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ABSTRACT

The miCROPe 2019 symposium, which took place from 2 to 5 December 2019 in Vienna, Austria, has unified researchers and
industry from around the world to discuss opportunities, challenges and needs of microbe-assisted crop production. There is
broad consensus that microorganisms—with their abilities to alleviate biotic and abiotic stresses and to improve plant
nutrition—offer countless opportunities to enhance plant productivity and to ameliorate agricultural sustainability.
However, microbe-assisted cultivation approaches face challenges that need to be addressed before a breakthrough of such
technologies can be expected. Following up on the miCROPe symposium and a linked satellite workshop on breeding for
beneficial plant–microbe interactions, we carved out research priorities towards successful implementation of microbiome
knowledge for modern agriculture. These include (i) to solve context dependency for microbial inoculation approaches and
(ii) to identify the genetic determinants to allow breeding for beneficial plant–microbiome interactions. With the
combination of emerging third generation sequencing technologies and new causal research approaches, we now stand at
the crossroad of utilising microbe-assisted crop production as a reliable and sustainable agronomic practice.
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MICROORGANISMS—A SOLUTION TO
MAINTAIN YIELDS WITH REDUCED INPUTS

Global food production has almost doubled in the past 50
years and the increased yields are mainly due to high inputs of
fertilisers, pesticides and water, selected crop varieties and

other technologies of the ‘Green Revolution’ (Tilman et al.
2002). However, this improvement has contributed to a range of
environmental problems, such as the eutrophication of surface
and ground water, reduced above- and below-ground biodiver-
sity and global warming (Vitousek et al. 1997). Moreover, the
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production of mineral fertilisers (e.g. N) is highly energy
demanding (Sutton et al. 2013), and fertiliser resources (e.g. P)
will become more scarce in the near future (Cordell, Drangert
and White 2009). There is an urgent need for more sustainable
agricultural production and to reduce the carbon footprint of
primary production. Microbial or microbiome-based approaches
may substantially contribute to secure a more sustainable pri-
mary production as well as to assure food quality. The ‘Green
Revolution’ has optimised plant growth and agricultural pro-
ductivity and, besides the environmental concerns, further
yield increases by agrochemical inputs are unlikely (Mann
1999). Instead, we need to re-gauge our aims and work towards
yield stability by capitalising on beneficial microorganisms and
microbiomes and thereby reducing the need of agrochemical
inputs (Fig. 1A).

There are countless examples of individual plant-associated
microorganisms that improve plant nutrition or enhance resis-
tance to biotic or abiotic stresses (for more details see Par-
niske 2008; Lugtenberg and Kamilova 2009; Pieterse et al. 2014;
Hardoim et al. 2015; Compant et al. 2019). Such microorgan-
isms present promising opportunities to secure crop productiv-
ity and yield stability. However, in order to capitalise on their
traits, we need to understand how to manage their ecologi-
cal behaviour and functioning in plant and/or soil microbiomes
(Schlaeppi and Bulgarelli 2015; Sessitsch, Pfaffenbichler and Mit-
ter 2019). To enable microbe-assisted crop production, the agroe-
cosystem can be managed (i) via ‘microbes’ (e.g. inoculation of
beneficial microbes or their products), (ii) via ‘plants’ (e.g. plant
genetics, intercropping or crop rotation) or (iii) via the ’soil’ (e.g.
organic amendments or no/reduced-tillage practices; Fig. 1B).
While intercropping or crop rotation stand in focus of plant-
based agroecosystem management (Garbeva et al. 2007; Song
et al. 2007; Hauggaard-Nielsen et al. 2008; Jensen et al. 2015), the
specific use of ‘Plant Genetics’ to support beneficial microbial
interactions has received only little attention. In this perspective
article, we focus on ‘Microbial Inoculations’ and ‘Plant Genetics’
as they were at the heart of the miCROPe symposium and for
the practical aspects of agroecology and soil management we
refer to specialised reviews (Stark et al. 2008; Bommarco, Kleijn
and Potts 2013; Lemanceau et al. 2015; Bender, Wagg and van der
Heijden 2016; Lori et al. 2017).

Researchers from academia and industry have met to fur-
ther develop microbe-assisted crop production approaches and
discuss opportunities, challenges and needs of this technol-
ogy at the miCROPe symposium, which took place from 2 to
5 December 2019 in Vienna, Austria (www.micrope.org). Host
genetics and seed treatments were specifically explored during
the satellite workshop ‘2nd EUCARPIA Workshop on Implement-
ing Plant–Microbe Interactions in Plant Breeding’ (www.eucarpia
.org). Here in this perspective article, we combine key messages
from the symposium with our views and thoughts on emerging
research priorities. We focus on the challenges of (i) successful
applications of microorganisms for crop production and (ii) plant
breeding towards improved interaction with beneficial microor-
ganisms.

MICROBIAL INOCULATION

As microorganisms have the potential to promote stress
resilience of plants, antagonise plant pathogens and have fer-
tiliser effects, inoculation of selected microorganisms repre-
sents a promising approach to improve plant production (Ses-
sitsch et al. 2018). Until the application of such beneficial
microorganisms keeps its promise, a number of issues remain
to be addressed for academia, industry as well as registration

authorities. The miCROPe symposium permitted the discourse
between science and industry regarding regulation, registra-
tion, consumers and market forces for the commercial success
of microbial inoculants. In particular, the needs for success-
ful registration of biocontrol microorganisms were highlighted
and guidelines were presented by Gianpiero Gueli Alletti (APIS
Applied Insect Science, Germany) and Faina Kamilova (Knoell,
Netherlands). At the miCROPe 2019, a broad range of impressive
examples were shown and reminded us about the undoubted
potential that microbial inoculations can be used for the sup-
pression of pests, pathogens or weeds or for the alleviation of
abiotic stresses. Below we highlight recent progress of a few par-
ticularly active research areas.

Particular progress was made to move beyond single strain
applications. Various studies such as presented by Rafael da
Souza (Campinas University, Brazil), Sylwia Jafra (Gdansk Uni-
versity, Poland) or Alejandro del Barrio-Duque (AIT, Austria)
revealed new insights on the application of microbial consor-
tia for biocontrol and biofertiliser applications (Correa de Souza
et al. 2019; Del Barrio-Duque et al. 2019, 2020; Maciag et al. 2020).
For instance, del Barrio Duque et al. (2019, 2020) revealed syn-
ergistic effects between fungal and bacterial strains to promote
plant growth and to suppress root pathogens. In particular, the
combination between Serendipita indica, a well-known plant ben-
eficial fungus, and Mycolicibacterium strains, all isolated from
plants, enhanced the growth-promoting effect of the fungus
when tested on tomato plants. Also, the antagonistic effects
against fungal pathogens such as Rhizoctonia solani and Fusar-
ium oxysporum were enhanced (Del Barrio-Duque et al. 2019). A
further example was presented by Klára Bradáčová (Hohenheim
University, Germany) reporting synergistic effects of microbial
consortia on nutrient acquisition (Bradacova et al. 2019). Further-
more, Jaderson Armanhi (Campinas University, Brazil) presented
a novel screening platform to select microbial consortia improv-
ing drought tolerance (Correa de Souza et al. 2019) and Narges
Moradtalab (Hohenheim University, Germany) selected micro-
bial consortia able to improve cold tolerance of maize (Morad-
talab et al. 2020).

Another area of notable progress in the field is research
on the mechanistic understanding of beneficial plant–microbe
interactions. Mechanistic understanding is also important from
an application point of view as it is valuable e.g. for com-
posing functionally complementary microbial consortia or for
improving the expression of functional traits in the field, and
it is equally important for obtaining registration approval.
For instance, the role of microbial secondary metabolites for
plant and soil health presented a highlight. Microbial sec-
ondary metabolites are well known to be important in ben-
eficial plant–microbe interactions, e.g. for antagonising plant
pathogens. One example are volatiles produced by microor-
ganisms. They are known to serve for long-distance commu-
nication between microorganisms as well as for inducing sys-
temic plant responses (Piechulla, Lemfack and Kai 2017; Tyc
et al. 2017; Veselova, Plyuta and Khmel 2019). Paolina Gar-
beva (NIOO, Netherlands) showed that certain volatile organic
compounds are exclusively produced when microbes were co-
inoculated demonstrating the importance to increasingly con-
sider microbial consortia and microbial interactions also for
applications (Garbeva 2019). Another example, as permitted
by genome and metagenome analyses, is the identification
of beneficial microorganisms possessing certain plant growth-
promoting characteristics as well as traits linked to production-
relevant characteristics as shown by Rafael de Souza (Campinas
University, Brazil) or Michael Ionesco (LavieBio, Israel; Correa de
Souza et al. 2019; Ionescu 2019).

http://www.micrope.org
http://www.eucarpia.org
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(A) (B)

Figure 1. Approaches of microbe-assisted crop production | (A) Crop yields as a function of agrochemical inputs. Conventional crop production (grey) relies on agro-
chemical inputs such as fertilisers and pesticides. Microbe-assisted crop production (green) is designated to maintain yields but at reduced agrochemical inputs.
(B) Conventional agriculture is compared to microbe-assisted crop production, where three players of the agroecosystem can be managed so that beneficial microbes
(indicated as green dots) assist crop production. Beneficial microbes or their products are added to soil or plants/seeds (microbial inoculations). Specific plant species or

cultivars recruit/enrich beneficial microorganisms from the surrounding soil. Dedicated soil management practices create conducive conditions for beneficial microbes.

Besides enhancing fundamental knowledge on the ecology
of the introduced microorganisms and underlying mechanisms,
there is also a need to improve the application technologies
and suitable formulations to warrant high cell numbers and
shelf-life (Mitter et al. 2019). Also novel approaches are needed
(Peters 2019) as, for instance, Mohammadhossein Ravanbakhsh
(Utrecht University, Netherlands) introduced the use of nano-
materials for phage treatment of bacterial wilt (Ravanbakhsh,
Kowalchuk and Jousset 2019). A new application approach also
includes soil transplantation, which was addressed by Jos Raai-
jmakers (NIOO, Netherlands). Furthermore, enhanced benefits
of acclimatising individual microbes or entire communities to
the target environment were reported, i.e. to pathogens (Ravan-
bakhsh, Kowalchuk and Jousset 2019), to heavy metals (Sabra
et al. 2018) or to salinity stress (Dubey and Sharma 2019). The par-
ticular utility of the seed-associated microbiota was presented
by Gabriele Berg (University of Technology Graz, Austria) and
Matthieu Barret (INRAE, France; Adam et al. 2018; Torres-Cortes
et al. 2018). The seed microbiota has only been explored for few
years but represents a promising source of application-relevant
microorganisms. As they may be in some cases transmitted to
the next generation, flower application is a prominent mode to
establish beneficial endophytes inside seeds (Mitter et al. 2017).

Taken together, a better understanding of the mechanisms
and the ecology of potential inoculant strains or consortia will
contribute to better design applications and make them more
successful. We particularly lack understanding on the ecology
of inoculated microorganisms under field conditions taking into
consideration interactions with the resident microbiota as well
as colonisation behaviour under different environmental con-
ditions and with potentially different plant hosts or varieties.
The variability of the inoculation response is a major issue—
microbial inoculation may work in one environment but fail in
another. To close this gap, we need to deepen our knowledge
of the factors involved for successful colonisation or expression
of the desired traits. Strain combinations or consortia combin-
ing microbial strains with complementary functions or syner-
gistic interactions appear as a promising avenue. This avenue

is also followed by the industry. Another important criterion is
inoculum dosage, which is tightly linked with the shelf-life of a
microbial product or treated seed and the formulation in which
a product is delivered. Alternative application approaches such
as flower applications to yield inoculum-containing seeds (Mit-
ter et al. 2017) open promising avenues as they have been shown
to result in substantially improved colonisation behaviour. New
formulation approaches considering nanomaterials or encap-
sulation have also shown potential to improve applications.
Prediction models considering environmental conditions, plant
genotype and the resident microbiome may lead to precision
application of microorganisms in the future.

As a perspective, we see emerging a novel conceptual
framework to enhance the success of microbial inoculation
approaches. The undisputed impact of microorganisms on plant
growth and health prompted Oyserman et al. (2019) to add the
microbiome (M) as an explanatory factor to the basic model that
a plant phenotype (Y) is determined by the relationship of geno-
type (G) x environment (E). Hence, the expanded model—Y ∼
G x E x M—explains plant yield as a function of the genotype,
environment and microbiome interactions. We think that this
GEM model conceptually also applies to microbial inoculation.
The inoculation of a beneficial microorganism only successfully
increases yield when all factors of the equation cooperate: G—
the host plant genotype needs to be responsive to the inocu-
lated microorganism(s), E—the inoculant needs to be adapted
to the physicochemical soil environment and needs to estab-
lish in the local soil and/or plant microbiome (M). As further
discussed below, there is tremendous genetic variation in host
plants in their responsiveness to individual microbes or complex
soil microbiomes as also highlighted at the miCROPe 2019 by
e.g. Gwendolin Wehner, Adam Schikora (both Julius-Kühn Insti-
tute, Germany) and Klaus Schlaeppi (Basel University, Switzer-
land; Hu et al. 2018; Shrestha et al. 2019; Wehner et al. 2019a).
It is very clear that not every plant variety will respond to a
microbial inoculum, thus, we advocate for a careful evaluation
of the host genotype (G) to assure successful microbial inocula-
tion. With regard to the factor environment (E), it becomes more
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and more evident that microbial inoculants should be adapted
to the physicochemical soil environment. Microorganisms have
well-defined growth requirements (e.g. pH), which explain their
biogeography (Fierer 2017; Delgado-Baquerizo et al. 2018). We
speculate that the microbial biogeography at least partly defines,
for which condition(s) an inoculum will be suitable. Introduc-
ing unadapted microorganisms will inevitably fail to enhance
plant yields. Ultimately, the inoculated microorganism needs to
compete with the native microbiota (M) and this is an area that
needs further research with the goal to understand which mech-
anisms underlie competitive abilities of microorganisms. Hence,
we advocate that the full context dependency, encompassing
host genotype (referring to G) as well as both the physicochem-
ical (referring to E) and biological (referring to M) characteristics
of a soil, requires careful evaluation to assure successful micro-
bial inoculation. In summary, the GEM model presents a useful
framework to solve the context dependency of microbial inocu-
lations and, as such, gives the perspective of enhancing the pre-
dictability of microbe-assisted crop production.

PLANT GENETICS

Knowledge on plant genetic determinants for beneficial inter-
actions with native soil microbiomes is growing rapidly. It has
become clear that host genotype is not only relevant in the
context of microbial inoculation (as discussed above) but plays
also a significant role in driving microbial community compo-
sition and activity, selecting for and against particular mem-
bers of the microbial community (Aira et al. 2010; Bulgarelli et al.
2015; Walters et al. 2018; Wille et al. 2019). There are a number
of reports on host genotype influencing microbiome composi-
tion. However, in order to exploit genotype effects in breeding,
we need to identify single loci that explain microbiome struc-
ture; as recent studies have shown (Lebeis 2015; Hu et al. 2018;
Stringlis et al. 2018; Bulgarelli 2019; Zhang et al. 2019; Wehner
et al. 2019b; Chen et al. 2020). The miCROPe symposium and the
EUCARPIA satellite workshop aimed to reveal microbiome-based
innovations by addressing the basic and applied aspects on
mechanistic understanding of plant–microbiome interactions
and the genetic potential of plant–microbiome responsiveness.
Plant genetics of and breeding for beneficial plant–microbiome
interactions were highlighted as underutilised and promising
areas to improve crop resilience and yield stability. There have
been fruitful and provoking discussions on the benefit of tar-
geted microbiome-based genotype selections. While Jos Raaij-
makers (NIOO, Netherlands) hypothesised that beneficial plant-
associated microbiomes were indirectly co-selected through-
out the history of breeding (Raaijmakers 2019), Richard Jeffer-
son (Cambia & QUT, Australia) concluded that plant genome-
focussed breeding has neglected agile trait contributions from
the microbiome (Jefferson 2019). Matter-of-factly, comparing dif-
ferent genetic backgrounds, plant genotype was shown to play a
small (∼5% of variation) but significant role on microbiota com-
position (Hacquard et al. 2015).

Various studies revealed genotypic variation of plant respon-
siveness to microb(iom)es as revealed by genotype-dependent
(i) colonisation success of mycorrhizal fungi (Schneider et al.
2019), (ii) recruitment of microbes under water and nutrient
stress (Faist et al. 2019), (iii) microbe-mediated resistance by indi-
vidual strains (Sefloo et al. 2019) or entire communities (Elhady
et al. 2018), (iv) responsiveness to soil microbial feedbacks (Hu
et al. 2018) and (v) bacterial quorum sensing molecules (Shrestha
et al. 2019). Some studies unravelled mechanisms behind such
genetic effects. For instance, genetic variation in responsive-
ness to microbe-induced priming involved stronger activation

of defence-related genes and cell wall structures (Shrestha et al.
2019). Other studies led to the discovery of quantitative trait
loci (QTL) as a first step towards marker-assisted selection of
microbiome responsiveness. Bulgarelli (2019) identified a QTL
associated with the recruitment of specific members of the
microbiome and Wehner et al. (2019b) reported the identifica-
tion of a QTL for microbe-induced leaf rust resistance. Progress
was also made for microbiome-based screening systems. For
instance, Wille et al. (2020) demonstrated heritable variation for
root rot resistance and significant correlations with field perfor-
mance in a screening assay that involved the entire native soil
microbiome as a key element of plant resistance. Other stud-
ies matched root morphological traits and the soil microbiome
for enhanced nutrient and water uptake (Galindo-Castañeda,
Hartmann and Lynch 2019) and growth, drought and cold tol-
erance (Orozovic et al. 2019) as a means to directly target plant–
microbe interactions in breeding programmes. The group work
session of the EUCARPIA workshop led to fruitful discussions on
opportunities and challenges of implementing plant–microbe
interactions in plant breeding. Opportunities were particularly
seen in the area of yield stability (increased resilience for chal-
lenging conditions) and productivity (maintaining yield while
reducing fossil-based inputs). Emphasised tools and applica-
tions were high-throughput phenotyping, machine learning and
modelling approaches, novel seed treatments and the focus on
endophytes, plant genetic markers, gene editing and monitoring
and decision tools for agricultural practice and crop/genotype
selection in general. The need to work closely with farmers
and to link controlled experiments with field conditions was
highlighted. Identified challenges involved the development of
standards for -omics protocols, understanding of microbiome
functions (beyond description), registration of microbial prod-
ucts and still unresolved problems with their performance
variability.

In conclusion, to reach the goal to breed plants for improved
interactions with microb(iom)es, the genetic understanding
of the plant microbiome is a research priority. We are at
the beginning of disentangling the principles that drive the
observed phenotypic variation of different plant genotypes in
their interaction with beneficial microorganisms or more gener-
ally with the native soil microbiota. The limited understanding
of genotype–microbiome interactions is partly due to a lack of
high-throughput screening tools available for selecting appro-
priate plant genotypes (Kroll, Agler and Kemen 2017; Walters
et al. 2018; Beilsmith et al. 2019; Wille et al. 2019). A second chal-
lenge is the variability of soil microbiomes between different
environments (E). Both the GEM model (Oyserman et al. 2019)
and the focus on core microbiomes (Toju et al. 2018) present pos-
sible ways forward to solve the complexity of plant genotype (G)
by soil microbiome (M) interactions. To implement microbiome-
assisted crop production into practice, additional factors such
as cultivation practices or ‘soil management’ (Fig. 1B) will refine
the GEM model as framed earlier by Busby et al. (2017).

OUTLOOK

The miCROPe 2019 symposium as well as the EUCARPIA work-
shop bridged fundamental understanding of beneficial plant–
microbiome interactions and the application of microbials or
microbiome-based approaches for crop production. Conference
and workshop presentations as well as multiple discussions
between academia and industry led to the identification of new
insights potentially leading to new innovations but also to the
improvement of current approaches and applications. Overall,
we conclude that a better understanding is particularly needed
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on the functioning of soil and plant-associated microbiomes.
Mechanistic insight exists mostly on a few isolated and well-
studied microorganisms, however, such functional understand-
ing is necessary for naturally-occurring and complex micro-
bial communities in order to improve performance predictions.
Furthermore, the interactions between the crop and its asso-
ciated microbiome, or more generally the interactions within
the holobiont, need further investigations. Ultimately, we need
to link the beneficial functions of individual microorganisms or
whole microbiomes with plant traits in order to (i) solve con-
text dependency for microbial inoculation approaches and (ii)
identify the genetic determinants to allow breeding for benefi-
cial plant–microbiome interactions.
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AIT & ÖGMBT, 2019, 94.

Oyserman BO, Cordovez V, Sarango Flores SW et al. Extract-
ing the GEMs: genotype, environment and microbiome
interactions shaping host phenotypes, bioRxiv. 2019, DOI:
10.1101/863399: 863399.

Parniske M. Arbuscular mycorrhiza: the mother of plant root
endosymbioses. Nat Rev Microbiol 2008;6:763–75.

Peters C. Opportunities and challenges of microbial seed appli-
cation. In: Sessitsch A, Khassidov A, Brader G (eds.) Inter-
national Symposium - Microbe-Assisted Crop Production - Oppor-
tunities, Challenges & Needs. Vienna, Austria: AIT & ÖGMBT,
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ÖGMBT, 2019, 76.

Ravanbakhsh M, Kowalchuk G, Jousset A. Combining nano-
materials and phages for enhanced bacterial wilt con-
trol. In: Sessitsch A, Khassidov A, Brader G (eds.) Interna-
tional Symposium - Microbe-Assisted Crop Production - Oppor-
tunities, Challenges & Needs. Vienna, Austria: AIT & ÖGMBT,
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