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Abstract: Human computer interaction is a growing field in terms of helping people in their daily life
to improve their living. Especially, people with some disability may need an interface which is more
appropriate and compatible with their needs. Our research is focused on similar kinds of problems,
such as students with some mental disorder or mood disruption problems. To improve their learning
process, an intelligent emotion recognition system is essential which has an ability to recognize the
current emotional state of the brain. Nowadays, in special schools, instructors are commonly use
some conventional methods for managing special students for educational purposes. In this paper,
we proposed a novel computer aided method for instructors at special schools where they can teach
special students with the support of our system using wearable technologies.

Keywords: computer aided education; brain signal; EEG based emotion recognition; brain
computer interface

1. Introduction

In recent years, emotion recognition using brain signals has become more popular due to its low
cost with a vast application domain, such as medical applications, electroencephalogram (EEG)-based
games, and computer aided systems for students with mental disorders [1–4]. Human computer
interaction has become a part of everyday life. Similarly, emotions are important and constantly exist
in a person’s daily life. Emotion-related expression is ubiquitous in the daily routine [5–7]. It is an
important factor in human interaction and communication. Emotions can provide many possibilities
for enhancing the interaction with human subject using the emotion-based intelligent systems, e.g.,
affective interaction with autism or epilepsy patient [8]. Human learning process is significantly
influenced from emotional behavior of subject [2,9,10]. More specifically, while students are attentive
with pleasant feelings, they will definitely produce positive results.

In general, teachers observe students’ expressions through face-to-face communication which is
extremely difficult in the case of handling the students who have some mental disorder. Therefore,
it is required to develop a computer aided education system (CAES) which is capable of detecting the
current mood of the subject during his/her class time or pre-school time. It facilitates the teachers in
special schools where student have a learning difficulty due to their physiological disorder. To improve
the learning process of such students, an intelligent EEG-based emotion recognition can play a vital
role [11,12].

Intelligent instructor systems are designed to support instructors in order to improve the learning
experience by providing effective treatments to student [13]. Such systems have been found to
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benefit students by significantly increasing learning through cognitive models [14]. However, many
researchers have yet to consider an affective model which has been found to have a great impact on
learning process [14]. The use of an affective model in CAES will allow the system to identify emotions
and feedback the system accordingly avoiding emotions associated with a decrease in learning such as
sadness. In CAES, all emotions are not relevant in order to improve the students learning; only specific
emotions that are directly related to learning are known as “academic emotions” [15]. Pekrun et al. [15]
developed the academic emotions questionnaire (AEQ) in order to study academic emotions. Their
studies show that a wide range of emotions were observed in an academic setting and positive emotions
were described just as frequently as negative emotions. Examples of the “academic emotions” included
in AEQ were emotions such as happy, scared, sad and calm in arousal-valence domain. For emotion
recognition from human brain, it is made possible by using of EEG sensors that can monitor some of
the cognitive processes that occur within the brain that relate with certain forms of inner thinking.

State-of-the-art emotion recognition methods have been successful in associating the emotional
changes with the EEG signals, and so they can be identified and classified from EEG signals if
appropriate stimuli are applied [16–20]. However, automatic recognition is usually restricted to
a small number of emotion classes mainly due to signal’s feature and noise, EEG constraints and
subject-dependent issues. Accordingly, in this research a novel feature-based emotion recognition
model is proposed for EEG-based CAES interface. Unlike other approaches, our research explores a
wider set of emotion types, claiming that combining a mutual information-based Hjorth parameters
and classification technique may improve the accuracy of the emotion recognition task [21].

Our system mainly aimed to provide an emotion recognition and decision support in case of
unpleasant situations of student. It will help the instructor to determine the current situation of the
student. The system includes the facility for instructors to create and store treatment instructions
against the current emotional conditions of subjects. Instructors may use treatment features when
students have any emotion dysregulation, such as unpleasant feelings or boredom, etc. The system
keeps all moods-related treatment instructions for each student separately. These treatment instructions
will pop up automatically whenever a student is in a similar emotional condition in the future.

The study protocol was approved by the institutional review boards (IRBs) at Chonbuk National
University (CBNU-IRB 2013-4). All participants provided IRB-approved written informed consent
prior to study participation. The research methodology is explained in Section 2, which includes the
proposed system architecture and its implementation. A detailed description of CAES is provided in
Section 3. The discussion on our work is described in Section 4. Finally, we presented our conclusions
in Section 5.

2. Materials and Methods

CAES is software written almost entirely in Matlab scripts and Java. All functions are accessible
through a friendly user interface, without any interaction with Matlab, so the CAES library can be
used without any Matlab programming experience. Matlab provides a facility to use the EEGLAB [22]
functionality for any required processing of brain signals from an Emotiv headset. CAES graphical
user interface (GUI) is written in Java with integration of the Emotiv SDK (EDK). The use of EDK
provides an interface to the Emotiv headset. In this way, we can connect with the headset for recording
EEG signals, channels connectivity, etc. The use of Matlab and Java make CAES a fully portable and
cross-platform application.

Electroencephalography is by no means a new technology, being first used to record the electrical
activity of a human brain by Hans Berger in 1924. Traditionally, PEMED-MedCon: VG. Nihon
Kohden [23–25] and Admar Neuro-Cadwell Easy II EEG [26,27] are commonly used EEG devices
in many studies. Moreover, there are several options such as TrueScan32 (DeyMed Diagnostics,
Payette, ID, USA), ActiveTwo Analog Input Box (BioSemi, Amsterdam, The Netherlands), Easy II
EEG PSG Machine (Cadwell, Kennewick, WA, USA), 2EB Clinical System (BrainMaster Technologies,
Bedford, OH, USA), and selected TrueScan32 as the most attractive option with respect to their
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criteria [28]. While researching the suitable options for our target application of consumer grade brain
computer interface, we’ve found that affordability, portability and ease of use are not available in any
single product.

For practical EEG applications, costs, placement, and connectivity are major factors to be
considered as minimal. The advantages of our selected EEG headset are its low price, mobility,
and minimum setup time. The EEG signals were recorded with the Emotiv-EPOC System [29]. The
sensors are polycarbonate and the device includes 14 electrodes with two reference channels that
offer accurate spatial resolution. The device has an internal sampling rate of 2048 Hz before filtering.
To minimize the output bandwidth, Emotiv-EPOC passes the 0.2–43 Hz with digital notch filters at
50 Hz and 60 Hz. The normalized EEG signals were obtained through device built-in digital 5th
order Sinc-filter. The output sampling rate is 128 samples per second. We selected a 10/20 electrode
placement, which is the most effective international standard for capturing reliable EEG recordings
with the least number of electrodes [30]. The 10/20 EEG electrode placement is the commonly used
standard by most researchers for EEG-based emotion recognition through audio and visual stimuli.
This system is based on the relationship of different electrode positions located on the scalp and the
primary side of the cerebral cortex [31]. Emotiv headset have a total of 16 EEG channels (AF3, F7, F3,
FC5, T7, CMS, P7, O1, O2, P8, DRL, T8, FC6, F4, F8, and AF4), which were inserted for recording EEG
signals. Average reference channels (CMS/DRL) were placed in the P3/P4 locations.

Figure 1, shows the abstraction level of proposed system design. Students and instructors are
the primary users of our proposed system. Instructors have a direct connection with the system and
students. Students with some disability need to wear the brain signal device during class period.
The device has a wireless interface with application software, so the instructor can see the emotional
changes of the student through a feedback channel. At the end, the instructor may suggest and record
the treatment procedures in the case of the worsening conditions of the subject. These treatment
procedures are going to be stored in a central database and all treatment information is accessible all
the time.
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Figure 1. Computer-aided education system.

Figure 1 shows a direct relationship between instructor and student. In order to improve the
learning process of special subjects, the instructor has to monitor their mood status at the beginning of
every learning session. The instructor then responds to the students on the basis of their cognitive
and affective states. For example, if a student has shown some mood disruption (fearful/sadness),
the instructor should need to treat a special subject carefully to improve his/her emotional feelings
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towards a relaxed or normal state. Further, CAES has a core feature to maintain the complete school
database which contains the all students’ treatment plans. This feature will enable the system to
provide a full coverage of students’ mood behavior, more effectively.

2.1. System Level Design

We would like to explain the technology, which is used in the proposed system. Figure 2, shows the
data flow of the proposed system. The diagram flow starts from EEG brain device through a Bluetooth
connection adaptor (BAC). The connection adaptor provides a connection to the brain signal adaptor
(BSA) and it goes directly to the emotion recognition module (ERM). This component includes the
emotion detection and other modules which will be discussed in further sections. This component can
forward data to the storage devices (SD), network storage system (NSS) and information management
module (IMM) through IO adaptor (IOA). IMM is also connected to instructor treatment module (ITM)
for retrieval and updates of treatment procedures.
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Figure 2. System level component diagram (main system components).

In Figure 3, we are presenting the package diagram of our CAES development. It contains several
packages which are representing the main components of our system. All of our designed packages are
inside ‘chonbuk.sel’ which represents our organizational flow. Each package has its own functionality
and purpose, such as:

(1) chonbuk.sel.emotiv: the package named ‘emotiv’ has a main purpose of connectivity with the
Emotiv headset using Edk.dll, where Edk is a library for providing an interfacing between EEG
machine and our development components. Edk class is bundled with a collection of functions
which are easily accessible in our Java program for example, headset signal streaming, EEG
channel connection quality and headset battery status.

(2) chonbuk.sel.eeg: this package has been placed between ‘emotiv’ and the other system packages.
It has been used for calling the functions of Edk from our programs which is a kind of interfacing.
This package contains an EEGDriver class, which is a kind of singleton instance which provides
the real-time EEG data to caller programs.

(3) chonbuk.sel.eegheadset: this package is responsible for presentation of real-time EEG data on
the screen with other headset’s functions such as battery status, channel connectivity status, etc.
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It also contains the functionality of managing the EEG data streaming by using of packages such
as, ‘eeg’ and ‘emotiv’.

(4) weka.classifiers: this package is an external package from WEKA which contains a bundle of
machine learning functionalities such as, SVM, KNN, and so on.

(5) chonbuk.sel.eegsimulation: this package has classes for performing the simulation for
training purposes.

(6) chonbuk.sel.eegpms: this package corresponding to user profile management, such as for creating
a new user, storing user EEG data into database. We kept the user database in the form of Java
object file for each user, separately.

(7) chonbuk.sel.core: this is our core package, where emotion recognition module of our system
works perfectly. This package is linked with main functionality of our system such as,
computation of Hjorth parameters, EEG band pass filtering, emotion recognition, instructor
treatment, etc.

(8) junittesting: at the end, we performed the unit testing of the developed system. The testing was
performed only on the main functions of CAES for example; EEG data storage and retrieval,
emotion recognition verification, etc.
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Figure 4 presents the class diagram of our development of graphical user interfaces. It contains
the main interface in MainFrame which is a top level interface of our system. UserLoginSystem class
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has a user login functionality with existing users’ profiles. EEGPanel is part of the ‘eegheadset’ package
which corresponds to real time EEG data visualization. TopPanel is a top panel of CAES, where we
can see the EEG channel’s connectivity status, logo, and user information. ExpressiveMode class is
responsible of emotion recognition module of our system with collaboration of other classes such as
classes from WEKA.Sensors 2017, 17, 317 6 of 21 
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Figure 4. Class diagram representing the main graphical user interfaces of system.

The following class diagram in Figure 5 is about the functionality of ‘eegheadset’ which is
responsible for EEG data acquisition and real-time EEG visualization. EEGPanel is the top level class
of this package which contains the ChartPanel, MyTrainingPanel, and EEGPanelCheckBox. JFreeChart
is an external class from an open source chart visualization project and it is embedded through the
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ChartPanel. TrainingTask is a multithreaded inner class of MyTrainingPanel which has user training
session functionality for recording an EEG data for training purposes.Sensors 2017, 17, 317 7 of 21 
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training management. 

  

Figure 5. Class diagram for headset package and its functionality for visualizing EEG data and user
training management.
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A more specific class diagram of emotion recognition using the WEKA interface Classifier is
presented in Figure 6. WekaEEGSystem is a top level class is running under ExpressiveThread in its
own separate thread instance. The Instances class from WEKA has been used for creating training and
testing datasets. Later, these datasets were used by WekaEEGSystem through Classifier. Moreover,
ExpressiveThread uses and is dependent on functionality, by instance of ExpressiveMode.Sensors 2017, 17, 317 8 of 21 
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corresponding user profile. 

Figure 6. Class diagram contains class structure of emotion recognition module which has linking with
WEKA for emotion classification.

Finally, we present the class diagram for the user profiling system in Figure 7. EEGProfileManager
has a lot of facilities to manage the EEG user profile instances. EEGProfile corresponds to each single
user profile which contains the user EEG data in the form of training epochs, user naming information,
and treatment plans, if any treatment is inserted by any instructor. Treatment and EpochList are inner
classes of EEGProfile and Epochs class is an inner class of EpochList. Epochs represent a single EEG
signal epoch and is stored in the Epochlist List data structure. There are get methods in all classes
which are used to retrieve the stored information of the corresponding user profile.
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2.2. The Proposed System Methodology

Figure 8 shows a detailed description of ERM. This component takes a single input connection
which contains the brain device signals. The data preprocessing unit filters the signals’ data through
frequency filters from 0.5 to 30 Hz. It includes four frequency filters such as delta, theta, alpha, and beta.
These frequency filters are applied to each brain signal separately. The filtered data is forwarded
to the feature extraction module of this component. We employed three kinds of features such as:
(1) frequency filtered data; (2) Hjorth parameters with 14 brain signals; and (3) Hjorth parameter with
06 brain signals. The Hjorth parameters from 14 brain channels were selected from all brain regions
such as, frontal, central, temporal, parietal, and occipital, but the Hjorth parameters from 06 brain
channels were selected from only frontal and central brain lobes. Further, we extract these features
from brain signals and process them in the two different classifiers that are support vector machine
(SVM) and k-nearest neighbor with 10-fold cross validation. At the end, this component finalizes the
current emotional status against the input signals and forwards the current subject emotional status to
the IMM component of the system.
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The proposed system collects the signals from a brain device (EEG-device) which is located on
the scalp of a subject. The signals are processed through a Bluetooth connection adaptor (BAC) that is
provided by the Emotiv development kit (EDK) library [29].

The system allows users to record the training sessions of subjects by running an emotion-based
simulation. The system has predefined images set of four emotional states: sad, scared, happy, and
calm. A total of 180 images (45 pictures × 4 states) was selected from equally distributed groups along
the arousal-valence axes of international affective picture system (IAPS) database [32–34]. Further,
when the training session completes we use the WEKA [35] data mining library to build the emotion
classification model. The emotion model will be stored for emotion detection in the expressive
mode of the system. Figure 9 shows the IAPS dataset selection for CAES, it also shows the sample
emotional images in the corresponding coordinates. The top/bottom-right/left coordinates represent
the happy/calm and scared/sad emotion related images in the IAPS dataset. During training sessions,
instructors have the option to start training using these images according to system settings.

The expressive mode of the system detects the current mood of subjects and shows the emotional
avatar. Here, an instructor may add or update the treatment procedure of subjects according to a
subject’s mental condition. The expressive module shows the treatment suggestions to the instructor in
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the case of an unpleasant situation of a subject, if any treatment guideline is already stored in previous
sessions. Furthermore, the following pseudocode explains the systematic flow of the proposed system
in a real time environment.Sensors 2017, 17, 317 11 of 21 
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Algorithm 1 is showing the core functionality of CAES. It two conditional statements, one is for
ExpressiveMode, and the other one is for TrainingMode. The ExpressiveMode is used for emotion
recognition and it will help the instructor manage the students. It actually consists of two main
modules that are ERM and ITM. We employed different feature extraction methods in ERM such as
the filtered brain signals and Hjorth parameters. The feature vector computed from filtered brain
signals contains the maximum length of 2688 data points in each feature vector for each emotion.
The second feature extraction method is known as the Hjorth parameter extraction. These parameters
are statistical functions which describe the characteristics of brain signals in the time and frequency
domains. The Hjorth parameters are also known as normalized slope descriptors (NSDs) that consist of
activity, mobility and complexity. The parameters can be computed based on the following derivations.
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Algorithm 1. CAES in real time settings

Begin

Step 1 user login to the system
Step 2. establishing a device connection using EDK
Step 3. Repeat
Step 4. acquiring brain signals
Step 5. user has to select either ExpressiveMode or TrainingMode
Step 6. if ExpressiveMode equals to true
Step 7. extract raw signals
Step 8. applying frequency filters
Step 9. extract Hjorth features from all signals
Step 10. calling classification module for emotion detection
Step 11. rendering the emotions avatar
Step 12. displaying instructions of treatment according to subject condition
Step 13. end
Step 14. if TrainingMode equals to true
Step 15. start emotion based simulation
Step 16. recording of brain signals
Step 17. if Simulation equals to end
Step 18. building a classification model using WEKA library
Step 19. store classification model into database
Step 20. endif
Step 21. endif
Step 22. until stop

End

The instructor has to set up a training session with a student in the case of TrainingMode which is
activated by him/her. The instructor will record the brain signals from students under his supervision.
Training sessions are more sophisticated and important for correct emotion recognition. Therefore,
the instructor should monitor the students’ physical behavior during the training session. He/she can
also guide the student about the training session before the session starts.

The automated program will process the brain signal recordings after the completion of every
training session. The system process also includes the band pass filtering and building the new
classification model. The proposed system allows users to train multiple sessions at any time. Every
time the system will update the existing training model with new recorded brain signals.

3. Computer Aided Education System (CAES)

However, the existing methods are extremely subjective and waste a significant amount of energy
of the teachers while instructing special students. The proposed system CAES helps the instructors
or teachers in special schools where they have to teach disabled students. The CAES works with the
brain device which measures the electrical signals from a human scalp in real-time. This system is
aimed at helping instructors deal with students in special schools. These students may have some kind
of physical disabilities, for example, autism or epilepsy, etc. The instructor has to operate this system
with target students, which helps them recognize the current emotional condition of subjects.

This system has proposed a novel approach to help instructors at special schools, whereby
instructors may improve the learning process of disabled students. The proposed method includes the
emotion recognition based on brain signals and intelligent decision support for instructor in case of
some unpleasant condition of a student. Figure 10 gives an overview of the system flow of CAES.
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• The instructor is the system admin and it helps the subject in the whole process.
• The subject is an end user of the system. Its inner brain activity generates a signal pattern.
• Brain signals are collected from the scalp of subjects.
• These emotions (happy, calm, sad, and scared) are selected for recognition.
• The psychological treatment always depends on the behavior or emotion of each subject.

# The system allows the instructor to add or update the treatment plan of current Subject.

• The database is the central repository of all treatments and procedures of subjects, which are
recorded by instructors.
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The proposed system is bundled with main features such as user management, brain device
control panel, expressive panel, treatment panel, etc. The following features are the main components
of our proposed system.

3.1. List of Features

• User (Student) Information Module

# It contains the existing user of the system
# It allows to create new User or Subject
# It allows the User to connect to brain device

• Device Control Module (Headset Setup)

# It shows the current status of all device electrodes
# It shows the signal activity in brain through each electrode in 2d Chart
# It shows the battery status of the device

• Events Module

# This module records all activities of system such as, device connection, exceptions, training,
user login, logoff, etc.
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• Expressive Module

# It shows the current mood of the subject
# It records current mood of the subject
# It allows the instructor to add or update new treatment of current subject
# It guides the instructor about the treatment plan for current subject

3.2. System Major Components and Functionalities

CAES is used through its interface which has a variety of functions. These complex functions
are easily accessible on the top level GUI which has been added to simplify access by the end users.
This system is itself a generic environment structured around one unique interface in which specific
functions were implemented (Figure 11). From the user perspective, its component structure is more
contextual rather than linear: the multiple features of the software are listed in simple menus; some
other specific functions are accessible only when needed and are typically suggested within contextual
tab windows. In this way, the system provides a user-friendly access to user in order to provides faster
and easier access to the desired functions. In Figure 11, the main system’s GUI provides access to end
users. Three main components of the system are displayed: (1) menu section, including a variety of
functions; (2) top panel: showing a headset channel, system logo, and user information; (3) tabbed
panel: including the user-login, headset-mode, expressive-mode. Further, the CAES main components
will be explained through the following system level interfaces from Figures 11–16.
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Figure 12. CAES (menu details) shows the menu options of the proposed system. A user can select
any option from the above menu and he/she will see the results according to his/her menu-option
selection. Different kinds of functions are accessible through the above menu options depending on
the user requirements; for example, if the instructor is only interested in two emotions (happy, scared)
he needs to choose the first option in the emotions menu, and similarly users have different features
and classification options.
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Figure 14. CAES (headset setup); this is also known as the device control module: (a) this component
shows the device-related events and records into the database; (b) is the training progress bar; (c) the
training component that allows the instructor to record the emotion training of the current subject; this
module computes and updates the classification model after each training session; (d) this component
shows the signal activity of each electrode of the brain device; (e) this component helps the user select
his/her desired brain electrode.
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Figure 15. CAES (expressive mode), is a core component of our proposed system: (a) it displays
the emotional avatar against the current mental condition of the subject; (b) this contains the list
of emotions and helps the instructor see the subject’s previous behavior, especially in unattended
situations; (c) this component guides the instructor with detailed suggestions from other instructors of
the same subject. In this way, any instructor can easily understand the subject conditions and is also
helpful for him to deal with the current situation.
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4. Discussion

It is well known that emotions play a vital role in our daily life. Emotional behavior has a crucial
involvement in students’ studies. More specifically, while students are attentive with pleasant feelings,
they will definitely produce positive results. Therefore, we have proposed a system (CAES) which has
the ability to detect the current mood of subjects during his/her class time or pre-school time. It helps
the teachers in special schools where students have learning difficulties due to their physiological
disorder. The proposed system is designed to support instructors in order to improve the learning
experience by providing effective treatment for students.

This paper describes a technology used in intelligent CAES to recognize the emotional activity
and respond to student affect in order to improve his/her learning capabilities. We identified emotion
indicators in valence and arousal states linked to student learning, as well as physical behaviors linked
to emotional states. The proposed system gives feedback to instructors which guides further treatment
in case of any mood disruption in students. As mentioned in Figure 16, we can see the treatment
guidelines are available for all instructors in each targeted emotion module. The instructor-on-duty
may use the previous mood history and treatment guidelines of current subjects in case of any
mood disruption problem. Instructors also can modify any part of the emotion treatment guidelines,
per the requirement.

In this study, we consider that instructors are well trained in handling the students in special
schools. To improve the learning process of students, instructors should follow the special mood
treatment procedures for each individual, separate. Once an instructor is well aware of student’s
current mood, he/she can teach him/her accordingly. There is also the possibility that some students
with severe symptoms may require home instruction, hospitalization, a self-contained program,
day treatment, or a residential setting.

This study adopted the IAPS protocol, while using CAES in order to determine its accuracy
and applicability in a school environment. To identify the correct emotional activity of subjects, it is
very important to train the subjects properly for different emotional changes. Academic emotions
in arousal-valence were included in the system for training purposes. To stimulate the emotional
activity inside the brain, IAPS images were integrated in the system which can be used during subjects’
training sessions. The system is capable of doing multiple training sessions anytime, which will help
record subjects’ mood changes frequently, therefore we developed a system with emotional-feedback
for subjects’ treatment in case of emotional disruption or dysregulation. All treatments are well
synchronized and recorded under the current user’s login. Later, these treatment records will pop up
in case of any emotional changes in a subject while wearing the EEG headset.

The system was tested on an Intel Core i5 machine with 8 Gigabytes of internal memory. Emotional
feedback accuracy was tested using the emotion recognition method described in [21] which is
adequate enough to deal with subject mood problems. Due to limitations in accuracy using the EEG
headset, we preferred to recognize ten emotions from subjects over 15 s of time. Later, the final single
selected emotional-feedback is generated based on the majority in the emotional classes. In this way,
we could minimize the error rate in order to improve the student’s learning process. Overall, our
developed system is based on inexpensive EEG-devices which are easily available on the market.
The EEG-device is a lightweight, easy to set up, and comparatively cheaper consumer-grade EEG
device. The complete software application is bundled with a single executable file which is also very
lightweight in processing.

Unit testing was performed to verify the system quality and performance. We had used the junit
testing framework in Java for unit testing at the module level. In this way, we tested the core public
functions of CAES. Further, we also performed a heuristic evaluation of CAES whereby tests were
performed on five subjects requiring special assistance. The main purpose of this test is to evaluate the
system performance and verification.

Heuristic evaluation is a methodical procedure to check user interfaces for usability problems.
Once a usability problem is detected in a design, they are attended as an integral part of the constant
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design processes. Heuristic evaluation methods include some usability principles such as Nielsen’s
ten usability principles, so we considered the following rules which were proposed by Nielsen.

Table 1. Nielsen’s Ten Heuristic Principles.

HR1 Visibility of System Status
HR2 Match between system and real world
HR3 User control and freedom
HR4 Consistency and standards
HR5 Error prevention
HR6 Recognition rather than Recall
HR7 Flexibility and efficiency of use
HR8 Aesthetic and minimalist design
HR9 Help, diagnosis and recovery from errors
HR10 Documentation and Help

In the above Table 1, ten principles of Nielsen serve as a checklist in evaluating and explaining
problems for the heuristic evaluator while auditing an interface or a product like the HCI system.

For testing purposes, we graded each of the above rules between 0 and 9 for every heuristic test
(five times). Low system quality was graded as zero (0) and high system quality was graded as nine
(9). Later, we estimated the overall performance of the system by simply averaging the results from
each test against each rule and the results are presented in Figure 17. Only HR6 shows a lowest rating,
which is obvious because there is no auto text prediction in the case of treatment. The overall heuristic
results show the successful test of system usability of our CAES development.Sensors 2017, 17, 317 19 of 21 
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Moreover, we studied several intelligent systems for educational learning and
improvement [13,36,37]. Recently, a few studies have described pilot studies on modern teaching aids
in education using EEG-based subject’s emotional responses. Their main focus on how to improve
the student’s learning process using EEG human brain signals. Researchers also investigated the
computational thinking using EEG to improve their learning process and reduce their cognitive
workload [38,39], but to-date we could not find any EEG-based computer aided education system of a
similar nature.
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5. Conclusions

The selected EEG-device headset certainly has several advantages over traditional EEG systems,
being less expensive, convenient and easy to access. The EEG headset is bundled with a variety of
sample programs in EDK which is accessible and customizable in any programming environment.
CAES is fully developed and functioning using EDK to send the emotional feedback to the instructor.
While investigating the CAES, our main focus was to determine whether the emotional responses of
the system and subject matched properly in order to improve the student learning process. Modern
EEG-based computer aided systems may help develop the students’ abilities by boosting learning,
thinking, communication skills and cooperation. In order to bring subjects to a stable learning state,
instructors may have to instruct the subject in relaxation and environmental changes. Relaxation
exercises include deep breathing, slowly repeating calming phrases, use of imagery, and trying some
non-strenuous or slow exercises. As for environmental change, it can be some break time, video
games and visual simulations. Moreover, CAES represents a very important contribution towards
academic and practical research, and intelligent CAES has the ability to recognize the emotional activity
and respond to students’ emotions in order to improve his/her learning capabilities. In this system,
emotion indicators in valence and arousal states are linked to student learning, as well as physical
behaviors linked to emotional states. The proposed system gives feedback to instructors which guides
further treatment in case of any mood disruption in students. The instructor-on-duty may use the
previous mood history and treatment guidelines of current subjects in case of any mood disruption
problem. This system adopted the IAPS protocol based on academic emotions for appropriate decision
making and treatment by instructors.
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