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ABSTRACT

Domains are fundamental subunits of proteins, and
while they play major roles in facilitating protein–
DNA, protein–RNA and other protein–ligand interac-
tions, a systematic assessment of their various in-
teraction modes is still lacking. A comprehensive re-
source identifying positions within domains that tend
to interact with nucleic acids, small molecules and
other ligands would expand our knowledge of do-
main functionality as well as aid in detecting ligand-
binding sites within structurally uncharacterized pro-
teins. Here, we introduce an approach to identify per-
domain-position interaction ‘frequencies’ by aggre-
gating protein co-complex structures by domain and
ascertaining how often residues mapping to each
domain position interact with ligands. We perform
this domain-based analysis on ∼91000 co-complex
structures, and infer positions involved in binding
DNA, RNA, peptides, ions or small molecules across
4128 domains, which we refer to collectively as the
InteracDome. Cross-validation testing reveals that
ligand-binding positions for 2152 domains are highly
consistent and can be used to identify residues fa-
cilitating interactions in ∼63–69% of human genes.
Our resource of domain-inferred ligand-binding sites
should be a great aid in understanding disease etiol-
ogy: whereas these sites are enriched in Mendelian-
associated and cancer somatic mutations, they are
depleted in polymorphisms observed across healthy
populations. The InteracDome is available at http:
//interacdome.princeton.edu.

INTRODUCTION

The rate at which new genomes are sequenced has long
since outpaced our ability to experimentally characterize
the biological functions of the encoded genes and their pro-
tein products. Leveraging the fact that similar protein se-
quences or subsequences tend to share similar functions,
computational approaches have been developed to miti-
gate this sequence-to-function discrepancy by rapidly de-
tecting and modeling the sequence similarity between pro-
teins (1). Such homology-driven analyses of large-scale pro-
tein sequence databases have revealed many thousands of
recurrent, probabilistically modelable protein subsequences
called ‘domains’ (2–4). These sequence-derived domains
correspond to evolutionarily and functionally related sub-
structures of proteins and are found in various modular
combinations within proteins from species across the tree
of life (5).

Individual protein domains are associated with spe-
cific functionalities, among the most important of which
are mediating the interactions proteins make with nu-
cleic acids, other proteins and various other molecules in
the cell. Indeed, protein–DNA and protein–RNA inter-
actions have been found to occur via domain interfaces
so frequently that factors associated with transcriptional
and post-transcriptional activity are regularly classified ac-
cording to their incorporation of particular nucleic acid-
binding domains (6,7). Moreover, a significant proportion
of protein–protein interactions in signaling pathways are
mediated by modular binding domains (8).

Although simply knowing which domains mediate vari-
ous ligand interactions has already accelerated our ability
to annotate protein functions (9), pinpointing the ligand-
contacting positions within these domains would enable
a more precise analysis of the many thousands of se-
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quenced proteins across species that contain domain in-
stances but lack further biological characterizations. In-
deed, more comprehensive knowledge of protein interac-
tion interfaces will have considerable implications for in-
vestigating the evolution and natural variation of inter-
action network connectivities (10), for determining the
mechanistic impact of coding variants (11), for prioritizing
germline and somatic perturbations to uncover disease eti-
ology (12,13), and for designing targeted therapeutic drugs
(14).

Identifying positions within domains that interact with
ligands from sequence alone is nontrivial, as a minority
of positions within a domain may be involved with ligand
binding, and these positions may not be proximal with re-
spect to the linear protein sequence (e.g. of 264 positions in
the tyrosine kinase domain, only 16 non-contiguous posi-
tions contact adenosine triphosphate (ATP)) (15). Further,
while some ligand-binding positions are largely invariant
across domain instances––for example, the zinc-contacting
positions in the Cys2-His2 zinc finger (C2H2-ZF) domain
are required for proper domain folding and thus are highly
conserved––other binding positions are not: amino acids
within DNA-contacting positions in these same C2H2-ZF
domains, for example, vary dramatically across domain in-
stances to confer diverse binding specificities, and thus can-
not be identified by conservation-based analyses (16).

On the other hand, analyses of three-dimensional struc-
tures of proteins co-complexed with ligands are highly ac-
curate in identifying positions comprising interaction inter-
faces. Previously, co-complex structures of a single or a few
manually-selected domain instances have been used as mod-
els to distinguish domain positions involved in ligand bind-
ing from those that are not (17,18). However, binary classi-
fications of domain binding positions determined from sin-
gle structures are not always generalizable; indeed, analyses
of structurally distinct instances of some domain families
have revealed that the positions involved in binding pep-
tides or other domains can vary (19). As such, although var-
ious databases have associated domain families with corre-
sponding structures and bound ligands, particularly in the
context of domain–domain interactions, they have largely
avoided attempts to systematically determine, across mul-
tiple ligand types, the positions within these domains that
mediate interactions (19–23).

Here we introduce a robust, large-scale structural aggre-
gation approach to systematically identify positions within
domains that are likely to interact with ligands. Our main
contributions are as follows. First, we analyze over 91000
protein–ligand co-complex structures in the context of do-
mains and develop a proximity-based scoring function that
determines real-valued ligand-binding frequencies across
individual positions in 4128 domains; we compute per-
position binding frequencies separately for DNA, RNA,
peptide, ion, metabolite and other small molecule ligands.
Second, we show via cross-validation testing that the re-
sultant per-domain-position binding frequencies can accu-
rately reveal positions that bind ligands in held-out struc-
tures. Third, we utilize these Interaction Domains, which
we refer to collectively as the InteracDome, to infer inter-

Figure 1. Workflow for computing per-position binding frequencies for do-
mains. (A) Structures of protein–ligand binding complexes are obtained
from BioLiP (24); pictured here are proteins in complex with DNA (blue,
PDB ID: 4auw), RNA (orange, PDB ID: 5els), peptides (purple, PDB ID:
5ibk), a zinc ion (pink, PDB ID: 1aay) and the small molecule GMP (yel-
low, PDB ID: 5tzd). Protein chains are colored gray. (B) Instances of Pfam
domain families are found across BioLiP structures. For each Pfam do-
main family found in (B), we (C) aggregate all instances by ligand-binding
type, (D) calculate distributions of minimum distances from residues to
ligands and (E) calculate a real-valued binding frequency for each domain
position for each ligand type.

action sites across ∼63% of human genes with high confi-
dence, and up to ∼69% of human genes more broadly; this
represents the most comprehensive resource of this type to
date. Fourth, we uncover that these domain-inferred inter-
action sites across human proteins exhibit significant func-
tional constraints: they are depleted for natural variants
across healthy human populations, while they are enriched
for Mendelian disease-associated and cancer somatic mu-
tations. Finally, we conclude with a discussion of how our
InteracDome resource can be leveraged to provide valu-
able, medically-relevant insights by detecting and interpret-
ing the mechanistic effects of disease-associated coding mu-
tations.

MATERIALS AND METHODS

Overview

In this section, we describe our framework for systemati-
cally evaluating how different positions within domains are
involved in mediating various ligand interactions. Briefly,
we first obtain from BioLiP (24) a comprehensive collec-
tion of structures of proteins co-complexed with various
ligands (Figure 1A). Each of these structures contains the
three-dimensional locations of all atoms within a protein
chain and all atoms within a ligand; the protein chains are
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also represented linearly as sequences of amino acids. We
then use probabilistic sequence matching to find instances
of protein domains within these protein sequences (Figure
1B). For those domain families with instances across mul-
tiple protein sequences, we aggregate their instances into a
multiple sequence alignment such that each column of the
alignment corresponds to a ‘core’ domain position (i.e. a
match state in the corresponding HMM profile (2)), and
each row corresponds to a different domain instance (Fig-
ure 1C). Next, we analyze the structure corresponding to
each domain instance. For each amino acid residue in that
instance corresponding to a core domain position, we cal-
culate the minimum Euclidean distance between any of the
atoms in that residue’s side chain to any atoms in a lig-
and. This process leaves us with a distribution of minimum
residue-to-ligand distances observed across structural in-
stances for each domain position (Figure 1D). Finally, we
distill each of these per-domain-position distance distribu-
tions into a single ‘binding frequency’ value that reflects that
domain position’s tendency to bind a particular ligand (Fig-
ure 1E). We describe each of these steps in more detail next.

Aggregating structural co-complexes to identify interaction
domains

We downloaded 91063 X-ray crystal and nuclear magnetic
resonance (NMR) structures on 12 September 2018 from
BioLiP (24), a curated database of biologically relevant
protein–ligand complexes; 7095 structures contain nucleic
acid molecules, 9373 contain peptides, and 82355 contain
additional ligands (Figure 1A). To identify domains that
mediate protein interactions, we query all BioLiP protein
sequences for instances of 16712 profile Hidden Markov
models from the Pfam-A database (v31.0) using HMMER
(v2.3.2 and v3.1b2) (2,25). We restrict to domain instances
that pass Pfam’s default gathering thresholds, have residues
at the first and last domain positions, have the most likely
residue at domain positions with information content ≥4
(corresponding to a distribution where the most frequent
amino acid appears with ∼95% probability), and contain
at least one residue annotated by BioLiP to be involved in
ligand binding (Figure 1B).

Differentiating and grouping ligand types

We classify BioLiP ligands into biologically relevant groups.
Protein residues responsible for determining DNA- and
RNA-binding specificity often contact nucleic acid bases,
whereas residues that primarily contact the backbones of
nucleic acid molecules may be more important for the sta-
bility and affinity of the binding complex (17,26). As BioLiP
groups all DNA and RNA ligand molecules together, we
reanalyze the original co-complex structures to character-
ize ligand atoms based on the presence (RNA) or absence
(DNA) of the 2’-hydroxyl in the ribose sugar; these ligands
respectively occur in 2718 and 4377 co-complex structures.
We further group these ligand atoms into RNA base, RNA
backbone, DNA base or DNA backbone.

The 123 ligands from 38234 co-complex structures with
‘ion’ in their full names are assigned to the ion group;

the remaining 23829 ligands from 64918 co-complex struc-
tures are grouped as small molecules. BioLiP already ex-
cludes molecular artifacts from crystallization buffers, yet
does not explicitly differentiate cognate (i.e. naturally oc-
curring in vivo) from non-cognate ligands. To highlight do-
main positions whose residues comprise metabolically rel-
evant and/or potentially druggable binding pockets, we
further categorize small molecules as follows. Any small
molecule ligand with a Tanimoto coefficient ≥ 0.9 (Open
Babel Package, v2.4.1) (27,28) between its SMILES string
(wwPDB’s Chemical Component Dictionary, v3.30) and
the SMILES strings of one of 102 639 endogenous hu-
man metabolites (Human Metabolome Database, v4.0) (29)
and/or 9296 drugs (DrugBank, v5.1) (30) is respectively
classified as metabolite and/or druglike; these ligand types
respectively occur in 35262 and 42947 co-complex struc-
tures. We note that previously a Tanimoto coefficient cutoff
of 0.9 was shown to efficiently reduce molecular database
search spaces while still enabling accurate molecule match-
ing (31); further, we find that cutoffs as low as 0.8 to clas-
sify small molecules as metabolite and/or druglike do not
substantially alter the numbers of domains found to be in
complex with these ligand types.

Computing proximity-based positional binding frequencies

We define the representable set of domain–ligand interac-
tions as those with at least one corresponding domain–
ligand co-complex structure in BioLiP. We require that these
structures give coordinates for residue side-chain atoms––as
opposed to just backbone carbon atoms––but do not oth-
erwise consider structural resolution. For each domain in
the representable set, we assess the ligand-binding frequen-
cies of individual domain positions by aggregating protein–
ligand atom proximity information across their correspond-
ing co-complex structures (Figure 1C–E). For structures
that have multiple chains or chain orientations with iden-
tical sequences, we select the single chain with the smallest
Euclidean distance to the ligand of interest. For each in-
stance of the domain in a BioLiP structure that contains at
least one residue in contact with a particular ligand type, for
each of its residues corresponding to a Pfam domain match
state, we compute the minimum Euclidean distance between
heavy (i.e. non-hydrogen) side-chain atoms to any heavy lig-
and atom. We aggregate these distances by domain position
across all BioLiP instances for the same domain–ligand type
pair, resulting in a per-domain-position distribution of min-
imum distances to the ligand (Figure 1C–D). We next deter-
mine what fraction of these distances are within 3.6Å of the
ligand (Figure 1E); however, to proportionally minimize the
contribution of structural instances with highly redundant
sequences, we apply the Henikoff and Henikoff sequence
weighting scheme (32) to the domain instances. Thus, in-
tuitively, our per-domain-position binding frequency com-
putes the (weighted) fraction of times a residue in that posi-
tion is within 3.6Å of the ligand type considered. Note that
the distance of 3.6Å will capture both hydrogen bonds (2.6–
3.3Å) and van der Waals contacts (2.8–4.1Å), but will elim-
inate water-mediated interactions (as in (33)). We find that
residue-to-ligand proximity cutoffs between 2.5 and 5.0Å
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do not substantially alter which positions have the top 10–
15% of ligand-binding frequency values per domain.

Cross-validation testing of domain-to-ligand distance consis-
tencies and positional binding frequencies

We refer to each domain–ligand type pair with at least three
distinct (i.e. non-redundant) sequences across separate PDB
entries as belonging to the representable-NR set. For each
domain–ligand pair in the representable-NR set, we evalu-
ate both the consistency of its structural interface as well
as the accuracy of our aggregation approach in identifying
ligand-binding positions in cross-validation.

First, to evaluate consistencies of domain–ligand struc-
tural interfaces, for each domain–ligand pair in the
representable-NR set, we first randomly split its structural
instances into two folds. We next compute, across all in-
stances within each fold, the average minimum residue-to-
ligand distance at each domain position. Finally, we com-
pute the Pearson’s correlation coefficient (PCC) between the
two resulting domain-length vectors. We report the average
PCC achieved across ten repetitions of this process as the
consistency of the domain–ligand structural interface.

Second, to test the power of our approach in iden-
tifying binding positions across previously unseen do-
main instances, for each domain–ligand type pair in the
representable-NR set, we randomly divide its structural in-
stances into up to 10 folds. For each domain instance i in
each hold-out fold in turn, we examine the structure to as-
sign a binary vector where 1 and 0 respectively indicate do-
main positions whose residues are or are not in contact
with the ligand (i.e. as annotated by BioLiP). Binding fre-
quencies are then calculated as before from instances in the
remaining folds. For each position in each instance in the
hold-out fold, we use the corresponding positional bind-
ing frequency, computed from the other folds, as its ‘score.’
We then rank in descending order all positions within the
hold-out fold by score, with higher ranking positions corre-
sponding to the more confident predictions of binding. As
we iteratively decrease the score threshold used to predict
whether a position is binding, we compute precision and
recall with respect to the known binding (true positive) and
non-binding (true negative) positions inferred from the ac-
tual structures in the held-out set. This allows us to compute
a precision-recall curve (PRC) for each domain–ligand in-
teraction. We refer to the set of domain–ligand interactions
that achieved a cross-validated precision of at least 0.5 at
some threshold as the confident set. We also compute the
area under under the PRC (AUPRC), and compare it to an
average baseline AUPRC corresponding to the fraction of
binding positions in the held-out set.

We note that instances of the same domain family have by
definition clearly identifiable sequence similarity and thus
can have highly similar amino acid sequences. Neverthe-
less, as an alternate cross-validation test, for each domain–
ligand type pair in the representable-NR set, we also try
to divide all its instances within BioLiP into groups such
that the amino acid sequence identity between instances in
different groups is <90%. We repeat the steps above to de-
termine domain–ligand structural consistencies and cross-
validated precisions and recalls by dividing these groups

of BioLiP instances with sequence identity ≥90%––rather
than individual instances––into folds as before; these results
are reported in the ‘Supplementary Data’ section.

Human protein, natural variation and disease mutation
datasets

Protein sequences, corresponding cDNA sequences and
corresponding genomic coordinates for 104 295 known and
predicted human protein isoforms encoded by 23043 genes
were downloaded from Ensembl (build GRCh38.p10). We
consider the subset of 89024 protein isoforms from 22712
human genes where the genomic DNA sequence matched
the cDNA sequence, the cDNA sequence translated to the
protein sequence with ≤5% sequence mismatch, and the
protein transcript was not annotated with ‘decay’ nor ‘pseu-
dogene.’ We functionally classify single nucleotide variants
(SNVs) with respect to the longest protein isoform for each
gene by mapping SNVs onto Ensembl cDNA sequences and
translating to proteins.

Naturally occurring exonic SNVs from 123 136 healthy
humans were downloaded from the Genome Aggregation
database (gnomAD, v2.0.2) (34). We restrict to the set
of 194 868 common missense SNVs that are found with
frequency ≥ 0.001 across any gnomAD subpopulation.
We also obtained 28242 missense germline disease muta-
tions affecting 24823 sites across the canonical protein iso-
forms of 2590 human genes from UniProtKB’s Humsavar
database (v2017 04) (35) and augmented this set with an ad-
ditional 1912 validated missense germline disease mutations
occurring an additional 159 human genes from OMIM
(v2011 02) (http://www.bioinf.org.uk/omim/).

We also downloaded all open-access TCGA somatic
SNV data and RNA-seq expression data from NCI’s Ge-
nomic Data Commons on 15 July 2017 (36,37). We exclude
all SNVs occurring after a frameshift or nonsense muta-
tion in the corresponding tumor sample and all SNVs from
genes that were expressed at <0.1 TPM (in the correspond-
ing tumor sample or on average across other tumor samples
of the same tissue type when expression data was missing).
These steps resulted in a filtered set of 1 171 890 missense
somatic SNVs across 18627 genes using data from 10037
tumors across 33 cancer types. Finally, 1209 known cancer
driver missense SNVs were downloaded from the Database
of Curated Mutations (DoCM, v3.2) (38).

Inferring putative ligand-binding positions in human proteins

We query the longest protein isoform of each human gene
and infer ligand-binding positions in these proteins in three
ways. First, we extract human proteins from BioLiP, and
obtain the residues identified in this database to interact
with ligands. Next, we transfer structural binding informa-
tion from BioLiP to human proteins with high sequence
similarity, as described previously (13). Finally, for each
domain where we have estimated per-position binding fre-
quencies, we find matches to this domain in human se-
quences using HMMER as described above and transfer
the ligand-binding frequencies to any protein residue that
corresponds to a core domain position. In practice for this
last step, only domain–ligand pairs from the confident set

http://www.bioinf.org.uk/omim/
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are used. For each of these domain–ligand pairs, the thresh-
old to define ligand-binding positions is chosen as the value
that resulted in cross-validated precision ≥0.5, as described
above.

Determining significance of overlap with inferred ligand-
binding sites

Given a set of sites of interest in human proteins (e.g. sites
harboring common missense SNVs across populations) and
a set of putative ligand-binding sites in human proteins, we
determine whether the overlap between these two sets is sig-
nificantly larger or smaller than what is expected by chance
alone using the Poisson binomial distribution. Here, the N
sites of interest across proteins are modeled as N indepen-
dent Bernoulli trials, where the p1, ..., pN probabilities of
‘success’ (i.e. overlap with the putative binding sites) for
each trial are non-uniform. Specifically, each success proba-
bility pi is equal to the proportion of putative binding sites in
the protein where the site of interest i occurs; this way, sites
of interest that occur in proteins with a large proportion of
putative ligand-binding sites will not bias global trends. We
determine if K––the number of sites of interest observed
to overlap with the putative binding sites––is significantly
greater than or less than we would expect by chance by re-
spectively computing Pr(X ≥ K) and Pr(X ≤ K) using the
Poisson binomial implemented in R’s poibin package (39).
P-values computed as 0 are reported as 1e-15, the lowest
non-zero P-value we achieved using poibin.

RESULTS

Our fully automated procedure to build the InteracDome
resource identifies 4128 domain families that are repre-
sentable (i.e. have ligand interactions across one or more
instances in structural co-complexes). Of these, 2375 do-
main families have at least three non-redundant instances
in complex with the same ligand type across distinct PDB
structures; these domain–ligand interactions comprise the
representable-NR set. Within the representable set of do-
main interactions, 564 domain families are co-complexed
with DNA, 490 are co-complexed with RNA, 830 are
co-complexed with other peptides, 2557 are co-complexed
with ions and 2847 are co-complexed with one or more
small molecules. In the representable-NR set, 257, 244,
299, 1204 and 1634 domain families are respectively co-
complexed with DNA, RNA, peptides, ions and/or small
molecules. Note that the same domain family can be found
to interact with multiple ligand types (e.g. the RRM domain
interacts with both DNA and RNA across instances).

Case studies: InteracDome includes well-known interaction
domains and recapitulates known ligand-binding domain po-
sitions

We begin by ascertaining how well the interaction domains
profiled in the InteracDome cover known ligand-binding
domains. Toward this end, we compiled a list of 54 DNA-
binding domain families from the Thornton Lab review
(40), 12 RNA-binding domain families from the review by
(41) and 78 human peptide-binding domain families listed

on the Pawson Lab site (http://pawsonlab.mshri.on.ca). We
find that our representable set of domain–ligand interac-
tions includes all the DNA-binding domain families, all
the RNA-binding domain families and ∼85% of postulated
protein-binding domain families, many of which have been
particularly difficult to structurally characterize due to the
low affinity and transience of protein–protein interactions
in signaling pathways (42). Of these known ligand-binding
domains, 42 (78%) DNA-binding domains, 9 (75%) RNA-
binding domains and 47 (60%) peptide-binding domains
are found in the representable-NR set; these numbers are 42
(78%), 8 (67%) and 43 (55%), respectively, for known ligand-
binding domains found in the confident set.

Next, we turn our attention to how well our per-domain-
position binding frequencies identify manually curated
ligand-binding domain positions. In particular, domain po-
sitions involved in ligand binding have previously been es-
tablished for a few well-studied domains using one or a few
structural co-complexes. Intuitively, our method automates
this approach at a much larger scale; thus, we expect that
domain positions assigned high binding frequencies by our
method will largely be in agreement with previous knowl-
edge of domain binding. We highlight below a few well-
studied nucleic acid-, peptide- and metabolite-binding do-
mains to show that indeed, when we compare InteracDome
binding frequencies with literature-curated knowledge of
domain–ligand binding, domain positions with high bind-
ing frequency values recapitulate known interaction posi-
tions.

We first consider three nucleic acid binding domains.
The C2H2-ZF domain is known to specify its DNA tar-
gets via four DNA-base contacting positions (-1, 2, 3 and
6 in the �-helix contacting DNA) (33); these four positions
have the highest DNA base-binding frequencies for this do-
main in the InteracDome. Additionally, there are two highly
conserved cysteines and histidines that coordinate the zinc
ion––required for proper domain folding––and these four
positions have our highest ion-binding frequencies (Figure
2A and Supplementary Figure S1a). In the DNA-binding
homeodomain, our highest DNA base-binding frequencies
correspond to positions 45–46, 49–50 and 53–54 in the
DNA recognition helix, followed by positions 1–4 in the N-
terminal arm (Figure 2B and Supplementary Figure S1b);
these are known specificity-determining positions in the do-
main (18,43). In the RNA-binding pumilio domain, the
highest RNA base-binding frequencies are found in posi-
tions 14, 16, 17 and 20 of the repeating �-helix section (Fig-
ure 2C and Supplementary Figure S1c). Indeed, positions
16, 17 and 20 confer RNA-binding specificity, and posi-
tion 14 contacts RNA backbone ribose rings, likely affect-
ing binding (26).

We next examine InteracDome binding frequencies for
two peptide-binding domains. In the WW domain, our
highest peptide-binding frequencies are found at positions
17, 19, 21, 24, 26 and 28––all corresponding to known bind-
ing residues. The next highest peptide-binding frequencies
identify positions 8, 10 and 11––all known to confer bind-
ing specificity differences between type I and IV domains
(Figure 2D and Supplementary Figure S1d) (44). Sites with
high binding frequencies for the SH3 domain are also rel-
evant for peptide binding. In particular, positions with the

http://pawsonlab.mshri.on.ca
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Figure 2. Examples of domains scored according to ligand-binding frequency. Residues within interaction domain structures are colored according to their
ligand-binding frequencies; domains pictured include: (A) C2H2-ZF domain (PF00096, PDB ID: 1aay, second domain of chain A), the zinc ion is shown
on top of the domain for visibility, (B) Homeodomain (PF00046, PDB ID: 1ig7), (C) Pumilio domain (PF00806, PDB ID: 1m8w, third domain of chain
B), (D) WW domain (PF00397, PDB ID: 2n1o), (E) SH3 domain (PF00018, PDB ID: 2bz8) and (F) protein kinase domain (PF00069, PDB ID: 1csn,
subdomains I–V, both ATP molecules from two units shown).

highest binding frequency values are 4, 6, 32 and 47––the
four most conserved peptide-binding sites––and positions
9–13, 27–30, 34 and 45––all known to be important for dis-
tinct peptide-binding specificities (Figure 2E and Supple-
mentary Figure S1e) (45).

Finally, our approach also recapitulates ATP-binding po-
sitions in the kinase domain. Our high small molecule bind-
ing frequencies include several residues from subdomains
I–VII that are responsible for interacting with and anchor-
ing ATP’s adenine ring (i.e. positions 7, 15, 28, 77–80, 84),
�, � and � phosphates (i.e. positions 11–13, 30, 128, 141),
and ribose hydroxyl group (i.e. position 127) (15). We also
highly rank an additional six sites within three amino acids
of a known binding position (Figure 2F and Supplementary
Figure S1f).

Domain-to-ligand proximities are consistent across instances

We next show, in a systematic analysis, that structural
interfaces between domains and their ligands in the
representable-NR set tend to be conserved. Briefly, we com-
pare the residue-to-ligand distances across different struc-
tural instances of a domain–ligand interaction type to each
other (see ‘Materials and Methods’ section). We find that
analogous positions across domain instances indeed tend
to have similar distances to ligands: the median PCC of
domain–ligand interactions is 0.98 and the PCC ≥ 0.8 for
91% of domain–ligand interactions (Figure 3 and Supple-
mentary Figure S2). Thus, domains tend to have highly con-

Figure 3. Domain-to-ligand distance consistencies. Structural instances
across BioLiP for each domain–ligand type in the representable-NR set are
randomly split into two folds. Shown are PCCs of the average residue-to-
ligand distances across each domain position between the two folds, aver-
aged across 10 repetitions. Relative domain-to-ligand distances across do-
main positions tend to be highly consistent between structural instances of
the same domain–ligand pair. Total number of domain–ligand interactions
included in each boxplot are listed above the corresponding distributions.

sistent structural interaction interfaces with the same ligand
type across instances.

As we have just shown, domains generally tend to interact
with their ligands in a relatively consistent fashion. How-
ever, some interaction domains are also known to have mul-
tiple binding modes, where different combinations of do-
main positions are in contact with the ligand (44,45); these
cases cannot be detected by examining structural domain
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Figure 4. Bootstrapped standard errors of binding frequencies. (A) For each
domain position with a positive binding frequency in each domain–ligand
interaction pair in the representable-NR set, we plot its ligand-binding fre-
quency (x-axis) and the standard error of this value (y-axis), computed as
the standard deviation of its ligand-binding frequency as measured over
1000 bootstrap samples. Distribution medians at each binding frequency
decile are shown as black dots and are connected by gray lines for visual ef-
fect. (B) Bootstrapped standard errors decrease as the number of structural
domain instances with non-redundant sequences increase, illustrating the
ability of our structural aggregation approach to determine how domain
positions are generally involved in ligand binding. Boxplots are colored ac-
cording to the relative size of each distribution; the number of total domain
positions, across domain–ligand type pairs, is listed above each boxplot.

instances in isolation, but may be revealed using our aggre-
gation approach. To get a better idea of how much domain
positions vary with respect to their roles in ligand binding,
for each domain–ligand type pair in the representable-NR
set, we use empirical bootstrapping of structural instances
with 1000 repetitions to obtain standard errors of all bind-
ing frequencies. Smaller standard errors indicate a domain
position’s consistent role in binding, whereas larger boot-
strapped standard errors indicate that the measured bind-
ing frequency of that position is highly dependent upon the
specific groups of structures being considered, and thus the
position plays a more variable role in ligand binding. Impor-
tantly, standard errors tend to be low for the full range of
ligand-binding frequencies (Figure 4A and Supplementary
Figure S3a). Moreover, as expected, positions with more ex-
treme binding frequency values (i.e. ≥0.95 or ≤0.05) tend to
have lower standard errors. Conversely, positions with in-
termediate binding frequencies also exhibit more variation

in their estimates in bootstrapped samples. We also show
that with more sequentially-distinct structural examples of
domain–ligand complexes, the standard errors of computed
binding frequencies decrease overall (Figure 4B and Sup-
plementary Figure S3b). This latter finding indicates that
aggregating information across structural domain instances
allows us to infer which positions within domains bind par-
ticular ligands more confidently than we could if we were
limited to only one or a few structural examples. We note
that whereas positions with positive binding frequencies are,
by definition, known to interact with ligands in some con-
texts, positions with 0-value binding frequencies may also
sometimes be involved in binding, but are not yet repre-
sented in the set of solved structures. Thus, overall, we ex-
pect that our aggregation approach will continue to improve
as more structures of previously unobserved domain bind-
ing modes are experimentally determined.

Cross-validation highlights power of binding frequencies

We next evaluate how well the binding frequencies for
a given domain–ligand type pair indicate positions in-
volved in binding across previously unobserved structural
instances. To measure this, we employ cross-validation to
compute PR curves for each domain–ligand pair in the
representable-NR set, and compare the AUPRCs to cor-
responding baseline AUPRCs (see ‘Materials and Meth-
ods’ section). We find that the average (across folds) actual
AUPRCs are typically substantially higher than their cor-
responding baseline AUPRCs, particularly for domain–ion
interactions which tend to involve far fewer domain binding
positions and thus have lower baseline AUPRCs (median
fold improvement of actual over baseline AUPRCs = 19.9,
fold improvement ≥ 5 for 94.2% of domain–ligand interac-
tions, Figure 5A). We also note that the cross-validated pre-
cisions for domain–ligand type pairs in the representable-
NR set tend to be high across a range of binding frequency
cutoffs (Figure 5B). Moreover, when we repeat this pro-
cess with stricter fold divisions, ensuring that structural in-
stances of domain–ligand interactions in separate folds have
<90% sequence similarity, we again find that the improve-
ment of actual over baseline AUPRCs remains high (me-
dian fold improvement of actual over baseline AUPRCs =
18.8, fold improvement ≥ 5 for 93.9% of domain–ligand in-
teractions, Supplementary Figure S4). This benchmarking
demonstrates that our binding frequencies can be used to
infer domain binding positions across previously unseen,
sequentially diverse structural instances.

For the remainder of our analysis, we consider a con-
fident set of 12010 domain–ligand interactions from the
representable-NR set (involving 2152 distinct domains) that
achieve a cross-validated precision ≥0.5 at some binding
threshold. Note that though many domain–ligand interac-
tions are structurally consistent across domain instances,
∼25% of domain–ligand interactions in the representable-
NR set are not included in the confident set due to the di-
versity with which they bind their ligands across structural
instances. For example, the PAZ (Piwi/Argonaute/Zwille)
domain binds RNA using a variety of positions across dis-
tinct instances and thus achieves a low cross-validated pre-
cision in identifying binding sites in held-out structures.
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Figure 5. Cross-validation testing of binding frequencies. Accuracy of each domain–ligand interaction from the representable-NR set is measured as the
average AUPRC in cross-validation with up to 10 folds. (A) For each domain–ligand pair, we compute the fold change between the actual AUPRC and a
baseline AUPRC corresponding to the fraction of binding positions in the hold-out set. (B) We use each positional binding frequency computed across
domain–ligand pairs as a threshold to distinguish predicted binding from non-binding domain positions, and we measure the precision achieved in each
held-out set of domain–ligand structural instances using each of these thresholds. Shown is the average precision computed across domain–ligand inter-
actions in the representable-NR set at binding frequency thresholds varying from 1 (highest) to 0 (lowest).

Analysis of InteracDome-inferred binding sites in human

We next use our InteracDome resource to infer sites
in human proteins that may be involved in interactions
with DNA, RNA, peptides, ions, metabolites and small
molecules.

Domain-based approach doubles coverage of human genes
with modeled interactions. As of September 2018, only
3099 (13.6% of 22712 total) human genes were associated
with biologically relevant protein–ligand complex struc-
tures in BioLiP. Homology modeling as described in (13)
allows us to infer binding residues in an additional 3110
genes. Together, these two approaches cover 27.3% of all hu-
man genes (Figure 6A) (13,46,47). We note that there are an
additional 1043 human genes associated with co-complex
structures in the Protein Data Bank (PDB) (48), but these
proteins are either complexed with non-biologically rele-
vant ligands or with peptides longer than 30 residues (which
are not included in our analysis).

Approximately 90% of human genes contain complete in-
stances of ∼6000 Pfam domain families. Of course, not all
of these domains have associated structural co-complex in-
formation, and thus neither their roles in mediating bind-
ing nor which positions within them are involved in lig-
and binding are known. However, 14335 (63.1%) genes con-
tain InteracDome domain instances with confident inter-
actions or homology-inferred binding interfaces. Including
any domain with representable interactions across 5+ or 1+
instances in BioLiP, rather than only domains with con-
fident interactions, respectively covers 64.4 and 69.2% of
human genes. Our InteracDome resource thus represents a
2.3- to 2.5-fold increase in coverage over current state-of-
the-art approaches to infer putative interaction sites across
human genes. Furthermore, our approach covers a diverse
range of interaction types, as substantial fractions of these

Figure 6. Interaction domain-based coverage of human genes. (A) Structural
and domain-based coverage of 22712 human genes. Dark gray bars indi-
cate ways by which to structurally infer protein interaction interfaces. (B)
Percentages of genes estimated to interact with specific ligand types using
the confident set of domain–ligand interactions.

genes contain instances of domains with confident inter-
actions with DNA, RNA, peptides, ions, metabolites and
other small molecules (Figure 6B). Altogether, the Interac-
Dome represents a considerable improvement in our ability
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Figure 7. Natural variants show opposite trends from disease mutations with
respect to ligand-binding sites. Putative ligand-binding sites correspond to
protein positions overlapping domain match states whose binding frequen-
cies resulted in a precision of at least 0.5 in cross-validation testing (i.e. con-
fident interactions, see ‘Materials and Methods’ section). Shown on the
y-axis (top) is the fold change between the observed (K) and expected
(E[K]) numbers of InteracDome-inferred putative binding sites (any type,
DNA, RNA, peptide, ion, metabolite or small molecule) and other sites
of interest (common naturally varying, Mendelian disease mutated, can-
cer somatically mutated). We compute the significance of this overlap (y-
axis, bottom) using the Poisson binomial distribution. (A) Putative ligand-
binding sites exhibit a significant lack of overlap with commonly varying
sites across human proteins. (B) Conversely, putative ligand-binding sites
overlap significantly with sites harboring Mendelian disease mutations. (C)
Protein sites harboring missense cancer somatic mutations also overlap sig-
nificantly with putative ligand-binding sites, suggesting that these sites are
preferentially altered in human cancers.

to infer diverse protein–ligand interaction sites across large
numbers of proteins across species.

Putative binding sites are depleted of natural variants, en-
riched for disease mutations. Because the vast majority of
proteins’ functions are carried out through specific inter-
actions, even rare DNA variants or mutations that alter
interaction-mediating protein residues can have critical im-
pacts in human disease. As such, we expect inferred protein
interaction sites to be relatively conserved across healthy
human individuals, whereas we would expect these same
sites to be perturbed across individuals with disease (13).
To determine whether our InteracDome-inferred binding
residues exhibit these expected functional constraints, we
perform an initial analysis on missense mutations where we
consider any protein residue overlapping a domain match
state with a corresponding binding frequency that resulted
in a cross-validated precision ≥ 0.5 to be a confident ‘puta-
tive’ ligand-binding site (see ‘Materials and Methods’ sec-
tion).

We first assess whether commonly varying sites across
healthy human individuals tend to globally overlap with
putative ligand-binding sites as expected across the human
proteome (34). We find that the overlap between commonly
varying sites and confident domain-inferred binding sites
is significantly less than expected by random chance (P <
1e-15, Poisson binomial test, Figure 7A). This global trend

indicates that sites identified by InteracDome as potentially
ligand-binding are generally conserved across healthy indi-
viduals, in accordance with what we would expect and fur-
ther demonstrating the utility of our resource to highlight
functionally important protein interaction positions.

We next consider whether protein positions harboring
known disease-associated mutations overlap with these
same putative binding sites. We uncover that Mendelian
disease-mutated sites coincide with putative binding sites
far more than expected by chance (P < 8.4e-14, Poisson bi-
nomial test, Figure 7B) (35), in concordance with previous
studies of specific diseases (49,50), and that these mutations
affect a broad range of ligand-binding sites (Supplementary
Table S1).

Finally, we assess whether somatically mutated sites
across human cancers overlap with putative binding posi-
tions across all human proteins as we might expect by ran-
dom chance. Others have noted the propensity of cancer
mutations to coincide with ligand interaction sites across
smaller gene sets and in known driver genes in particular
(13,51). We find that over a quarter of the 1209 unique
cancer-driving somatic mutations (DoCM, v3.2) (38), for
instance, fall into confident putative ligand-binding sites in-
ferred using InteracDome (Supplementary Table S2), even
though these sites constitute only ∼2.8% of the entire pro-
teome and ∼14.4% of the proteome covered by a domain
with confident interactions (P < 8.5e-23, binomial test).
Moreover, when we repeat our global, site-based analysis,
considering all somatically mutated sites across >10000 tu-
mor samples from 33 cancer types and using a much more
comprehensive set of inferred binding sites than previous
studies, we confirm the same trend. Sites harboring somatic
missense mutations tend to coincide with inferred binding
sites significantly more than expected by random chance
(P < 9.0e-12, Poisson binomial test, Figure 7C), strongly
suggesting that protein interaction perturbation is a fre-
quent mechanism by which somatic mutations contribute
to tumor fitness. Indeed, the somatic mutations affecting
InteracDome-inferred putative binding sites have higher
deleteriousness scores relative to non-binding mutations, as
evaluated by various mutational impact predictors (P < 1e-
14, Fisher’s exact tests, Table 1) (52). However, unlike these
other deleteriousness predictors, our InteracDome-inferred
binding sites can not only be used to pinpoint potentially
disease-relevant mutations, but can also be used to reason
about their molecular, mechanistic impacts on protein in-
teraction functionality.

The respective overlap (and lack thereof) of inferred
binding sites with mutated or varying sites is significant
even when considering only specific types of ligand bind-
ing in turn (Figure 7). Somatically mutated sites in par-
ticular appear to overlap with putative DNA-binding sites
across proteins significantly more than expected, in accor-
dance with what we know about impaired DNA repair
functionality and perturbed regulatory processes in cancer
(53). Importantly, we continue to observe the same over-
all trends for sites exhibiting naturally occurring variation,
Mendelian disease mutations, and somatic mutations when
we consider alternate precision-based definitions of putative
ligand-binding sites from the representable-NR set (Supple-
mentary Figure S5). Overall, given that natural missense
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Table 1. Fisher’s Exact Tests comparing deleteriousness predictions between binding and non-binding mutations

# Binding Mutations # Non-Binding Mutations

Method deleterious tolerated deleterious tolerated Odds Ratio P-value

SIFT 23094 9142 486 089 312 266 1.62 ∼0
PolyPhen2, HDIV 21208 11801 416 954 400 778 1.73 ∼0
PolyPhen2, HVAR 18574 14435 326 362 491 306 1.94 ∼0
MutationTaster 6284 3868 129 866 94141 1.18 4e-15
PROVEAN 6411 3429 103 264 114 453 2.07 3e-262
REVEL 3230 6886 47823 175 674 1.72 3e-127
MutPred 6011 3156 92629 109 803 2.26 7e-305

Each distinct somatic mutation in the pan-cancer dataset is classified as either binding (i.e. falls into an InteracDome-inferred, confident putative binding
position in at least one human protein) or non-binding. Corresponding deleteriousness scores for each of these mutations were retrieved, where available,
from the Database for Nonsynonymous SNPs’ Functional Predictions (v3.5) (52); many mutations analyzed did not have corresponding deleteriousness
scores for one or more predictors. Score thresholds to distinguish deleterious from tolerated mutations were set as recommended by each method or to
≥0.5 when not specified for REVEL and MutPred scores.

variants across healthy populations are depleted in putative
binding sites, and Mendelian disease-associated missense
mutations as well as somatic missense mutations across
cancer tumors are enriched in them, computational ap-
proaches that leverage our InteracDome resource to iden-
tify perturbed interaction sites are likely to be highly rel-
evant for identifying disease genes and informing disease
mechanisms.

DISCUSSION

We have introduced here a fully automated approach for
aggregating protein co-complex structural data in the con-
text of domains to reveal how positions within these do-
mains are generally involved in mediating interactions with
DNA, RNA, ions, peptides, metabolites and other small
molecules (Figure 1). This collection of 4128 interaction do-
mains, called the InteracDome, can be applied to pinpoint
putative interaction sites in various proteins across species;
here we show how a subset of 2152 domains with confident
ligand interactions can be used to infer functionally rele-
vant interaction sites across the greatest proportion of hu-
man genes to date (Figure 6A).

Previously, interaction site information has been trans-
ferred from structurally modeled proteins to uncharacter-
ized proteins with similar sequences or subsequences using
various homology-based approaches (13,46,47). Sequence
motifs have also been semi-manually annotated with highly
conserved metal ion binding or catalytic site information
for use in identifying functional sites in new proteins, al-
though such approaches are limited due to their rigid se-
quence match requirements (54). Indeed, the ability of tra-
ditional homology-based approaches to infer binding infor-
mation across larger, more diverse sets of protein sequences
using existing structural templates is restricted in general
because even as the number of resolved protein structures
is increasing, the diversity of their sequences is not. Here,
we develop a structurally-aware, domain-based approach
to calculate real-valued binding frequencies across individ-
ual domain positions. These probabilistically-modeled do-
main profiles are better able to capture conserved residues
required for proper domain folding and thus can be used to
accurately transfer binding site knowledge across a far more
diverse set of proteins.

Determining the binding positions within these domains
represents a challenging task due to biases inherent in struc-
tural data: structures often harbor confounding experimen-
tal artifacts, are dominated by non-cognate drug interac-
tions, and can have highly redundant sequences to each
other (24). We show that by addressing each of these is-
sues in turn, our systematic approach models binding po-
sitions across thousands of domains––including nearly all
known DNA-, RNA- and peptide-binding domains––that
are highly indicative of ligand-binding positions in well
characterized domains as well as in structural instances that
were held out in cross-validation testing (Figures 2 and
5). Moreover, we find that aggregating domain co-complex
structures to develop a general understanding of how a do-
main participates in interactions is superior to using only
one or a few structures for this task (Figure 4B).

Some domains can bind different types of ligands, though
one of these may be rare or nonstandard; for instance, the
C2H2-ZF and HTH domains predominantly bind DNA
but sometimes bind RNA or peptides. Other domains
may bind the same ligand type via multiple, diverse bind-
ing modes; for example, though the PAZ domain primar-
ily binds RNA, the positions within the domain mediat-
ing RNA interactions vary across structural instances. We
mitigate these two concerns in our aggregation approach
by conservatively restricting domain–ligand interactions to
those with substantial structural representation that bind
consistently across instances as demonstrated via cross-
validation testing (i.e. ‘confident’ domain–ligand interac-
tions).

Substantial previous work has focused on detecting and
characterizing the domain–domain interactions that medi-
ate a number of protein–protein interactions across cellular
interaction networks (19,55–58). We make the distinction
that in our work, we focus not on detecting the particular
domain-mediated interfaces between specific protein part-
ners, but rather on understanding which positions within
protein domains mediate a variety of interactions in general
with nucleic acids, peptides, metabolites, and a wide range
of small molecules. Though we do not consider proteins in
complex with other whole proteins here, our framework can
be naturally extended to characterize domain–domain in-
teractions in more depth.
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Overall, we believe that our structural aggregation frame-
work and resultant InteracDome resource lay the ground-
work for many future domain-centric analyses and thus will
be of broad use for the community. Not only can knowledge
of domain binding positions be used to further group, sub-
type, subdivide or functionally annotate domain families
themselves, but the putative interaction sites inferred across
proteins using the InteracDome should be relevant in un-
derstanding disease etiology. Indeed, we find that these sites
are globally conserved across healthy human individuals
yet preferentially perturbed in tumor samples and disease
populations. As such, we anticipate that future approaches
that utilize InteracDome to detect interaction-altering pro-
tein coding variants will be a great aid in both prioritiz-
ing disease-associated mutations as well as reasoning about
their molecular effects.
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