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Design of a novel wheeled tensegrity 
robot: a comparison of tensegrity concepts 
and a prototype for travelling air ducts
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Abstract 

Efforts in the research of tensegrity structures applied to mobile robots have recently been focused on a purely 
tensegrity solution to all design requirements. Locomotion systems based on tensegrity structures are currently slow 
and complex to control. Although wheeled locomotion provides better efficiency over distances there is no litera-
ture available on the value of wheeled methods with respect to tensegrity designs, nor on how to transition from 
a tensegrity structure to a fixed structure in mobile robotics. This paper is the first part of a larger study that aims to 
combine the flexibility, light weight, and strength of a tensegrity structure with the efficiency and simple control of 
a wheeled locomotion system. It focuses on comparing different types of tensegrity structure for applicability to a 
mobile robot, and experimentally finding an appropriate transitional region from a tensegrity structure to a conven-
tional fixed structure on mobile robots. It applies this transitional structure to what is, to the authors’ knowledge, the 
design of the world’s first wheeled tensegrity robot that has been designed with the goal of traversing air ducts.
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Background
A tensegrity structure is comprised of elastic elements 
and rigid elements that interact so the structure extends 
over a space larger than the space of its individual parts. 
The sum of the forces between all its parts is zero; there-
fore, the structure is in equilibrium without the need of 
external forces. All elastic elements bear exclusively ten-
sional force, but not all tensional elements are elastic. The 
most spread-out use of rigid and elastic elements is struts 
and cables, respectively. The “Needle Tower” (Fig.  1) is 
made of aluminium struts and steel cables. The struts 
are suspended in the air held only by these cables. The 
structure rises with its internal energy compensating its 
potential energy. The first tensegrity structure was made 
by Latvian artist Karl Ioganson. It was shown in an exhi-
bition in 1921 as part of his “Cold Structures” in the early 
Constructivism movement. Categorised at the time as 
a “Spatial Construction” (Fig.  2), the structure made is 

currently known as a 3-strut prism or triangular prism. 
Unfortunately, there was no further development of the 
novel structural principle [1]. Tensegrity structures were 
rediscovered by sculptor Kenneth Snelson who created 
“X Piece” (also known as “Early X piece”) in 1948 when 
he was still a student [2]. His professor, Buckminster 
Fuller, “asked Mr. Snelson to make a variation on “Early 
X Piece”, which he later exhibited—without crediting 
his student—at an important exhibition at the Museum 
of Modern Art in 1959” [3]. They both ended up fill-
ing patents to claim authorship in 1959 (patent number 
3.063.521 granted on 1962 to Fuller) and 1960 (patent 
number 3.169.611 granted in 1965 to Snelson). There is 
also a patent (number 1.377.290) granted to Emmerich in 
France in 1963 [4]. The word tensegrity originated as the 
hyphenated word tensile-integrity structure, coined by 
Fuller in his patent. Similarly, Snelson coined the name 
continuous tension, discontinuous compression struc-
tures in his own patent.

Tensegrity structures eventually expanded beyond art 
into engineering. Many studies have been done in stat-
ics, kinematics, dynamics, and biology. The main fields 
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focused in tensegrity are civil engineering and robot-
ics. The latter have seen more than one thousand peer 
reviewed articles in the last 10 years. Research efforts in 
robotics span in all sub-categories of study inside tenseg-
rity: form-finding, kinematics, dynamics, control, and 
locomotion. Form-finding is the search for new topolo-
gies and morphologies of tensegrity structures. It also 
explores new methodologies to be used for the search 
itself. One of the sub-areas of exploration is biotenseg-
rity. This is the realm of tensegrity structures inspired by 
biology.

Most research papers focus on implementing tenseg-
rity to address all design specification requirements. 
Tensegrity and biotensegrity structures are light weight, 
strong, flexible, compliant, and distribute the loads to 
every single element. Yet, when it comes to locomotive 
efficiency, these structures do not perform as well. A man 
with a bicycle is capable of travelling much faster and far-
ther than a man running in spite of using the same source 
of power: the muscles in the legs. This work aims to join 
the advantages of tensegrity structures and wheeled loco-
motion. As a practical application of this new concept, 
it presents a biotensegrity structure that is able to climb 
through ducting by pressing wheels against the walls. 
The tensegrity structure is to provide the robot structural 
integrity as well as control of direction. The tensegrity 
structure, therefore, will need to provide enough flexibil-
ity to allow the robot to turn right, left, up, down, and in 
any other intermediate direction so the robot can change 
its path into other duct branches.

This paper is the first part of the above-mentioned 
study into wheeled tensegrity robotics. It focuses on the 
transitional region from tensegrity to a standard fixed 
mobile frame for wheeled locomotion. To the authors’ 
knowledge, there is no formal research work done on 
this area. It firstly introduces criteria of evaluation for a 
transitional region. Secondly, it reviews some of the avail-
able regular configurations of tensegrity structures as a 
preliminary study. Thirdly, it proposes new conceptual 
transitional regions to be validated later in the paper. 
Fourthly, it shows the design and prototype of a novel 
wheeled tensegrity robot. Finally, it presents discussion 
and conclusions. As a representative problem that can 
be solved by a tensegrity-based wheeled robot, we have 
chosen the mechanical traversal and navigation of duct-
ing networks. Ducting networks in buildings and indus-
trial facilities can span and branch out in any direction in 
space. Most mobile robots are designed to travel only in 
a horizontal plane and have difficulty turning in arbitrary 
directions in three dimensions. Robotic duct climbers 
are only able to travel in one line and maybe follow the 
duct mainstream through wide bends. They currently do 
not have the ability to turn out of the duct into a branch. 

Fig. 1  Needle Tower (© 2002 Mary Ann Sullivan). Located at Hirsh-
horn Museum and Sculpture Garden in Washington D.C., USA. Made 
by sculptor Kenneth Snelson. Spatial construction [1]. 1991 recon-
struction of the 1921 original. Made by Latvian artist Karl Ioganson, it 
is the very first tensegrity structure ever made

Fig. 2  Spatial construction [1]. 1991 reconstruction of the 1921 origi-
nal. Made by Latvian artist Karl Ioganson, it is the very first tensegrity 
structure ever made
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A robot able to transit through air ducts in houses and 
buildings will reduce time and number of personnel 
required as well as increasing flexibility and scope of 
work done. Due to the geometry and structural integrity 
of air ducts, flexibility and light weight are required key 
features. A hybrid wheeled tensegrity design would add 
speed and efficiency to the features of the robot. Basic 
work currently carried out in air ducts includes inspec-
tion and maintenance. However, in the near future, home 
automation, pioneered by companies like Apple, Google, 
and Amazon, will require the installation of cable termi-
nals to power automated air vents. Being able to access 
areas through complex duct networks will continue to 
become more relevant.

Literature review
Tensegrity structures have advantages and benefits. A 
list by Skelton et  al. [5] includes: stability, efficiency, 
deployability, easy tunability, reliability to be modelled, 
facilitation of high precision control, promoting integra-
tion of structure and control, and being inspired by biol-
ogy. Other features proposed by Komendera [6] include 
reconfigurability, failure tolerance, simplicity of design, 
and ease of modelling.

Tensegrity is an ever-expanding field. Studies on 
tensegrity structures have been “widely carried out 
since 1970s, mainly about form-finding, static stability, 
and dynamic and control” [7]. The work of finding new 
topologies and morphologies is called form-finding. This 
is a major subarea inside tensegrity robotics with several 
papers covering it. However, some researchers believe 
there are only a “few effective analytical methods for dis-
covering tensegrity geometry” [8]. Williamson and Skel-
ton [9] established a general class of tensegrity structures, 
defined the topological structure necessary to achieve 
tensegrity, and provided necessary and sufficient condi-
tions for equilibrium. Motro [10] provided a description 
of “morphogenesis of tensegrity since earlier cells to pre-
sent”. Then, he presented a numerical model to create 
more complex systems. Rieffel et  al. [11] introduced an 
evolutionary algorithm which produces large tensegrity 
structures. They also demonstrated its efficacy and scala-
bility relative to previous methods. They claim that those 
“techniques have produced the largest and most complex 
irregular tensegrities known in the field”. On the other 
hand, Hernàndez and Mirats-Tur [12] did an important 
job to complement the above-mentioned studies. They 
presented a method to detect and avoid “internal colli-
sions between structure members and external collisions 
with the environment”. Once there is a defined topology 
of a tensegrity structure and an initial stable placement, 
Micheletti and Williams [13] offered a “simpler approach 
for discovering the range of feasible geometries”; also 

known as morphologies. Tensegrity is widely adopted 
by nature. Many researchers have taken inspiration from 
examples such as a vertebral column [14–17], a joint 
elbow [18, 19], ant colonies [7], caterpillars [8], and fish 
[21] in order to produce new topologies called biotenseg-
rity structures. They imitate their counterparts in nature 
and grasp some of the properties they possess.

After the topology and morphology are defined, math-
ematical models can be created. A static analysis review 
was carried out by Hernàndez and Mirats [4]. However, 
the dynamics were first studied by Motro et  al. [22]. A 
model of tensegrity robotics based on Euler–Lagrange 
equations of motion was described by Komendera [6]. 
Mirats-Tur et  al. [23] developed dynamic equations for 
a 3-bar tensegrity mobile robot. Cefalo and Mirats-Tur 
[24] proposed a new dynamic model for a class-1 tenseg-
rity system based on quaternions. The use of quaternions 
eliminates problems of singularities and allows to per-
form more precise calculations and simulation as they do 
not need to use trigonometric functions for the represen-
tation of angles. This is a lesser developed area, there are 
only very few morphologies analytically studied, being 
the most predominant the 3-strut prism as in the works 
of Skelton and Oliveira [25].

When efficiency is mentioned as one of the features of 
tensegrity robots, it refers to this potential energy stored 
as tension inside the structure itself. However, this effi-
ciency does not relate to locomotive movement. All 
research papers studying locomotion by means of tenseg-
rity do not measure efficiency in terms of distance cov-
ered over energy consumed. However, at least velocity is 
mentioned in the works of Friesen et al. [26] who stated 
that DuCTTv2 moves at 1.4  cm/s and Hustig et  al. [18] 
whose simulation of a robot travels at 3.8 cm/s.

Although there is no mention of energy consump-
tion. Paul et al. [27] introduced the idea of a legged robot 
based on tensegrity. Later, Böhm worked extensively and 
produced various papers (2012–2014) about locomotion 
by means of tensegrity mechanisms. His prototypes are 
capable of uniaxial rolling and movement in a plane with 
a combination of tip over and rolling. The approaches are 
not centred on locomotive efficiency, and therefore, there 
are no data related to velocity or energy consumption. 
Rovira and Tur [28] derived dynamic equations of motion 
based on kinetic energy and potential energy expres-
sions included in Euler–Lagrange equations. They simu-
lated path trajectory including ground and friction into 
their model. Shibata et al. [29] described the design of a 
tensegrity robot capable of crawling and proposed future 
designs that are able to jump. Bruce et al. [30] developed 
a compliant and distributed tensegrity robotic platform 
for planetary exploration: SUPERball. The morphology 
of the robot is an icosahedral. It is a practical application 
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of tensegrity robotics that NASA sponsors. The paper 
does not focus on the locomotive part of the robot, only 
design. Sabelhaus et al. [31] show the construction aspect 
of SUPERball prototype. Friesen et  al. [32] developed 
another practical application, a tensegrity robot capable 
of climbing vertical ducts. Friesen’s robot, called DuCTT 
(duct climbing tetrahedral tensegrity), comprises two 
tetrahedral frames connected by eight actuated cables. 
The robot holds to the duct by applying pressure against 
the wall with one linear actuator in each tetrahedron. 
It advances by moving one frame relative to the other. 
Researchers discuss in the paper the inverse kinematic 
control strategy used to actuate the robot. They point out 
that wheeled duct climbers can move quickly but “have 
difficulty overcoming sharp corners or other irregu-
larities” [32] and that the use of rigid joint legs requires 
heavy actuators to achieve vertical ascent. Tests on this 
robot were included in an updated paper, but the robot 
is still not able to turn into a new branch. Friesen showed 
computer simulated work on NTRT (NASA Tensegrity 
Robotics Toolkit) developed by NASA to facilitate rapid 
design and control of tensegrity robots. Hustig et al. [18], 
Mirletz et al. [16], Lessard et al. [20], SunSpiral et al. [33], 
Bruce et al. [30], and Sabelhaus et al. [31] have also used 
NTRT. This software has been validated with prototypes.

Criteria of evaluation
Designing a hybrid wheeled  tensegrity robot, to the 
authors’ knowledge, has never been attempted before. 
Therefore, some criteria of evaluation need to be estab-
lished beforehand in order to be able to interpret the 
results of this study.

Antagonistic tensional elements
The first criteria developed were meant to classify ten-
sional elements in two groups: elements that produce 
contraction of the structure and elements that produce 
Expansion.

Consider the system shown in Fig. 3 comprised of two 
masses m1 and m2 joined by cable A and attached to fixed 
points by cables B1 and B2 at each side of the masses. The 
tension in cable A is Ta, and the tension in cables B1 and 
B2 is Tb.

The first situation presented (Fig.  4) is the system 
affected by force F applied in the direction pointing 

towards the centre between the two masses. When this 
force is applied, tension in cable A is reduced by a mag-
nitude F and tension in cables B1 and B2 is increased by 
a magnitude F. If the cables are elastic and force F big 
enough to stretch them, force F would bring masses m1 
and m2 closer together. Force F is replacing cable A in 
bringing the masses together. Thus, it can be said that 
cable A brings masses m1 and m2 together. Tension in 
cable A is a tension of Contraction.

The second situation presented (Fig. 5) is the same ini-
tial system affected by a force F in the direction opposite 
to the centre between both masses. When this force is 
applied, tension in B1 and B2 is reduced by a magnitude 
F and tension in cable A is increased by a magnitude F. 
If the cables are elastic and force F big enough to stretch 
them, F would take masses m1 and m2 apart from each 
other. Force F is replacing cables B1 and B2 in separating 
masses m1 and m2. Tension in cables B1 and B2 is a ten-
sion of Expansion.

In Fig. 6, mass m1 is in stable equilibrium in the hori-
zontal direction due to a tension of contraction TA and 
a tension of expansion TB. Creating a stable equilibrium 
through tension is the central concept of tensegrity.

Strong and week tensional topology
Tensegrity systems are made rigid by tension only, and 
therefore, the direction that tension is applied is central 
to their design. The system topology shown in Fig. 7 has 

Fig. 3  Antagonistic tensional elements. A brings m1 and m2 together, 
while B1 and B2 separates them

Fig. 4  Tensional element of expansion. Cables B1 and B2 relax when F 
tries to expand the system

Fig. 5  Tensional element of contraction. Cable A relaxes when F tries 
to contract the system

Fig. 6  Antagonistic tension. Tension TA and TB are mutually antago-
nistic
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strong stability in the vertical direction but poor stabil-
ity in the horizontal direction. This is due to the fact that 
cables A and B are aligned with the vertical direction and 
perpendicular to the horizontal direction. The system 
topology shown in Fig. 8 has strong stability in all direc-
tions in the plane. This is because cables A, B, C, and D 
have a projection in every direction of the plane.

When designing a tensegrity system or a transitional 
region, this criterion has to be taken into consideration in 
order to have a stable system in all directions. In general, 
each structural element must be held by tensions that, 
considered together, have balanced projections on to all 
basis axes of the coordinate system. This implies a design 
principle that we will see is repeated throughout tenseg-
rity structures: each structural node of the system must 
have at least three cables in tension attached for true 
three-dimensional stability.

Review of tensegrity systems
An extensive study of different topologies and morpholo-
gies was carried out as part of the research work needed 
to design a hybrid wheeled tensegrity robot. This was an 

essential step in order to select the tensegrity structures 
that best fulfilled the design requirements. All tensegrity 
systems shown in this chapter were built by the author 
in order to gain a deep understanding of the capabilities, 
advantages, and disadvantages of each of them relative to 
a duct travelling robot.

The area of tensegrity that studies the use of linear ele-
ments to form three-dimensional tensegrity structures 
is what the author calls Linear Tensegrity. This is where 
linear rigid elements, normally called struts or rods, and 
linear elastic elements, normally called strings or cables, 
are combined to form structures in two and three dimen-
sions. Three-dimensional structures built with linear ele-
ments are the most common area of study in tensegrity. 
Planar tensegrity would include the use of two-dimen-
sional elements; this was not covered in this exploration 
due to the short time available.

The first half of this chapter is introductory to the 
mechanics of tensegrity systems. It is focused on the 
study of the triangular prism. “Almost all tensegrities 
can be seen as variations on tensegrity prisms” (T. Flem-
ons, personal communication, 2017). It starts with a 
line segment, and it builds up a structure in steps until 
a triangular tensegrity prism is achieved. It is impor-
tant to understand these basic structures in order to be 
acquainted with the more complex ones presented later 
in the chapter.

The second half of this chapter continues dissecting 
tensegrity structures as it increments the complexity 
of them. It also shows how these structures relate to a 
potential design for a robot and discusses about advan-
tages and disadvantages of each one.

Line segment
This is the basic building block for most regular struc-
tures. It is made with one strut and two cables on oppo-
site sides. It should be noted that two cables are needed 
to have a properly balanced system with two cables under 
tension and one strut under compression. If it only had 
one cable, the system would generate momentum and 
shear forces. All tensegrity systems in this exploratory 
exercise will be built from this basic arrangement. Fig-
ure 9 shows a tensegrity line segment composed of one 
strut and two cables at each side.

Fig. 7  Weak tensional topology. Tension in cables A and B provides 
strong stability in vertical direction but poor stability in horizontal 
direction

Fig. 8  Strong tensional topology. Tension in cables A, B, C, and D 
provides strong stability in vertical and horizontal direction

Fig. 9  Tensegrity line segment. Comprises one strut and two cables
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Square
A square is made from two tensegrity line segments. It 
is constructed by inserting one tensegrity segment into 
another. Segment “B” is inserted in such a way that the 
ends of the strut are connected to the midpoint of the 
cables in segment “A”. Similarly, cables from segment “B” 
connect by the midpoint to the ends of the strut in seg-
ment “A”. The original cables in each segment are now 
considered split in two cables. Therefore, a square com-
prises two struts and four cables as shown in Fig. 10. It 
should be noted that all elements can be considered to 
be in the same plane for practical reasons even though 
the struts are intersecting in the middle. It should also be 
noted that as a planar structure, it has weak stability out 
of the plane if considered an element of a three-dimen-
sional structure.

Triangular prism
A triangular prism is constructed by inserting a third 
tensegrity segment “C” into the previously seen square. 
Also known as 3-strut prism, it is the simplest three-
dimensional tensegrity structure and the very first one 
created and exhibited in 1921. It has three struts and nine 
cables. It also exhibits strong stability in three dimensions 
as the tension cables for each strut considered together 
have projections on all three-dimensional basis vectors, 
and three cables are attached to each node.

There is a particular nomenclature used in this analysis 
shown in Fig. 11. Each strut is marked with one colour: A 
is red, B is blue, and C is green. The end of each strut is 
called a node. Each node is named according the strut it 
belongs to. At the top of the prism, there are three nodes 
A1, B1, and C1. At the bottom of the prism, there are three 
more nodes A2, B2, and C2. Cables are named in relation 

to the nodes. At the top, there are three horizontal cables 
marked in cyan forming a triangle: A1B1, B1C1, and C1A1. 
Notice that the order is not important; A1B1 and B1A1 is 
the same cable. There are three vertical cables marked in 
yellow: A1B2, B1C2, and C1A2. At the bottom, there are 
three more horizontal cables marked in magenta form-
ing another triangle: A2B2, B2C2, and C2A2. The connec-
tion of the six nodes is illustrated by the graph structure 
in Fig. 12, in which thick lines indicate struts A, B, and C 
and thin lines indicate cables in tension. This clearly indi-
cates the symmetry of this structure, in which each node 
connects to three cables, and shows how such a structure 
can be generated mathematically.

As part of this study, three intermediate structures 
between the tensegrity square and the triangular prism 
were devised to help investigate the properties of a three-
dimensional tensegrity structure and show what results 
if the symmetry mentioned above is broken. In other 
words, these are artificial transitioning state topologies 
between a 2D and a 3D tensegrity structure that help 
understand how a 3D tensegrity structure is able to stand; 
its internal mechanics and the relationship between its 
elements. The mechanics of such structures are integral 
to the performance of a tensegrity-based robot and also 
illustrate how a robot can be manufactured and trans-
formed between different topologies.

• • Single plane This intermediate state topology, shown 
in Fig.  13 and achieved by eliminating cables C1A1 
and A2B2, has become a two-dimensional structure. 
It can be seen that cables A1B1, A1B2, C1A2, and Fig. 10  Tensegrity square. Comprises two struts and four cables

Fig. 11  Tensegrity triangular (3-strut) prism. It is the simplest tenseg-
rity three-dimensional topology. It comprises three struts and nine 
cables
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C2A2 are tension elements of expansion. They sep-
arate struts B and C. In the same way, cables B1C1, 
B1C2, and B2C2 are tensional elements of contrac-
tion. Expansion elements transmit the tension to 
the rigid element strut A which is the inserted strut 
that allows separation of struts B and C. If strut A is 
removed struts B and C would join and overlap as 
effectively a one-dimensional structure. In this topol-
ogy, two top horizontal cables, two bottom horizon-
tal cables, and two vertical cables are elements of 
expansion. Similarly, one top horizontal cable, one 
bottom horizontal cable, and one vertical cable are 
elements of contraction. If the topology is changed so 

that now strut B is the inserted strut, it would allow 
the separation of struts A and C, the same number of 
cables will be elements of expansion and contraction. 
Therefore, it is demonstrated that each cable in the 
prism topology is an element of expansion and con-
traction simultaneously. This also demonstrates how 
such a prism could be assembled or “unwrapped” in 
a robot’s structure. A graph illustrating the broken 
symmetry of the structure is shown in Fig. 14.

• • Dual plane with three intersecting struts This inter-
mediate state topology, shown in Fig. 15, is achieved 
by eliminating cables C1A1 and A2B2, and adding 
cable C1B2. The structure collapses into two inter-
secting planes. The first plane is formed by struts A 

Fig. 12  Graph of tensegrity triangular (3-strut) prism connections. 
This illustrates the symmetry of the structure with three cables con-
necting to each node

Fig. 13  Single plane. Strut A allows the separation of struts B and C. If 
strut A is removed B and C would join

Fig. 14  Graph of connections for Single plane. This illustrates the 
asymmetry of the new structure

Fig. 15  Dual plane with three intersecting struts. Strut A allows the 
separation of struts B and C. If strut A is removed B and C would join
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and B, the second plane is formed by struts A and C. 
Strut A is the inserted strut separating struts B and C. 
The same case can be made to explain that all cables 
are elements of expansion and contraction simulta-
neously. Although in this topology one top horizontal 
cable, one bottom horizontal cable, and two verti-
cal cables are elements of expansion. This structure 
remains three-dimensional although all three struts 
are in direct contact. This structure illustrates how 
changing to different topologies can transform the 
structure of a robot, in this case to a plane-oriented 
structure that could be used to obtain specific body 
orientations (Fig. 16).  

• • Dual plane with two intersecting struts This inter-
mediate state topology, shown in Fig. 17, is achieved 
by eliminating cables B1C1 and A2B2. The prism is 
broken into two planes. The first plane is formed by 
struts A and C, and the second plane is formed exclu-
sively by strut B. This state is unstable as strut B can 
rotate along nodes A1 and C2. The eliminated cables 
are elements of contraction. The remaining cables 
attached to strut B are elements of expansion. Thus, 
it can be appreciated how they interact to keep strut 
B stable. This state is essentially formed by a square 
tensegrity (struts A and C) and a segment tensegrity 
(strut B) added to one side of the square, and illus-
trates how stability can be controlled by varying the 
elements of a tensegrity robot’s structure (Fig. 18).

Square prism
A square prism is comprised of four struts and twelve 
cables. A square prism and any other prism follows the 
same relationship found for the triangular prism. Top 
horizontal cables are marked in cyan, vertical cables 
are marked in yellow, and bottom horizontal cables 
are marked in magenta as shown in Figs. 19 and 20. All 
prisms are made by adding one or more struts to the tri-
angular prism.

Fig. 16  Graph of connections for Dual plane with three intersecting 
struts

Fig. 17  Dual plane with two intersecting struts. Elements of contrac-
tion to strut B were eliminated. Strut B is unstable

Fig. 18  Graph of connections for Dual plane with two intersecting 
struts
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In the context of a duct travelling robot, the square 
prism is better fit for a square duct cross section where 
each strut could be pressed against each corner of the 
square section in the duct. The morphology shown has 
the bottom square with larger dimensions than the top 
square. This could be beneficial for expanding a narrow 
axle into a much bigger structure, as a joint between a 
square bar and another tensegrity structure or to reach 
out to the walls of a bigger ducting. A graph of the struc-
tural connections is given in Fig. 21.

Octagonal prism
Comprised of eight struts and twenty-four cables, the 
octagonal prism, shown in Figs.  22 and 23, is also well 
suited for a square ducting. Two struts could press into 
each wall of the duct. By expanding and contracting one 
of the octagons, the robot could adapt to different duct 
sizes. The end of the struts could be attached to wheels in 
order to support the structure inside the duct. This topol-
ogy could also be used as a vacuuming tool. If the struts 
are made of piping and hooked to hoses converging into 
one hose, this tool could vacuum the walls of different 

sizes of square duct. A graph of the connections in the 
octagonal prism is given in Fig. 24, which also provides 
labels of all elements.

Icosahedron
The expanded octahedron or icosahedron has six struts 
and twenty-four cables. All 6 struts can be organised in 
three groups: A, B, and C. Each group has of two parallel 
struts R and L (right and left). Therefore, all struts can be 
labelled AR, AL, BR, BL, CR, and CL as shown in Fig. 25. 
Cables can also be organised in six groups. Each group 
has four cables that resemble the shape of a rhombus. 

Fig. 19  Square prism. Comprises four struts and twelve cables. Top 
view

Fig. 20  Square prism. Side view

Fig. 21  Graph of square prism connections

Fig. 22  Octagonal prism. Comprises eight struts and twenty-four 
cables. Top view
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Three groups of cables were marked in cyan, magenta, 
and yellow. Adjacent to the three rhombi marked with 
colours, there is a triangle formed by one cable of each 
colour (see longer marks). There are eight of these trian-
gles in the icosahedron.

The morphology of this topology can be changed into 
a truncated tetrahedral (Fig.  26) by simply changing 
the length of the cables. If the parallel struts of the ico-
sahedron are brought together it forms an octahedron 
(Fig. 27) and therefore the name of expanded octahedron 
for the icosahedron. The same marking and labelling has 
been kept in all three Figs.  25, 26, and 27 to emphasise 
that this is the same topology although it looks very dif-
ferent in each of the morphologies shown. A graph of the 
connections between the elements of the icosahedron is 
given in Fig. 28.   

The icosahedron resembles a ball when all struts and 
cables are the same length. NASA is developing a robot 
with this morphology that is capable of rolling as method 

Fig. 23  Octagonal prism. Side view

Fig. 24  Graph of octagonal prism connections

Fig. 25  Icosahedron. Comprises six struts and twenty-four cables

Fig. 26  Truncated tetrahedral. Comprises six struts and twenty-four 
cables

Fig. 27  Octahedron. Comprises six struts and twenty-four cables
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of locomotion [31]. In relation to a duct travelling robot, 
this could be useful as a joint or coupling. As it will be 
explained later a robot could be made of several local-
ised tensegrity systems, the icosahedron is suited for this 
application.

Octahedron
Formed by joining the parallel struts of the icosahedron 
together, Fig. 27. This morphology could also be used as 
an intermediate state between a tensegrity and a solid. 
Although this is not as flexible as other tensegrities as it 
has all struts joined in the centre. If two parallel struts are 
extended out of the localised tensegrity area, they could 
connect with another localised tensegrity; the same way 
the Ulna and Radius connect the elbow with the wrist. 
This would provide structural support and mobility. 
The connection graph of the octahedron is the same as 
that of the icosahedron, but with the addition of cables 
AL1AR1,AL2AR2, BL1BR1, BL2BR2, CL1CR1, and 
CL2CR2.

Truncated morphologies
This is a class on its own right. The number of struts 
required is the same as the number of edges, and the 
number of cables required is equal to three times the 
number of vertices plus the number of edges.

The truncated tetrahedral, Fig.  29, can be made by 
varying the length of the cables in the icosahedron. Both 
are two morphologies of the same topology and share the 
same connection graph. Although this tetrahedral was 
built with segments made of one strut and two cables (a 
total of 24 cables), it can also be constructed with seg-
ments made of one strut and one cable (a total of 18 
cables).

This structure could be used as flexible chassis for 
a three-wheeled robot. In a duct travelling robot, this 
structure could be used as a nose at the front of the robot 
to carry an instrument. The nose can be pointed in dif-
ferent directions by changing the tension in the cables. It 
can also be used as a tail to stabilise the robot when it 
needs to change direction into a new branch.

A truncated cube, Fig. 29, has 12 struts and 36 cables. 
As an alternate modelling method, we can consider this 
structure as having struts oriented in the X, Y, and Z 
directions and group these struts into three groups of X, 
Y, and Z elements as distinguished by colour in Fig. 30. 
This structure can be used as suspension for wheels in a 
robot. The chassis can be raised and lowered by changing 
the tension in the cables. The truncated cube can also be 
used as a coupling in a soft transitional region (explained 
further down in this paper).

Fig. 28  Graph of icosahedron connections

Fig. 29  Truncated cube. Comprises twelve struts and thirty-three 
cables

Fig. 30  Four intercepting triangles morphology. Comprises twelve 
struts and thirty-three cables
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When the ends of the struts on each side of the cube 
are joined closer together a different morphology com-
prised of four intersecting triangles is made as shown 
in Fig.  30. Both Figs.  29 and 30 were colour marked to 
appreciate how the same struts have been displaced, and 
Fig. 31 shows a graph of connections.

Following the same pattern, a truncated dodecahedral, 
Fig. 32, can be built with 30 struts, 90 cables and having 
five-sided faces. This structure behaves essentially as a 
ball and is very complex to model and not of practical use 
for the purposes of the duct climbing robot in this paper.

Spiral vertebral mast
While the structures considered up until now are illus-
trative of tensegrity principles and show how such 
structures could be of use in robotics, we now consider 
structures that are less based on geometric primitives 
and more on repeated structures found in nature. The 
first structure we consider in this area, the spiral ver-
tebral mast, is built in stages. In this model, each stage 
has three struts that attach to the cable midpoint of the 
previous stage. The orientation of each stage changes, if 
the first stage is oriented clockwise, the second stage is 
oriented counter clockwise. This structure, designed by 
Tom Flemons, can be built to be as long as desired fol-
lowing the same pattern. At its minimal topology, it only 
has tensile elements of contraction as shown in Fig.  33. 
This is why in a state of equilibrium, with no other exter-
nal forces, it looks shrunk in its radial direction and it 
does not take a great volume in space. The tension forces 
are almost aligned axially which creates a weak ten-
sional morphology in the radial direction. This could be 
corrected by adding antagonistic tensional elements as 
highlighted in Fig. 34. To make use of the staged nature 
of the mast structure, we enumerate the elements as A, 
B, and C at each stage, with prefixes to indicate the stage 
number starting from the bottom. Hence, the first stage 

Fig. 31  Graph of truncated cube connections

Fig. 32  Truncated dodecahedral. Comprises thirty struts and ninety 
cables Fig. 33  Spiral tensegrity mast. Minimal topology



Page 13 of 24Carreño and Post ﻿Robot. Biomim.  (2018) 5:1 

is composed of struts 1A, 1B, and 1C, while the second 
stage is ordered in the opposite direction as 2A, 2B, and 
2C to reflect the dual-spiral structure. The spiral ver-
tebral mast can be collapsed along its axial direction as 
shown in Fig. 35 and will recover its original form when 
the external force applied is eliminated. The structure can 
be built with three or more struts in each state following 
the same pattern. Figure 36 shows a graph of the connec-
tions for two complete stages of the structure connected 
to a third, with additional stages being added following 
the same pattern. Note that nodes 1A1, 1B1, and 1C1 are 
supporting the structure on the ground and nodes 3A1, 
3B1, and 3C1 represent connection points to the next 
stage of the structure, hence the low number of cable 
connections.

Tetrahedral vertebral mast
The mast presented in Fig. 37 comprises three rigid ele-
ments joined together by eight cables. This structure is 
one of the few examples in which the element of contrac-
tion and expansion are well defined. Horizontal cables 
(marked in blue) are exclusively tensional elements of 
expansion, while vertical cables (marked in red) are 
exclusively tensional elements of contraction. As each 
stage of this mast is composed of only one rigid element, 
the elements are denoted by letters alone. Each rigid ele-
ment comprises four struts rigidly joined together in the 
centre with nodes numbered as shown in Fig.  38. This 

Fig. 34  Spiral tensegrity mast. Antagonistic tensional topology

Fig. 35  Spiral tensegrity mast. Collapsed state. Achieved by placing a 
glass on top of the mast

Fig. 36  Graph of minimal three stage topology of spiral tensegrity 
mast

Fig. 37  Tetrahedral vertebral mast. Three stages fully assembled
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structure, also designed by artist Tom Flemons, can be 
built with as many stages as needed. It is possible that the 
rigid tetrahedral can generate shear forces at the centre 
of the rigid elements. This is something that could be fur-
ther evaluated. With the materials used in these models 
and the prototypes, the rigid element did not fail at its 
core. It was more likely to break at the rubber band con-
nection wedge. A graph of two stages connected in a tet-
rahedral vertebral mast is shown in Fig. 39 which shows 
the relatively simple connections between two elements 
that can be easily repeated in a large structure, though it 
is important to remember that the geometry of the rigid 
elements that is not illustrated in a simple graph is essen-
tial to providing the tensional stability in this kind of 
tensegrity structure.

This structure, in a way, is a simplification of the verte-
bral column shown in Fig. 40; each rigid element is one 
vertebra. In this analogy, there is no vertebral body and 

it is replaced by a strut as if the vertebra had two spinous 
processes. The two transverse processes are replaced by 
two struts as well.

There is no representation for any of the four articular 
processes. They are omitted in this model which is one 
of the biggest differences. The forces produced by the 
vertebral body and articular processes are replaced by 
horizontal cables (marked in blue, Fig. 37). The connec-
tions between transverse processes and between spinous 
processes in each vertebra are identically substituted by 
vertical cables (marked in red, Fig. 37).

In summary, both the latter topologies, the spiral verte-
bral mast and tetrahedral vertebral mast, present similar 
characteristics that are greatly beneficial for a duct travel-
ling robot:

• • Vectorial shape. It can point to a determinate direc-
tion, and it has a clear axial direction.

• • Built in stages. They can be added or subtracted to 
increase or reduce the robot’s length.

• • Radial degrees of freedom. It allows the structure to 
yaw and pitch in an unlimited number of directions. 
It is virtually a universal joint.

• • Axial degree of freedom. It allows the structure to 
roll.

• • Axial displacement. The structure can extend and 
contract axially.

• • Pattern repeated in the axial direction. Easy to manu-
facture and repair.

Fig. 38  Tetrahedral vertebral mast. One isolated stage

Fig. 39  Graph of two stages connected in tetrahedral vertebral mast

Fig. 40  Tetrahedral vertebral mast. Animation of part of vertebral 
column [34]
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Transitional regions
There are studies, like Motro [35], that address the prob-
lem of joining together various tensegrity structures to 
form more complex and bigger ones. However, to the 
authors’ knowledge, there are no studies that address the 
problem of joining together a tensegrity structure with 
a fixed one. Therefore, in order to connect a tensegrity 
structure with a traditional mobile fixed structure, a new 
methodology will need to be developed. The following is 
a series of concepts that need to be formalised in the area 
of tensegrity and robotics.

Localised tensegrity
Typical tensegrity structures have cables attached to 
struts at their endpoints. It should be noticed that this 
is common to see but not a requirement that defines a 
tensegrity system. This arrangement is so spread among 
the research community that limits the creativity in the 
development of new topologies.

When observing the musculoskeletal systems of ani-
mals, it can be noticed that groups of muscles and ten-
dons are localised into regions (i.e., shoulders, hips). 
Bones are the only elements to transcend those limits. 
It can be observed that the humerus extends beyond the 
shoulder and, similarly, the muscles in the shoulder area 
a located on one end of the humerus and do not extend 
up to the other end of it. In this case it can be considered 
that the rigid body acts as the transitional region between 
two localised tensegrity regions.

There are few exceptions to this paradigm that are 
starting to appear. Hustig et  al. [18] did apply the con-
cept of localised tensegrity in one of the iterations of his 
MountainGoat design without expressly acknowledging 
it in the paper. The following two figures show two ver-
sions of his design, one tensegrity system in Fig. 41 and 
two localised tensegrity regions in Fig.  42 (main body 

on top and foot at the bottom). As seen in the previous 
example, this concept can open the door to new more 
complex tensegrity systems comprised of multiple local-
ised tensegrity regions. Each of them can be designed to 
perform specific functions within the entire structure.

Hard transitional region
It is a transition made exclusively of rigid elements. This 
type of transition is linked to the concept of fulfilled pat-
tern described below.

Soft transitional region
It is a transition made exclusively of elastic elements. In 
order to be stable, it needs to have an antagonistic ten-
sional setting: elements of contraction and elements of 
expansion. This type of transition is linked to the concept 
of unfulfilled pattern described below.

Fulfilled pattern
The lumbar vertebrae are connected among themselves 
by three surfaces. One located at the vertebral body and 
two at the articular process. In total, a lumbar vertebra 
has six joints: three at the top and three at the bottom. 
This means that the fifth lumbar vertebra, the last one at 
the bottom, needs three surfaces of connection as well 
when joining the sacrum. The sacrum at birth is com-
posed of five separate sacral vertebrae. Postnatally they 
fuse to form a single bone that is flattened anteroposte-
riorly and has a triangular shape when viewed from the 
front [36].

This is where the principle of fulfilled pattern takes 
place. When connecting a chain of rigid elements of 
the same morphology to another element of different Fig. 41  MountainGoat [18]. One tensegrity system

Fig. 42  MountainGoat [18]. Two localised tensegrity regions
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morphology, the morphology of the first needs to be sat-
isfied by the second. That is, the sacrum needs to have 
the same top three connecting surfaces to receive the 
bottom three connecting surfaces of the fifth lumbar ver-
tebra. Figure 43 shows how the sacrum follows the same 
pattern.

Unfulfilled pattern
This concept can be observed in the connection of the 
scapula to the axial skeleton in the musculoskeletal sys-
tem of the human body. The scapula attaches to the axial 
skeleton only with soft tissue. The scapula (shoulder 
blade) is a flat, triangular bone located along the poste-
rior aspect of the thoracic cage. Seventeen muscles attach 
to the scapula; therefore, this bone is usually resistant to 
fractures [34]. Since the attachment of the scapula to the 
axial skeleton is exclusively made by muscles there is no 
requirement to imitate the form of the adjacent struc-
ture as in the previous case. Those seventeen muscles are 
arranged in a way that allows the body to (1) set an equi-
librium state in which the scapula is at a particular loca-
tion and (2) move the scapula around in a controlled way. 
This is a more complex joint to design. It certainly needs 
to be designed with antagonistic tensional elements and 
strong tensional topology.

Robot design and prototyping
When using tensegrity structures to design mobile 
robots, designers face the following challenges [4]:

• • Static analysis of tensegrity structures Find a stable 
configuration from a given topology or even design 
new topologies to achieve some desired results.

•	 Form-finding methods
• 	 Static behaviour of tensegrity.
• 	 Rigidity and stability.

• • Dynamics and control of tensegrity Plan trajectories 
and motions taking into account the advantages that 
tensegrity structures offer.

•	 Traditional path planning algorithms.
• 	 Dynamic characterisation of tensegrity structures.
• 	 Node trajectory planning.

This paper is meant to cover the first three items from 
the list. As there is no previous academic work in robot-
ics that uses coupling between solid bodies and tensegrity 
structures, it was necessary to first perform the introduc-
tory study shown previously.

The design of this prototype focuses on achieving two 
main requirements: (1) unprecedented flexibility for an 
air duct travelling robot and (2) unprecedented locomo-
tive performance for a tensegrity robot. This section illus-
trates the development of the prototype and compares 
the features of this robot with the current state of the art.

Work environment
Regarding geometric characteristics of air ducts, 
most common rectangular air ducts range from 
100  mm × 200  mm to 150  mm × 300  mm and circular 
ducts, from Ø100 to Ø200  mm in households. The lay-
out of ducts is mainly in a horizontal plane with turns 
right and left. However, there are also branches that go 
upward and downward. There are two requirements here: 
(1) a robot must adapt to the range of ducting sizes and 
(2) the robot must be flexible enough to turn not only left 
and right but also up and down or any other intermediate 
direction.

While requirement number one has already been 
solved by several designs, requirement number two has 
not. There are no robots in the market, to the authors’ 
knowledge, that can turn in any direction and are able 
to vertically climb. Therefore, requirement number two 
was the main focus of the design in this paper. The devel-
opment process begun with the selection of the main 
tensegrity structure of the robot, followed by the design 
of the coupling from tensegrity to a solid body, and, 
finally, a model for the robot.

Structure
Taking advantage of the flexibility of tensegrity structures 
to allow the robot to turn in every direction was the main 
requirement. All tensegrity structures are flexible, but 
not all of them have special flexibility in particular direc-
tions. Most of the structures tend to be omnidirectional 
and resemble the shape of a sphere.

However, there are two topologies that fit the needs of 
a duct traveller robot: The spiral vertebral mast and tet-
rahedral vertebral mast. They were chosen for reasons 

Fig. 43  Sacrum and fifth lumbar vertebra. Top of sacrum is reproduc-
ing the pattern of top of vertebra [36]
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explained in “Transitional regions”. There was a slight 
modification to the original spiral mast: the structure 
constructed for the prototype was built with four struts 
on each stage for two reasons: (1) the robot will mainly 
turn up, down, right, and left, and (2) the robot fixed 
rigid body is a square bar. Therefore, four struts accom-
modate the geometric requirements better.

Transitional region
Initially, one prototype was made for each structure fol-
lowing the criteria of a hard transitional region and ful-
filled pattern. For the tetrahedral vertebral mast (also 
called tensegrity spine), it was necessary to build all 
four struts and not only two as it was originally thought 
as shown in Fig.  44. For the spiral tensegrity mast (also 
called tensegrity mast), the construction process was car-
ried out by placing the entire tensegrity mast next to the 
square bar, applying an external force to the four struts 
at the end of the mast until they touch the bar and gluing 
them while keeping the position they naturally acquired. 
When the glue dried the four struts did not belong to the 
tensegrity structure anymore but to the square bar as 
shown in Fig. 45.

As can be seen in Figs.  46 and 47, both transitional 
regions imitate the pattern of the tensegrity structure 
they connect to (fulfilled pattern). Both tensegrities are 
capable of turning more than 90° in any radial direction, 
as well as rotating and translating in the axial direction. 
This concept worked well with the tensegrity spine shown 
in Fig. 46; it did not change any of the properties of the 
original tensegrity structure: axial translation, radial 
translation, axial rotation, and radial rotation remained 
the same. This design was acceptable, and no further 
development was needed for the structure. However, this 
concept did not work as well with the tensegrity mast 
shown in Fig. 47. It added rigidity to the original tenseg-
rity structure and changed its mechanical properties. 
So much so that the structure was not able to fully col-
lapse in the axial direction anymore. Comparing Figs. 35 
and 48, both show a collapsibility test on this structure. 
In Fig. 35 the structure is free to fully collapse, while in 
Fig. 48 the structure is restricted and not able to fully col-
lapse. However, collapsibility is not a requirement for this 
design, so the prototype was acceptable as well.  

Two more prototypes of the spiral mast transitional 
region were made following the concept of soft tran-
sitional regions and unfulfilled patterns. However, the 
design was not tensional antagonistic and it had a weak 

Fig. 44  Hard transitional region. Tetrahedral vertebral mast

Fig. 45  Hard transitional region. Spiral tensegrity mast

Fig. 46  Hard transitional region prototype. Tetrahedral vertebral mast

Fig. 47  Hard transitional region prototype. Spiral tensegrity mast
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tensional morphology. Therefore, the structure was 
unstable. More development would be needed to achieve 
both requirements in future prototyping iterations of this 
principle.

Final model
The final prototype is the first wheeled tensegrity robot 
(WTR) ever built to the authors’ knowledge. It was made 
with readily available and recycled parts in the design 
laboratory at the University of Strathclyde. The final ver-
sion comprises two motorised modules and one non-
motorised module which are shown in Figs. 49, 50, and 
51. Motorised modules have two wheels of Ø44  mm at 
the bottom and one wheel of Ø23 mm at the top. The top 
wheel presses against the wall of the ducting to generate 
traction. The motor runs on 4.5  V 0.41A at 4900  rpm. 
Overall dimensions are 110 mm × 58 mm × 80 mm. The 
non-motorised module has 4 wheels of Ø30 mm distrib-
uted in two pairs that press against the duct walls for sta-
bility. Overall dimensions are 75 mm × 62 mm × 74 mm. 
All three modules connect to the tensegrity by a hard 
transitional region and fulfilled pattern.  

The robot has five sections. The first one is the front 
car, the second one is the front tetrahedral vertebral 
mast, the third one is the middle car, the fourth one is 

rear tetrahedral vertebral mast, and the fifth one is the 
rear car, as shown in Fig.  52. Overall dimensions are 
500 mm × 62 mm × 80 mm. Total weight is 303 g. A pipe 
environment was built to assess the robot’s flexibility in 
operation. The model was capable of turning in hori-
zontal and vertical planes inside the pipe as shown in 
Fig. 53. This kind of flexibility would require a high level 
of mechanical complexity in a conventional mobile robot. 
This robot was built in a very short amount of time with 
low cost of materials.

Robot features
Having finalised the design and before testing the 
mechanical characteristics of the robot, we present a brief 
discussion regarding its features. They are introduced 
after setting up a frame of reference for this comparison.

Duct travelling robots can be classified in four cat-
egories: (1) conventional wheeled robots, (2) expanding 
robots, (3) tensegrity robots, and (4) hybrid tensegrity 
wheeled robots.

Conventional wheeled robots are the most common. 
Sometimes they use tracks to add more traction and 
climb ducts with a small slope. Expanding robots have 

Fig. 48  Spiral tensegrity mast. Collapsibility test

Fig. 49  Motorised wheeled module. Front car

Fig. 50  Motorised wheeled module. Rear car

Fig. 51  Non-motorised wheeled module. Middle section of the 
robot
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arms that extend to reach for the walls of the ducting and 
press against them to gain the traction needed for verti-
cal climbing; there are few of these robots in the market. 
Regarding tensegrity robots that travel in air ducts, to the 
authors’ knowledge there is only one created as part of 
a research project and it is DuCTT which is included in 
the literature review. The fourth category is what is pre-
sented in this paper: a hybrid tensegrity structure and 
solid-body wheeled robot that we refer to as a wheeled 
tensegrity robot (WTR).

This comparison is based on eight key mobility fea-
tures that an air duct travelling robot should ideally have: 
(1) move horizontally inside a duct, (2) move vertically 
inside a duct, (3) turn right or left into a new branch (as 
opposed to just follow through a bend in the duct), (4) 
turn up or down into a new branch, (5) horizontal u-turn 
into a parallel adjacent branch with a narrow radius (6) 
vertical u-turn into a parallel adjacent branch in a nar-
row radius, (7) travel at standard speed for commercially 

available mobile robots and (8) move in an open plane, 
when not inside a duct.

Table 1 shows a summary of this comparison. Here, it 
can be clearly seen that some robots have some features, 
but none of them with the exception of a WTMR have all 
features available in one design.

This table provides a basic example of the mobility that 
a WTR is capable of. The compliant structure can provide 
many other capabilities, but this brief list is indicative of 
the robot’s mobility within ducts. With appropriate actu-
ation, a WTR can turn into branches of any direction, not 
just vertical or horizontal, and also twist its body in the 
axial direction simultaneously. Figures  54 and 55 show 
how the robot is capable of u-turns and turning in com-
plex directions with multiple simultaneous rotations. 

Physical testing and discussion
Rubber characterisation
To better understand the performance of the prototype, 
and by extension, future generations of similar WTMRs, 
three tests were performed to analyse the mechanical 
characteristics of the rubber band used to build the pro-
totypes. In all three, 100 mm rubber band samples were 
used. Figure 56 shows how the test was set up. One end 
of the rubber band was fixed, while the other end was 
attached to a digital scale.

The results showed that the mechanical properties of 
the rubber band deteriorated after a 20% displacement. 
Therefore, in order to have consistent results any defor-
mation further than 20% was avoided. There was no 
noticeable linear pattern in the 20% deformation region; 
therefore, a simple linear formula was avoided and the 

Fig. 52  Wheeled tensegrity robot (WTR). It comprises three rigid 
structures and two tensegrity structures

Fig. 53  Wheeled tensegrity robot (WTR) turning inside a pipe

Table 1  Comparison of  four categories of  duct travelling 
robots with respect to desired mobility features

WTR​ DuCTT​ Wheeled robots Expanding 
robots

Move horizontally ✔ ✔ ✔ ✔
Move vertically ✔ ✔ ✗ ✔
Turn right/left 

into a branch
✔ ✔ ✔ ✗

Turn up/down 
into a branch

✔ ✔ ✗ ✗

Narrow horizontal 
u-turn

✔ ✗ ✔ ✗

Narrow vertical 
u-turn

✔ ✗ ✗ ✗

Speed of 0.7 m/s 
or higher

✔ ✗ ✔ ✔

Move in an open 
plane

✔ ✗ ✔ ✔
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tension in the cable was determined from interpolation 
of the experimental results obtained in Fig. 57.

Tensegrity spine
The first set of tests was performed on three stages of 
the tensegrity spine (T1, T2, T3). The purpose of the 
tests was to find the tension supported by each cable and 
how much tension was needed to bend the spine when 

unloaded and when linked to a load. The tensegrity spine 
was made out of soft wood and bamboo sticks. Rubber 
bands were used as cables. Custom-made rubber band 
loops were made with specific lengths (gluing together 
the ends) to be used as horizontal cables. The actuator 
was simulated with fishing nylon thread attached on the 
one end to the first strut in the structure and on the other 
end to a digital scale. Figure 58 shows the unloaded test 
sample, and Fig. 59 shows the loaded test sample with the 
front car as load.

A labelling system of two letters and two digits was 
used to identify each cable in this structure as shown 
in Fig. 60. The first half of the label belongs to the stage 
where the cable belongs: T1, T2, and T3. The second 
half of the label describes whether the cable is horizon-
tal (tensional element of expansion, see tetrahedral verte-
bral mast) or vertical (tensional element of contraction). 
In Fig. 60, vertical cables are coloured red and horizontal 
cables are coloured blue for clarity.

Fig. 54  WTMR performing a u-turn with a small radius

Fig. 55  WTMR turning into a complex angle and twisting its body 
simultaneously

Fig. 56  Rubber band test setup

Fig. 57  Rubber band test 3: force versus displacement. Test of 
100 mm rubber band. Average of 15 times per displacement. Elastic 
zone determined was within 120 mm

Fig. 58  Unloaded test sample
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The test consisted on measuring final length of 10 mm 
marks made on each cable. By measuring the displace-
ment, the tension on the cables could be approximated. 
Tension in the actuator was measured with a digital scale.

Test 1  Rubber band loops made were 120  mm long 
which means that each horizontal cable was 30  mm 
long. Each vertical cable was also 30 mm long. Displace-
ment was measured with no actuation and no loads act-
ing upon the structure. Cable T3H4 (horizontal cable on 
the back left of rigid element T3) was the most loaded, 
showing a displacement of 70%. It should be noted that 
this cable shows more tension due to the fact that the 
rigid elements are not perfectly symmetric. In later tests, 
this was compensated by slightly varying the length of 
the cables. Table  2 shows the percentage displacement 
in all rubber band cables. Such high displacements over 
20% greatly reduce the consistency of the data obtained. 
Therefore, the length of all horizontal cables had to be 
increased. Table  3 shows the calculation of the final 
length of rubber band loop T3H that comprise cables 
T3H1, 2, 3, and 4. The next test required a new set of rub-
ber band loops that work under 20% displacement.

Test 2  For this test, 152  mm long rubber bands were 
prepared. With a displacement of 20%, the final length of 
the band was 182  mm which covered the displacement 
seen in Test 1. Test 2 comprises a set of six different runs. 
The first two runs were done with no actuation nor load. 
Runs 3 to 6 have an actuator cable to bend the tensegrity 
spine up, down, left, and right. The tension in this cable 

Fig. 59  Loaded test sample

Fig. 60  Labels for each cable in the testing prototype

Table 2  Tensegrity spine test 1

Percentage of displacement in each horizontal (H) and vertical (V) cables

T2H1 30% T3H1 35% T1V1 10% T2V1 20%

T2H2 40% T3H2 50% T1V2 10% T2V2 15%

T2H3 30% T3H3 50% T3V3 15% T2V3 10%

T2H4 45% T3H4 70% T3V4 15% T2V4 20%

Table 3  Final length of rubber band loop T3H (mm). Calcu-
lated by adding displacements of T3H1, T3H2, T3H3, T3H4

Disp. (%) Initial length Final length

T3H1 35 30 40.5

T3H2 50 30 45

T3H3 70 30 51

T3H4 50 30 45

Total 182
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was measured as well. Run 1 showed cable T3H3 with a 
displacement of 25%. The length of the cable was slightly 
adjusted before the second run. Run 2 shows that this 
displacement was reduced to less than 20%; right under 
operational range. The next runs were under actua-
tion to bend the tensegrity spine in four different direc-
tions. Two major displacements have been highlighted in 
Table 4. From these two, run 4 shows the most extreme 
results. Vertical cables are within limits. The measure-
ments and calculations to get the final length of rubber 
band loop T3H are shown in Table 2. Total length of T3H 
was calculated to be 193 mm. Therefore, a new length for 
the loops needed to be used. 

Test 3  Rubber band loops of 160 mm were prepared for 
the third test. With a displacement of 20%, a final length 
of 192  mm will be covered. The first 2 runs were made 
with no load and no actuation just to compensate for any 
peaks in tension in any of the cables. Indeed, some of 
the cables needed adjustment like T2H4 and T3H4 that 
were adjusted from 16 to 6 and 13 to 8%, respectively. 
Runs 3–6 were performed with actuation and no load. 
All displacements were under 20% this time. Runs 7–10 
were performed with the front car (94 g) attached to the 
tensegrity spine. The results in Table 5 show a maximum 
displacement of 27% on cable T3H4 and a maximum 
actuation force of 12.4 N.

The use of rubber bands as a tension medium proved 
to be a limiting factor since the beginning of the experi-
ments due to the quick degradation of its mechani-
cal properties. Nevertheless, it was a quick and cheap 
method of prototyping and some useful information 
could still be drawn from the tests. It was determined that 
the working zone for this rubber band was under 20% 
displacement and 1.2 N of force. With these conditions, 
it was determined in Test 2 an optimal length of 160 mm 
for horizontal rubber band loops and 30  mm for verti-
cal rubber bands. However, Test 3 demonstrated that the 
front car, weighing 94 g, was too big a load for the rubber 

Table 4  Tensegrity spine test 2

Runs 1 and 2 have no actuation. Runs 3–6 have a cable actuator in order to bend the tensegrity spine up, down, left, and right. Tension of actuator T(N)

Displacement of rubber shown as percentage of original length

1 2 3 4 5 6

Up Down Left Right

T2H1 10% 10% 20% 10% 20% 10%

T2H2 10% 10% 25% 15% 10% 20%

T2H3 10% 10% 8% 20% 0% 30%

T2H4 10% 10% 30% 30% 40% 20%

T3H1 10% 10% 30% 20% 25% 10%

T3H2 19% 15% 30% 20% 20% 30%

T3H3 25% 18% 20% 40% 10% 35%

T3H4 15% 18% 20% 30% 30% 10%

T1V1 5% 5% 0% 0% 0% 10%

T1V2 0% 0% 0% 0% 10% 0%

T2V1 20% 20% 10% 0% 0% 10%

T2V2 10% 10% 0% 0% 10% 0%

T2V3 10% 10% 0% 10% 0% 0%

T2V4 11% 11% 20% 0% 10% 5%

T3V3 10% 10% 0% 10% 0% 0%

T3V4 9% 9% 10% 0% 0% 0%

T 0 0 1.9 1.7 2.1 2.1

Table 5  Tension in horizontal cables (N)

Interpolation of tension based on displacement of rubber

3 4 5 6

T2H1 0.96 0.06 0.9 0.42

T2H2 1.2 0.3 0.48 1.2

T2H3 0.48 1.2 0.48 1.2

T2H4 0.78 0.72 0.72 0.72

T3H1 1.02 0.36 1.02 0.36

T3H2 1.08 0.54 0.66 1.2

T3H3 0.78 0.78 0.6 1.2

T3H4 0.78 0.96 1.08 0.66
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bands. Additionally, it was noticed that in the runs with 
the 94 g load the tensegrity rigid elements started touch-
ing each other. This meant the tensegrity stopped behav-
ing as such; cables in the tensegrity structure did not bear 
all loads anymore. The structure was overwhelmed by the 
load. Runs 3–6 in Test 3 can be used as an approximated 
method to calculate the loads on each cable based on the 
tension in the actuator, displacement, and Fig. 58.

Conclusions
We have detailed how the very first wheeled tenseg-
rity robot was successfully designed and prototyped. It 
was proven that this robot addressed all design require-
ments for a duct traveller mobile robot. This novel design 
proved to have capabilities not found in just one robot. 
There are robot designs for vertical climbing, designs for 
facilitating turns to the right and left, and designs that 
focus on speed and efficiency of mobility, but none of 
them group all these requirements into a single structure 
like the wheeled tensegrity robot does.

This research furthers the knowledge in the ever-grow-
ing field of tensegrity mobile robotics. It actually opens 
a new sub-category of hybrid wheeled tensegrity robot-
ics. The project methodology was proven successful as it 
led to an optimised design that fulfilled all requirements. 
It had an advantage over simulation and analytical meth-
ods in these particular circumstances. It certainly was 
best to approach the research by broadly study structures 
and build models to assess their properties. The criteria 
of evaluation were validated by prototyping. Accepted 
designs by the criteria were stable. Rejected designs by 
the criteria were unstable. Furthermore, these criteria 
need to be expanded. The author sees many more pos-
sibilities of growth that were not pursued due to time 
constraints. Tensegrity robots do not need to address all 
design requirements with a tensegrity solution. Hybrid 
approaches have just been proved to be valid. Practi-
cal applications should start to appear more in research 
work. Transition areas should not be constrained to 
mobile robotics. In civil engineering, they can be applied 
to add tensegrity structures to fixed structures.

Future work should include testing the locomotive effi-
ciency of this design. The weight can be further lowered 
by reducing the number of cars from three to only two 
and adding a tail section at the end for stability. It could 
also include computer simulation to refine the topology 
and morphology created, building a prototype with metal 
springs and a metal body (possibly aluminium) and add-
ing motorised actuators to control the structure. Flex-
inol was also tested on this prototype as actuator, but the 
amount of actuation was much smaller that the structure 
required. However, a pulley arrangement is a possibility 
to be tested. Future work could also include exploring 

other topologies applied to wheeled tensegrity robotics 
and continue developing the criteria and designs for soft 
transitional regions.
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