−1(ψ) = Jq1 (ψ) is the global
optimal either from xq1−1 = ψ or xq1 = ψ to xdN . Obviously,
for q = q1 − 1, the statement is still true. Therefore, Jq(ψ) =
Jq−2(ψ) = Jq−1(ψ), ψ ∈ {A,T ,G,C}, for all q, 2 ≤ q ≤
M.

In the proof of global minimum that can be reached
in the finite step in Proposition 7, we also discover
Proposition 8. Here, Jq(xq, xdN ) denotes the optimal cost from
xq to xdN .

Proposition 8. Given two single base mutation optimal
control problems, with the same fixed N , with and desired final
states complementary to each other. If JM(ψ, xdN ) is the global

minimum, then JM(ψ, xdN ) is also the global minimum, that is,
the global minimum of both systems is reach at the same stage
M. Moreover, for all q, 0 ≤ q ≤M,

Jq
(

ψ, xdN
)

= Jq
(

ψ, xdN
)

, ψ, xdN ∈ {A,T ,G,C}. (27)

Physically, Proposition 8 states that the optimal can be
achieve at the same step from a pair of complementary bases
to another pair of complementary bases at the same cost.
However, this fact is true only for base-to-base deterministic
mutations, because the distance reference is well defined by
(23).

Now, we show an example with simulation results.
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The costs of applying different mutagens are listed in
Table 9. It is a numerical assignment to Table 8. Since we
apply mutagens before the replication starts, uAA actually
transfer A to T and then to A by replication. For simplicity,
we just use the kth and (k + 1)th step states as subscripts
to represent the corresponding control and cost. The costs
of transitions are lower than the costs of transversions.
Therefore, αAC ,αCA,αGT ,αTG is smaller than other mutagens,
except artificial ones.

If we use χ to denote the costs of mutagens as listed in
Table 9, then

χ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

5.21 6.60 2.33 0

6.15 8.95 0 3.82

4.61 0 9.17 7.24

0 0.64 5.09 10.28

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

αAA αAG αAC αAT

αGA αGG αGC αGT

αCA αCG αCC αCT

αTA αTG αTC αTT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇐⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1 α2 α3 0

α4 α5 0 α6

α7 0 α8 α9

0 α10 α11 α12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(28)

Running the dynamic programming for every pair of
(xq, xdN ) ∈ {A,T ,G,C} × {A,T ,G,C}, N = 9. Here, we

sightly modify our notation. We use Jq(xq, xdN ) to denote the

optimal cost from xq to xdN . Then,

Jq =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Jq(A,A) Jq(A,G) Jq(A,C) Jq(A,T)

Jq(G,A) Jq(G,G) Jq(G,C) Jq(G,T)

Jq(C,A) Jq(C,G) Jq(C,C) Jq(C,T)

Jq(T ,A) Jq(T ,G) Jq(C,C) Jq(T ,T)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (29)

The path to reach the optimal cost is denoted by

Pq =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pq(A,A) Pq(A,G) Pq(A,C) Pq(A,T)

Pq(G,A) Pq(G,G) Pq(G,C) Pq(G,T)

Pq(C,A) Pq(C,G) Pq(C,C) Pq(C,T)

Pq(T ,A) Pq(T ,G) Pq(T ,C) Pq(T ,T)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (30)

where Pq(xq, xdN ) is the (q + 1)th state from xq to xdN , that is,
xq+1 = Pq(xq, xdN ).

The simulation results are shown as below, including
optimal costs for all possible transfer pairs (xq, xdN ) ∈

{A,T ,G,C} × {A,T ,G,C}, Jq, 0 ≤ q ≤ 8, graphical repre-
sentation in Figure 6, and optimal path Pq, 0 ≤ q ≤ 7.

J0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

5.21 5.09 0.64 0

6.15 6.79 0 3.82

3.82 0 6.79 6.15

0 0.64 5.09 5.21

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

J1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0.64 5.09 5.21

3.82 0 6.79 6.15

6.15 6.79 0 3.82

5.21 5.09 0.64 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

J2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

5.21 5.09 0.64 0

6.15 6.79 0 3.82

3.82 0 6.79 6.15

0 0.64 5.09 5.21

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

J3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0.64 5.09 5.21

3.82 0 6.79 6.15

6.15 6.79 0 3.82

5.21 5.09 0.64 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

J4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

5.21 5.09 0.64 0

6.15 6.79 0 3.82

3.82 0 6.79 6.15

0 0.64 5.09 5.21

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

J5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0.64 5.09 5.21

3.82 0 6.79 6.15

6.15 6.79 0 3.82

5.21 5.09 0.64 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

J6 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

5.21 5.09 0.64 0

6.15 6.79 0 3.82

3.82 0 7.88 6.15

0 0.64 5.09 5.21

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

J7 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0.64 5.09 5.21

3.82 0 8.48 6.15

6.15 7.88 0 3.82

5.21 5.09 0.64 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

J8 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

5.21 6.60 2.33 0

6.15 8.95 0 3.82

4.61 0 9.17 7.24

0 0.64 5.09 10.28

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(31)
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P0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A,T T T T

A,C A,C C C,T

G G G G

A A,G A,C A

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

P1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

T T T A,T

C,T C A,C A,C

G G G G

A A,C A,G A

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

P2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A,T T T T

A,C A,C C C,T

G G G G

A A,G A,C A

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

P3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

T T T A,T

C,T C A,C A,C

G G G G

A A,C A,G A

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

P4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A,T T T T

A,C A,C C C,T

G G G G

A A,G A,C A

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

P5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

T T T A,T

C,T C A A,C

G G G G

A A,C A,G A

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

P6 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A,T T T T

A,C A C C,T

G G T G

A A,G A,C A

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

P7 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

T T T A

T C A A

G T G G

A C G A

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(32)

For simplicity, we use 1 to represent A, 2 to G, 3 to C, and
4 to T in graphical interpretation. From Figure 6, we can see
clearly that the optimal cost decreases as q decreases in the
first few steps, and then optimal cost remains at the global
minimum. This phenomenon obeys Proposition 7. In this
example, global optimal is reached at M = 5 for all pairs of
initial and final states as J7 /= J5 = J3 and J6 /= J4 = J2. So, the
global minimum is achieved before we reach N − 5 = 4 in
this particular case. This also implies that with N free we can
reach desired final state in 4 steps from given initial state.

Observing closely to Jq, 0 ≤ q ≤ 5, Jq−1 equals to Jq by
exchanging the first and the last columns, and the second and
the third columns, which is consistent with Proposition 8. Or
we can exchange the first and the last rows, and the second
and the third rows of Jq to obtain Jq−1. Jq1 and Jq2 are the
same for q1, q2 ≤M = 5 for q1− q2 = 0 (mod 2). This obeys
Proposition 7.

The optimal trajectories are generated from Pq(xq, xdN ).
For example, given x2 = T , and the final state xd9 = G, we
want to generate the optimal trajectories.

x3 = P2(T ,G) = A,G.
If x3 = A, x4 = P3(A,G) = T ; if x3 = G, x4 =

P3(A,G) = C.
If x4 = T , x5 = P4(T ,G) = A,G; if x4 = C, x5 =

P4(C,G) = G.
If x5 = A, x6 = P5(A,G) = T ; if x5 = G, x6 =

P5(G,G) = C.
If x6 = T , x7 = P6(T ,G) = A,G; if x6 = C, x7 =

P6(C,G) = G.
If x7 = A, x8 = P7(A,G) = T ; if x7 = G, x8 =

P7(G,G) = C.
So, the optimal routes are
T → A → T → A → T → A → T

uTG→
αTG

G;

T → A → T → A → T
uTG→
αTG

G → C → G;

T → A → T
uTG→
αTG

G → C → G → C → G;

T
uTG→
αTG

G → C → G → C → G → C → G.

Consequently, the optimal cost is J2(T ,G) = 0.64 = αTG.
Optimal trajectories for other pairs of initial and final

states can be obtained in the same manner.
It takes less than 1 second to generate optimal trajectories

for all pairs of initial and final states with N = 9 on a
regular desktop. Since we have already proven by the brute
force method that the global optimal can be achieved with
M ≤ 6, the computation time can be further reduced by
taking N = 6 with all the results necessary for this example.

3.2. Codon-to-Codon, Deterministic Optimal Control Problem.
For codon-to-codon deterministic mutations, we formulate
our optimal control problem as

J0(x0) = min
uik,l1

, 0≤k≤N ,

1≤l1≤l, 1≤i≤3

⎧
⎨

⎩

N−1∑

k=0

l∑

l1=1

3∑

i=1

αl1u
i
k,l1 + d

(

xN ,
{

xdN
})

⎫
⎬

⎭
,

(33)

subject to

xk+1 =
⎛

⎝−I +
l∑

l1=1

3∑

i=1

uik,l1seie
T
i

⎞

⎠xk, (34)

with x0, xdN ∈ F 3
\{0} given, xk ∈ F 3

\{0}, for all k, 0 ≤ k ≤ N ,
and d(ϕ1,ϕ2), ϕ1,ϕ2 ∈ F 3

\{0} as defined in Section 2.3.
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Figure 6: Graphical representation of Jq, 0 ≤ q ≤ 8, N = 9, in single-base deterministic mutation example. The x-axis and y-axis represent
xq and xdN , respectively. Jq(xq, xdN ) are represented by 16 isolated points. Those discrete points are connected together to show the surface.

If we take the same assumption on available mutagens as
in Section 3.1, then we can write update equation for optimal
control policy explicitly as

Jq
(

xq
)

= min
uiq,l1

, 1≤l1≤l, 1≤i≤3

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αx1
qψ1 + Jq+1

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

ψ1

x2
q

x3
q

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

,

αx2
qψ2 +Jq+1

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

x1
q

ψ2

x3
q

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

,αx3
qψ3 +Jq+1

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

x1
q

x2
q

ψ3

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

,

ψ1,ψ2,ψ3 ∈ {A,T ,G,C} ⇐⇒ F\{0}

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

(35)

with xiq ∈ {A,T ,G,C} ⇔ F\{0}, 1 ≤ i ≤ 3 denotes the ith

element of xq ∈ F 3
\{0}, and xiq denotes the complementary

base of xiq.

The optimal control sequences depend on the numerical
values of αl1 s and d(ϕ1,ϕ2), ϕ1,ϕ2 ∈ F 3

\{0}. Though we do
not have real values of αl1 s and d(ϕ1,ϕ2), we can always
obtain simulation results to compare the result differences by
assigning different numerical values to those parameters.

Therefore, we use three different assignments of αl1 s and
the same d(ϕ1,ϕ2) to generate our simulation results. Those
three assignments of αl1 s are χ, 5χ, and 0.5χ, respectively, with
χ the same as assigned in Section 3.1. In every particular
example, it takes approximately 2 seconds on a regular
desktop to generate the optimal path table for all pairs of
initial and final states with N = 19, and the dynamic
programming algorithm ensures that the optimal control for
tail problems is generated at the same time.

The graphical interpretation of three assignments are
shown in Figures 7, 8, and 9, respectively. The x-axis
and y-axis denote xq and xdN , respectively. For a codon

[ψ1 ψ2 ψ3]T , ψ1,ψ2, ψ3 ∈ {A,T ,G,C} ⇔ F\{0}, its index
is calculated by

42(ψ1 − 1
)

+ 4
(
ψ2 − 1

)
+ ψ3, (36)

where ψi = 1 if A, ψi = 2 if G, ψi = 3 if C, and ψi = 4 if T ,
1 ≤ i ≤ 3, for the simplicity of graphical interpretation. A
codon has 43 = 64 combinations. Thus, there are 642 pairs
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Figure 7: Graphical representation of Jq, q = 0, 1, 2, 3, 15, 16, 17, 18 for codon-to-codon deterministic mutations, with αl1 = χ, N = 19.

of initial and final desired states, and there are 64 × 21
pairs of initial state and final desired set. The surface is
generated by connecting 64 × 64 discrete points together. Jq
is calculated following the same procedure as in base-to-base
deterministic cases. The value of optimal cost can be read
directly from graphical interpretation, and the optimal path
can be generated from path matrix Pq, similar to base-to-base

deterministic case. Both Jq and Pq, for all q, 0 ≤ q ≤ N , are
of 64 × 64 dimension.

From the graphical interpretation and Table 10, we find
that the value of q where the global minimum is reached at
the first time decreases as αl1 decreases. And J0 is more similar
to J18 with α = 5χ than with α = χ or α = 0.5χ. This implies
that if d(ϕ1,ϕ2) are the deterministic term in our objective
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Table 10: Simulation results with different αl1 assignments and the first q where the global optimal is reached.

N αl1 M (first q when theglobal minimum is reached) Global minimum

19 0.5χ q = 12 J12 (x12)

19 χ q = 13 J13 (x13)

19 5χ q = 15 J15 (x15)
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Figure 9: Graphical representation of Jq, q = 0, 1, 2, 3, 15, 16, 17, 18 for codon-to-codon deterministic mutations, with αl1 = 0.5χ, N = 19.

function, then the treatment plan is made to drive the final
state as close to the desired set as possible; if the costs of
applying mutagens is the deterministic term in the objective
function, then the treatment plan tends to stay in the original
state and applies less mutagens; if they are of equal weight,
then the treatment plan deals with this tradeoff.

Moreover, no matter how the numerical values of final
penalty and the costs of applying mutagens changes in our
objective function as shown in (33), there is always a M,

M ≤ N − 18, JM(xM) is global minimum. Proposition 7 can
be extended to codon-to-codon deterministic mutations as
stated in Proposition 9.

Proposition 9. Given an optimal control problem with objec-
tive function in the form of (33), constraints in the form of
(34), and all available chemical mutagens and their corre-
sponding transfer pairs and costs as listed in Tables 6, 7, and
8, Jq(ϕ) ≤ Jq+1(ϕ), ϕ ∈ F 3

\{0}. If, in addition, the system is
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Table 11: 12 kinds of mutagens, each corresponding to major transfer patterns, and the probabilities of different mutagens on different
transfer patterns.

From
To

Index (l1)
A G C T

Major transfer pattern

1 A p(h)
1,AA p(h)

1,AG p(h)
1,AC p(h)

1,AT A → A

2 A p(h)
2,AA p(h)

2,AG p(h)
2,AC p(h)

2,AT A → G

3 A p(h)
3,AA p(h)

3,AG p(h)
3,AC p(h)

3,AT A → C

4 G p(h)
4,GA p(h)

4,GG p(h)
4,GC p(h)

4,GT G → A

5 G p(h)
5,GA p(h)

5,GG p(h)
5,GC p(h)

5,GT G → G

6 G p(h)
6,GA p(h)

6,GG p(h)
6,GC p(h)

6,GT G → T

7 C p(h)
7,CA p(h)

7,CG p(h)
7,CC p(h)

7,CT C → A

8 C p(h)
8,CA p(h)

8,CG p(h)
8,CC p(h)

8,CT C → C

9 C p(h)
9,CA p(h)

9,CG p(h)
9,CC p(h)

9,CT C → T

10 T p(h)
10,TA p(h)

10,TG p(h)
10,TC p(h)

10,TT T → G

11 T p(h)
11,TA p(h)

11,TG p(h)
11,TC p(h)

11,TT T → C

12 T p(h)
12,TA p(h)

12,TG p(h)
12,TC p(h)

12,TT T → T

Table 12: Sample probabilities with respect to different mutagens and different transfer patterns.

From
To

Index (l1)
A G C T

1 A 0.90 0.05 0.03 0.02
2 A 0.11 0.58 0.21 0.10
3 A 0.14 0.16 0.42 0.28
4 G 0.85 0.07 0.03 0.05
5 G 0.02 0.02 0.92 0.04
6 G 0.10 0.09 0.22 0.59
7 C 0.79 0.13 0.04 0.04
8 C 0.01 0.02 0.87 0.10
9 C 0.04 0.12 0.09 0.75
10 T 0.13 0.76 0.05 0.06
11 T 0.07 0.03 0.62 0.28
12 T 0.08 0.04 0.25 0.63

completely controllable, ∃M, s.t. JM(ϕ) is the global minimum
and for all q ≤ M, Jq(ϕ) = JM(ϕ) if M − q ≡ 1 (mod 2),
and Jq(ϕ) = JM(ϕ) if M − q ≡ 0 (mod 2). In our example,
M ≥ N − 18.

Proof. We only prove that M ≥ N − 18 here since the rest is
similar to the proof of Proposition 7.

The objective function in (33) can be written as the
summation of three separate single-base mutation systems
and the distance reference between final states and the final
desired set, that is,

Jq
(

xq
)

= min
n1,n2,n3≥0

2N≤n1+n2+n3≤3N−1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jn1 (xn−1)
(

x1
q,ψ1

)

︸ ︷︷ ︸

optimal costs of base-to-base
deterministic optimal control

problem formed by the 1st base

+ Jn2 (xn−2)
(

x2
q,ψ2

)

︸ ︷︷ ︸

optimal costs of base-to-base
deterministic optimal control

problem formed by-the 2nd base

+ Jn3 (xn−3)
(

x3
q,ψ3

)

︸ ︷︷ ︸

optimal costs of base-to-base
deterministic optimal control problem

formed by the 3rd base

+d

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

ψ1

ψ2

ψ3

⎤

⎥
⎥
⎥
⎦

,
{

xdN
}

⎞

⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(37)

where N − q = (N − n1) + (N − n2) + (N − n3).
According to Proposition 7, JN−6(xN−6) is guaranteed to

be the global optimal for single-base mutations. Therefore,
optimal costs corresponding to three single-base mutation



Journal of Biomedicine and Biotechnology 21

systems, Jn1 (xn−1)(x1
q,ψ1), Jn2 (xn−2)(x2

q,ψ2), Jn3 (xn−3)(x3
q,ψ3)

are guaranteed to reach their own global optimal at n1 =
n2 = n3 = N − 6 with all possible combinations of ψ1,
ψ2,ψ3 ∈ {A,T ,G,C}. Therefore, q = N − 18 is a guaranteed
global optimal.

Indeed, Proposition 9 is a quite loose condition. In real
examples above, the M value where the first global optimal is
reached at earlier stage as listed in Table 10.

Graphically, the indices of complementary codons ϕ1 =
[ψ1 ψ2 ψ3]T and ϕ2 = [ψ1 ψ2 ψ3]T sum up to 65, that is,
(
16
(
ψ1 − 1

)
+ 4

(
ψ2 − 1

)
+ ψ3

)

+
(
16
(
ψ1 − 1

)
+ 4

(
ψ2 − 1

)
+ ψ3

)

= (16
(
ψ1 − 1

)
+ 4

(
ψ2 − 1

)
+ ψ3

)

+
(
16
((

5− ψ1
)− 1

)
+ 4

((
5− ψ2

)− 1
)

+
(
5− ψ3

))

= 65.
(38)

Therefore, Jq and Jq−1, 1 ≤ q ≤ M are symmetric about the
plane x = 32.5, Jq−2 and Jq, 2 ≤ q ≤ M are the same, as
shown in Figures 7, 8, and 9.

However, Proposition 8 cannot be extended to codon-to-
codon deterministic case due to the redundancy of genetic
codes, that is, the set of codons translated to the same amino
acid varies from one amino acid to another as shown in
Table 5. The simulation results show that the costs, a pair of
complementary codons, to two final desired set generated by
a pair of complementary final desired codons are different,

that is, Jq(xq, {xdN}) /= Jq(xq, {xdN}), in general, for any q.
Graphically, the optimal cost profile Jq is not symmetric
about the plane y = 32.5 for Jq−1, 1 ≤ q ≤M. Therefore, the
doctors need to pick the strand with lower cost to make the
treatment plan. This also implies that in large-scale cases, for
instance, a gene containing hundreds of nucleotide bases, the
doctors should make the treatment plan based on the strand
the total cost of which is lower than the other.

3.3. Codon-to-Codon, Stochastic Optimal Control Problem.
The optimal control problem of codon-to-codon stochastic
mutations can be written as

J0(x0) = min
uik,l1

, 0≤k≤N−1

1≤l1≤l, 1≤i≤3

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N−1∑

k=0

l∑

l1=1

3∑

i=1

αl1u
i
k,l1

+ E
hik,l1

, 0≤k≤N−1

1≤l1≤l, 1≤i≤3

[

d
(

xN ,
{

xdN
})]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

(39)

subject to

xk+1 = −Ixk +
l∑

l1=1

3∑

i=1

uik,l1h
i
k,l1seie

T
i xk, (40)

with x0, xdN ∈ F 3
\{0} given, xk ∈ F 3

\{0}.

The major difference between deterministic and stochas-
tic systems is that we impose the random binary vector,
hik,l1 , in our system equation (40). We denote the probability

associated with h
i, j
k,l1 to be p(h)

l1,ψ1ψ2
with ψ1,ψ2 ∈ {A,T ,G,C}.

The equivalence relationship between j and ψ1ψ2 can be
found in Table 3.

Again, we assume that we have l1 = 12 kinds of mutagens,
each corresponding to one major transfer pattern, associated
with probability assignments, as listed in Table 11.

Then, we can write updated formula for optimal control
policy explicitly as

Jq
(

xq
)

= min
uiq,l1

, 1≤l1≤l, 1≤i≤3
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where xiq ∈ {A,T ,G,C} ⇔ F\{0}, 0 ≤ q ≤ N − 1,

1 ≤ i ≤ 3 denotes the ith element of xq ∈ F 3
\{0}, xiq
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Figure 10: Graphical representation of Jq(xq), q = 0, 1, 2, 3, 15, 19, 24, 28 for codon-to-codon stochastic mutations, with αl1 = χ, probability
assignment as in Table 12, N = 29.

denotes the complementary base of xiq, and l1 : ψ1ψ2 ∈
{A,T ,G,C} × {A,T ,G,C} → {integers from 1 to 12}, the
mapping from major transfer pattern ψ1 → ψ2 to mutagen
index, as shown in Table 11. The mathematical expression

of Eh2
q,l1(x2

qψ2)
[Jq+1([x1

q · x3
q]
T

)] and Eh3
q,l1(x3

qψ3)
[Jq+1([ x1

q x2
q · ]T)]

is similar to Eh1
q,l1(x1

qψ1)
[Jq+1([· x2

q x3
q]
T

)] as shown above.

In order to run the simulation, we assign numerical
values to probabilities in Table 11, as illustrated in Table 12.

As in Section 3.2, we use three different assignments for
αl1 s, χ, 5χ, and 0.5χ, respectively. The optimal cost profile Jq
with selected q values, for every pair of (xq, xdN ), is graphically
interpreted in Figures 10, 11, and 12, respectively, with N =
29, with computation time of approximately 7 seconds on a
regular desktop.
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Figure 11: Graphical representation of Jq(xq), q = 0, 1, 2, 3, 15, 19, 24, 28 for codon-to-codon stochastic mutations, with αl1 = 5χ, N = 29.

The simulation results are similar to those in Section 3.2.
The profile of J0 is more similar to J29 when αl1 s are
assigned 5χ than χ or 0.5χ. This implies in codon-to-codon
stochastic mutations; the optimal control sequence behaves
as codon-to-codon deterministic cases, that is, the system
tends to getting as close as possible to the final desired
set if αl1 s are much smaller than d(ϕ1,ϕ2), and the system
tends to remain in the same state with minor mutations
when αl1 s are relatively larger than d(ϕ1,ϕ2),ϕ1,ϕ2 ∈ F 3

\{0}.

And Jq(ϕ) ≤ Jq+1(ϕ), ϕ ∈ F 3
\{0} is still valid in codon-to-

codon stochastic case.
However, for stochastic cases, we cannot reach a global

minimum because of the randomness caused by mutagens.
Since, in usual cases, there exists no stationary global mini-
mum, we need to define error tolerance ε, that is, if |Jq(ψ)−
Jq−1(ψ)| ≤ ε with the same {xdN}, then we can stop at Jq(xq).
Otherwise, we need to proceed to calculate Jq−2(ψ). The value
of ε is decided based on the doctors, experience. Obviously,
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Figure 12: Graphical representation of Jq(xq), q = 0, 1, 2, 3, 15, 19, 24, 28 for codon-to-codon stochastic mutations, with αl1 = 0.5χ, N = 29.

the smaller ε is, the better treatment plan is. However, we can
still observe Figures 10, 11, and 12 to conclude that J0 and J2
are almost of the same shape in all three different parameter
assignments. Higher dimensional optimal control problems,
gene-to-gene stochastic mutations, can be solved as a series
of cascade codon-to-codon stochastic problems.

4. Conclusion

In this paper, we present a mathematical model to deal
with mutations in the process of DNA replication in the

view of control systems. Different from the existing models,
our model is constructed directly from the basic biological
theories, the central dogma in molecular biology, and the
complementary base pair for DNA molecules with double
helix structure. It precisely describes how the induced muta-
tions affect the targeted DNA segments at molecular level. It
provides instrumental information of molecule interactions
in gene mutation for biologists and doctors to gain a better
understanding of cellular and tissue level systems’ behavior.
Our model is adaptive to point and multisite, deterministic
and stochastic mutations. Though we emphasize that we
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target at induced mutations during the process of DNA
replication in our work, this model can be extended to other
biological processes at molecular level, such as transcription
process and DNA brokage.

In our optimal control problem, the objective function
includes two factors: the risk/cost of applying mutagens
and the off-trajectory penalty. Under optimal control policy,
the summation of those two factors are minimized, by
dynamic programming, to propose a low-risk treatment
plan. We define the distance reference following the chemical
and physical properties of amino acids, representing the
penalty. Our objective is to drive the system from given
initial state to the final desired set generated by the final
desired state at the lowest cost. We define the final desired
set since redundancy in genetic codes gives us additional
options of final desired state to further lower the cost.
Dynamic programming algorithm ensures the optimality
of the solution. We also discuss three different small-
scale system, and show the simulation results of examples.
The optimal control problems of base-to-base deterministic
mutations and codon-to-codon deterministic mutations are
of theoretical importance. As shown in the propositions, the
global optimal can be reached within finite steps. If the step
limit is larger than the number of steps that global optimal
can achieve, then we have some flexibility in our treatment
plan. In addition, there exist multiple optimal paths with the
same total cost, given the initial state and the final desired set.
The optimal control problem of codon-to-codon stochastic
mutations is of practical importance, since codon is the basic
component forming long DNA sequences. The step limit N
is decided by doctors according to patients’ conditions, and
the treatment plan is made according to the initial state,
the final desired set, and the step limit. Since the doctors
constantly take measurement to see the result of treatments
at current stage, the treatment plan is updated accordingly.
Solving codon-to-codon stochastic optimal control problem
is a key step to realize the optimal control to gene-to-gene
stochastic mutations in the real world.

Our work contributes to several aspects in systems biol-
ogy. The optimal control sequences generated by dynamic
programming make it possible for biologists and doctors to
mutate certain sections of genes on purpose in laboratory,
at a relative low cost and low risk, which is an essential step
to identify the functional units, to examine the interactions
among different segments, and to find healthy, harmful, and
lethal nucleotide sequences. All those results are beneficial
in gene network construction. In addition, the fundamental
details of gene mutations at molecular level help biologists
to elaborate on the biological theories at the cellular and
tissue levels, such as the theory of evolution. Moreover,
by our method, biologists can distinguish the harmful and
beneficial mutations and induce beneficial mutations during
the evolution process in a proper way, which greatly helps
to save rare species in danger. Furthermore, our solution
to the optimal control problem proposed provides a new
medical intervention to genetic diseases. Compared to the
existing gene therapy, treatments by mutagens are safer by
avoiding the side effect of virus infection. Lastly, our work
also contributes to the construction of DNA computers.

Calculation errors, the mispairings in the process of two
single-stranded DNA segments, can be corrected at lowest
cost by applying a correct mutagen sequence.

Further work can be done by extending codon-to-
codon stochastic optimal control problem to gene-to-gene
stochastic mutations. The distance reference between DNA
segment with equal length can be defined as a weighted
sum of the distance references between codons. Since certain
combinations of amino acids are lethal, those high-risk
states should be avoided. This goal can be achieved by
either defining a preset trajectory or eliminating high-risk
sequences in the state space. Another possibility is to examine
system’s behavior under noisy measurements. Under this
situation, the spontaneous mutations can be modeled as an
additional random factor in our state updating equations,
and another random noises should be added to the output
equation.
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