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The soil-borne pathogen Phytophthora capsici causes severe destruction of Capsicum spp. Resistance in Capsicum against P. capsici
is controlled by numerous minor quantitative trait loci (QTLs) and a consistent major QTL on chromosome 5. Molecular markers
on Capsicum chromosome 5 have been developed to identify the predominant genetic contributor to resistance but have achieved
little success. In this study, previously reported molecular markers were used to reanalyze the major QTL region on chromosome
5 (6.2 Mbp to 139.2 Mbp). Candidate resistance gene analogs (RGAs) were identified in the extended major QTL region including
14 nucleotide binding site leucine-rich repeats, 3 receptor-like kinases, and 1 receptor-like protein. Sequence comparison of the
candidate RGAs was performed between two Capsicum germplasms that are resistant and susceptible, respectively, to P. capsici. 11
novel RGA-based markers were developed through high-resolution melting analysis which were closely linked to the major QTL
for P. capsici resistance. Among the markers, CaNB-5480 showed the highest cosegregation rate at 86.9% and can be applied to
genotyping of the germplasms that were not amenable by previous markers. With combination of three markers such as CaNB-
5480, CaRP-5130 and CaNB-5330 increased genotyping accuracy for 61 Capsicum accessions. These could be useful to facilitate

high-throughput germplasm screening and further characterize resistance genes against P. capsici in pepper.

1. Introduction

Hot pepper (Capsicum spp.) is an economically important
crop that belongs to the Solanaceae family along with tobacco,
potato, and tomato. Hot pepper provides many essential
vitamins, and capsaicin is used as a major spicy flavoring in
most global cuisines [1]. In 2016, the main pepper-producing
countries grew 38 million tons on about 3.7 Mha [2]. The
world production and trade value of hot pepper consistently
increased during the last decade.

Pathogenic fungi, oomycetes, bacteria, and viruses cause
economic damage and crop loss. Pepper production in
negatively impacted by approximately 87 different pathogens
and diseases [3]. Among them, Phytophthora capsici is a
highly destructive, broad-host-range oomycetes that was
first described in pepper in New Mexico in 1922 [4]. The
host range of P. capsici includes Solanaceae, Cucurbitaceae,

lima beans, and other plants. P. capsici is found in North
America, South America, Asia, Africa, and Europe. P. cap-
sici causes severe disease symptoms such as foliar blight,
stem blight, and root, stem, fruit, and foliar rot. The eco-
nomic impact of P. capsici on worldwide vegetable produc-
tion has been valued at over one billion dollars per year
(5.

P capsici forms oospores that survive for years in the
soil and can migrate through water and wind during warm
(25-28°C) and wet conditions such as those during rainy
seasons [6]. After P. capsici becomes established at a location,
it can be very difficult to control. There is no effective chem-
ical and agricultural strategy. Resistance against P. capsici
has been reported in cultivated peppers including cultivars
‘AC2258; ‘P1201232; ‘P1201234, and ‘CM334’ [7, 8]. Among
the resistant cultivars, Capsicum annuum ‘CM334” shows a
very high degree of resistance to multiple races of P. capsici
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and reported resistance to root rot, crown rot, fruit rot, and
foliar blight [9-11].

Previous studies indicated that resistance of pepper to
P. capsici is under polygenic control governed by complex
quantitative trait loci (QTLs) [12-15]. Identification and QTL
mapping of genes conferring partial resistance against P. cap-
sici in pepper is essential for breeding cultivars with P. capsici
resistance. The majority of QTLs for P. capsici resistance are
conserved on Capsicum chromosome 5. Numerous molecular
markers have been developed within the major QTL region,
but little progress has been made in developing functional
gene-based markers of P. capsici resistance, and no P. capsici-
resistance gene (R gene) has yet been characterized. Recently,
high-quality de novo sequenced Capsicum genomes, includ-
ing the ‘CM334’ genome, were reported [16,17]. This genomic
information from the hot pepper could be applied to plant
breeding and the selection of crops with specific traits such
as disease resistance or large fruit size [16, 18, 19]. The devel-
opment of functional gene-based markers and the further
characterization of genes that confer resistance against P, cap-
sici is key factor for efforts to breed disease-resistant pepper
cultivars.

Plants have multiple layers of defense against pathogen
attacks, including preformed barriers for continuous defense
and programmed immune responses based on pathogen
recognition [20-22]. Resistance gene analogs (RGAs) are
proteins involved in plant immune responses. RGAs have
highly conserved structures, which include nucleotide bind-
ing site leucine-rich repeat (NBS-LRR) proteins, receptor-like
proteins (RLPs), and receptor-like kinases (RLKs) [21, 23, 24].
RGAs have been cloned as resistance genes in various plants
such as wheat (L710 to pathogen), barley (Mla6), rice (Xal),
maize (RpI-D), Arabidopsis (RPMI), lettuce (Rgc2), tobacco
(N), and tomato (Prf) [25-32]. RGAs can be used to identify
and characterize R genes.

In this study, the sequences of previously developed
markers were screened to extend the major QTL region
on Capsicum chromosome 5 and the RGAs were reana-
lyzed within that region to identify candidate resistance
genes. Marker development on candidate genes was per-
formed by comparing single nucleotide polymorphisms
(SNPs) between the P. capsici-resistant cultivar C. annuum
‘CM334’ and the P. capsici-susceptible cultivar C. annuum
‘Daepoongcho. A total of 61 Capsicum accessions were used
to validate the newly developed RGA-based markers through
high-resolution melting (HRM) analysis. These markers
could be useful to validate the genotyping of germplasms
and to further characterize resistance genes against P
capsici.

2. Materials and Methods

2.1. Plant Materials. 61 Capsicum accessions (44 resistant, 3
moderately resistant, and 14 susceptible cultivars; Table SI)
[33-38] were used to validate cosegregation of molecular
markers. All plants were grown in 32-cell trays filled with
soil. The plants were kept in a growth chamber at 25°C with a
16 h/8 h (light/darkness) photoperiod.
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2.2. Pathogen Preparation and Plant Inoculation with P. cap-
sici. 'The preparation of the P. capsici inoculum was described
in previous study [11]. P. capsici was grown for 7 days in
potato dextrose agar medium at 27°C and mycelial plugs
(6 mm in diameter) were transferred on V8 agar medium for
zoospore production. After 5 days, the mycelia grown on V8
agar medium were damaged using spreader and incubated
under fluorescent lights for 2 days. The zoosporangia were
shocked by incubating at 4°C with sterile water for 1h
30min to initiate release zoospores, followed by 30 min at
28°C for equilibration. The zoospores were collected and
the concentration was adjusted to 1 x 10° zoospores - mL™"
counted by hemocytometer, and 2mL of suspension was
drenched at the root of each six-true-leaf stage of pepper
plant. The inoculated pepper plants were kept at 25°C with
a 16-h light photoperiod condition. Evaluation of disease
symptoms was assessed using disease index of 0 to 3 scale
(0 = no symptom; 1 = leaf wilting but no necrosis or less
than 30% of the leaf wilted; 2 = leaf wilting and slightly
necrosis stem or less than 60% of the leaf wilted; 3 = plant
dead) [37]. The classification of the pepper lines, as resistant,
moderately resistant or susceptible, was made based on the
average disease index of each line, where if the scale was < 1,
the pepper line was considered as resistant (R), 1 < disease
index < 2 confer as moderately resistant (MR), and if the
scale was < 3 as susceptible (S). The results of the phenotype
correspond to those as shown in Kim et al., 2017 [38].

2.3. Genomic DNA Extraction. Genomic DNA was extracted
from the young leaves of plant samples using a slightly mod-
ified cetyltrimethylammonium bromide (CTAB) method
[39]. First, the leaves were grinded using a pestle and
mixed them with CTAB buffer, polyvinylpyrrolidone, and
pB-mercaptoethanol. The samples were incubated at 65°C
for 1h, added chloroform with isoamyl alcohol (24:1), and
centrifuged them at 4°C 15,814 g for 15 min. Supernatant was
transferred to a new 1.5 mL tube and incubated it for 30 min
at —20°C with isopropyl alcohol. The precipitated genomic
DNA was washed using 70% ethanol and centrifuged it at
4°C15,814¢ for 10 min. DNA pellet was dissolved in deionized
water and treated it with ribonuclease A. Concentration of
genomic DNA was measured by a NanoDrop™ Spectropho-
tometer (ND-2000, ThermoFisher Scientific, Waltham, MA,
USA) and then diluted the sample to a final DNA concentra-
tion of 20 ng-uL ™.

2.4. Major QTL-Related Marker Analysis. The DNA sequen-
ces of 5 simple sequence repeat (SSR), 8 cleaved amplified
polymorphic sequence (CAPS), and 18 SNP markers from
the published maps of pepper chromosome 5 were used
and compared with the C. annuum ‘CM334’ genome version
155 (http://genome.pepper.snu.ac.kr/) using BLASTn. The
major QTL region on chromosome 5 was extended including
all of the previously identified molecular markers and then
candidate resistance genes from the extended major QTL
region were selected.

2.5. Candidate Gene Selection and High-Resolution Melting
Analysis. RGAs were identified according to the domain
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structure of the genes in the extended major QTL region.
Domain structure analysis was conducted using SMART
(http://smart.embl-heidelberg.de/) and Pfam (http://pfam
xfam.org/). The RGA sequences were expanded including
an additional 1 kb from both ends of the sequences using
an in-house pipeline. A multiple sequence alignment tool
MUSCLE (http://www.ebi.ac.uk/) was used to identify SNPs
between C. annuum ‘CM334’ and C. annuum ‘Daepoongcho’
for developing RGA-based markers. The candidate genes
were selected based on the locations of the SNPs within the
expanded QTL region.

Peptide and DNA sequences were downloaded from the
Pepper Genome Platform (http://genome.pepper.snu.ac.kr/)
and designed primers using primer3plus (http://www.bioin-
formatics.nl/cgi-bin/primer3plus/primer3plus.cgi; Table 1)
for HRM analysis of molecular markers. HRM analysis was
performed to validate the cosegregation of the newly devel-
oped RGA-based markers among 61 Capsicum accessions
using LightCycler® Real-Time PCR (Roche, Basel, Switzer-
land). The reaction solution had a total volume of 20 uL and
contained 40 ng genomic DNA, 1uL each of two primers
at 10 pmol-uL ™!, 0.1 yL. EasyTaq® DNA polymerase (Trans-
gene Biotech, Beijing, China), 2uL 10x EasyTaq® buffer
(Transgene Biotech, Beijing, China), 1uL 2.5mM dNTPs
(Transgene Biotech, Beijing, China), 1yL SYTO®9 green
fluorescent nucleic acid stain (Life Technologies, Carlsbad,
CA, USA), and sterilized water. The PCR conditions were
5min denaturation at 95°C followed by 10 s at 95°C and
annealing with extension 20 s at 60°C for 40 cycles. The
melting curve stage was a progression of 95°C for 1 min, 40°C
for 1 min, and 65°C for 1 s with fluorescence estimated at 0.2°C
intervals. Genotyping of the molecular markers was analyzed
through High-Resolution Melt software version 1.1 (Roche,
Basal, Switzerland).

3. Results and Discussion

3.1. Candidate RGA Markers with Integration of Genetic
and Genomic Data on Pepper Chromosome 5. Genetic and
genomic data on pepper chromosome 5 were integrated to
determine the extended region of a major resistance QTL.
The following DNA sequences and QTL information were
used in this study: CAPS markers mapped to the Pc.5.2, Pc.5.3
region of ‘H3’ x “Vania’ (HV), and ‘Perenial’ x “Yolo Wonder’
(PY) [40]; SNP markers within the Pc5.I region of ‘Early
Jalapeno’ x ‘CM334’ (EC), the Phyto5 region of ‘YCM334’
x ‘Tean, and the Pc5.2 region of ‘CM334” x ‘Chilsungcho’
(CC) and ‘NBI’ x ‘Bhut Jolokia’ [41-44]; and SSR markers
mapped to the Pc5.1 region of ‘Manganji’ x ‘CM334’ [45].
The genomic locations of the previously developed markers
were identified using BLASTn with the C. annuum ‘CM334’
genome. The primer sequences and the genomic location of
several representative markers are shown in Table 1.

A physical map of chromosome 5 was drawn including
the locations of the markers and obtained the extended major
QTL region for the selection of candidate resistance genes.
The extended QTL region spanned from 6.2 Mbp (U196349)
to 139.2 Mbp (P5-SNAP-CM) and contained 10 QTLs and
845 genes from 56 scaffolds (Table 1 and Figure 1). The

genes included NB-ARC domain containing protein, GRAS
family transcription factor, cytochrome P450, and proteins of
unknown function.

Using the domain analysis tool, 18 RGAs in the extended
QTL region including 14 NBS-LRR proteins, 3 RLKs, and
1 RLP were identified (Table S2). Previously, Rehrig et al.,
2014, reported several RGAs nearby QTL peak on chro-
mosome 5 using ‘CM334’ genome (ver.l.5), but they did
not developed RGA-based markers to evaluate P. capsici-
resistance resources. In this study, additional five RGAs were
identified from the updated ‘CM334” genome (ver. 1.55) as
shown in Table S2. The 14 NBS-LRR proteins consisted of
seven partial type NBS-LRRs and seven full type NBS-LRRs.
All three RLKs had a kinase-TM-kinase domain. The RLP
had a signal peptide-LRR domain. The majority of candidate
genes that have been cloned as R genes in plant species are
RGAs. To date, more than 314 functional R genes have been
identified in plants [46]. Among them, 80% encode NBS-
LRR proteins (191/314) or RLPs/RLKs (60/314). In Solanaceae,
all of the cloned R genes against Phytophthora infestans
were identified RGAs such as Rpi-blbl, Rpi-blb2, R2, R3a,
and ELR [47-51]. Therefore, the identification of RGAs and
development of RGA-based markers could be useful in the
further characterization of P. capsici-resistance genes.

3.2. Development of SNP Markers. Eighteen RGAs were rean-
alyzed to identify SNPs between resistant and susceptible P.
capsici germplasms by multiple sequence alignment. Among
the 18 RGAs, 11 had SNPs and were selected as candidate
genes for the development of molecular markers (Table 2 and
Table S2). The RGA-based markers had four SNP types (A/C,
A/G, T/C, and T/G) and had from one to three SNPs between
the resistant and susceptible germplasms (Table 2). Using
HRM analysis, nine NBS-LRR-based markers (CaNB-5390,
CaNB-5410, CaNB-5440, CaNB-5480, CaNB-5550, CaNB-
5720, CaNB-5330, CaNB-5530, and CaNB-5170), one RLK-
based marker (CaRK-5470), and 1 RLP-based marker (CaRP-
5130) were developed. The HRM curves clearly distinguished
among three genotypes for each of the markers: resis-
tant homozygous, resistant heterozygous, and susceptible
homozygous (Figure 2).

The RGA-based SNP markers were applied to genotyping
of 61 Capsicum accessions with previously developed markers
such as 142964 [42] and Phyto5SAR [43]. In a previous
report, the region spanning from 20.2 Mbp to 29.29 Mbp
on chromosome 5 was reported as the major core QTL
region [43]. Phyto5SAR was closely linked to the major core
QTL, and was used to assess the genotyping accuracy of the
new developed markers. The genotyping results of the newly
developed markers are shown on Table 3 and Table S3, which
were divided into four groups as genotyping accuracy on
cultivars. The phenotypes in cultivars belong to Group 1 and
Group 2 were matched with genotyping results by six markers
(Table 3). The cosegregation rates varied from 37.7% to 86.9%
(Figure 3(a)). Several markers adjacent to Phyto5SAR had
a tendency to show a high cosegregation rate, which were
CaRP-5130 (82%), CaNB-5330 (83.6%), CaRK-5470 (72.1%),
and CaNB-5530 (82%). Although far from Phyto5SAR on the
physical map, CaNB-5480 showed the highest cosegregation
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FIGURE 3: Cosegregation rate obtained by genotyping RGA-based markers in 61 cultivars. (a) The cosegregation rate of the each marker. The
x-axis shows the names of the molecular markers. The y-axis shows the cosegregation rate. Newly developed markers are indicated by grey
bars. White bars show previously developed markers 142964 and Phyto5SAR. (b) The genotyping accuracy when applied with combination of
RGA markers at 61 cultivars. The x-axis shows combination of the markers and y-axis shows genotyping accuracy. Grey bars show genotyping
accuracy of resistant and moderately resistant cultivars. Genotyping accuracy of susceptible cultivars is indicated by white bars.

rate (86.9%) except for eight cultivars (13.1%). CaNB-5480
could be applicable to genotyping of germplasms that are not
amenable to genotyping (R31-33; R35-37) using Phyto5SAR.
In a previous study, the combination of molecular markers
increased genotyping accuracy of Cf-9 locus in tomato
cultivars [52]. In our study, by combining two or three
markers, the genotyping accuracy was increased compared

to that in single RGA maker (Figure 3). Combination of
three markers such as CaNB-5480, CaRP-5130, and CaNB-
5330 cosegregated with the resistance and susceptible pheno-
types in pepper accessions used in this study (Figure 3(b)).
Genotyping results of CaNB-5480 and Phyto5SAR showed
98.4% genotyping accuracy except for one cultivar (R43) and
CaNB-5130 can apply to the genotyping of the R43 cultivar.
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The genotyping accuracy of combination of two or three
markers ranged from 78.6% to 100% (Figure 3(b)). Taken
together, combination with highly linked markers could be
used efficiently for genotyping of pepper varieties for further
pepper breeding.

The variation of the cosegregation rate (37.7% to 86.9%)
suggested the conversion of the major QTL region between
the genetic and physical maps. Kim and associates [17]
constructed pseudomolecules using a high-density map
with 6,281 markers derived from C. annuum ‘Perennial’
and C. annuum ‘Dempsey. Scaffold anchoring was con-
ducted with genetic maps of a cross between C. annuum
‘NuMexRNAKY’ and C. frutescens acc. 2814-6 [53]. Neither
previous study used ‘CM334’-related populations. Genomic
variation between ‘CM334’ and other pepper germplasms
could represent differences in cosegregation [54]. Fur-
ther reanalyses of the pepper genomic structure could
reveal reanchoring or rearrangement within or among
chromosomes.

To date, several markers linked to the major resistance
QTL in pepper have been developed including restriction
fragment length polymorphisms (RFLPs), randomly ampli-
fied polymorphic DNA (RAPD), amplified fragment length
polymorphisms (AFLPs), and SNPs, which could lead to
marker-assisted selection for breeding P capsici-resistant
lines [55, 56]. Wang and associates [57] also developed SSR
markers that tightly linked to the resistance gene in pepper
line ‘P1201234. However, the previously developed markers
from the different genetic maps could be insufficient to
determine whether the QTL region includes a QTL that is
conserved among different progenies. P. capsici isolates with
different virulence factors and/or inoculation concentrations
also have variable disease phenotypes, which cause variation
in cosegregation rates of molecular markers [43, 57]. Rehrig
and associates [44] reported cosegregated CaDMRI with QTL
Pc5.1as a candidate for resistance to P. capsici in pepper, but its
function was not determined yet. Here, newly closely linked
RGA-based markers of P. capsici resistance were developed,
which can be used to genotype breeding sources and to
further characterize R genes. Our markers may be used in
combination with other markers such as CaNB-5480, CaRP-
5130, and CaNB-5330 to efficiently determine the phenotypes
of pepper germplasms. Such data would also be sufficient to
determine the resistance gene spectrum in the QTL region on
chromosome 5.

4. Conclusion

In this study, 11 novel RGA-based markers were devel-
oped that are linked to major QTL for P. capsici resis-
tance. Among the markers, CaNB-5480 showed the most
closely linked marker to major QTL. With combination
of CaNB-5480, CaRP-5130 and CaNB-5330 provide the
most accurate assessment of genotyping among 61 Capsicum
accessions. Together, as combination with other markers, it
could be more efficiently phenotyping of pepper germplasms
and to further characterize resistance genes against P
capsici.
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