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Net can robustly and efficiently assist

radiologists in clinical practice without
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been publicly released to democratize

deep learning algorithms for biomedical

research.
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THE BIGGER PICTURE Intracranial aneurysms (IAs) are enormous threats to human health with a preva-
lence of approximately 4%. The rupture of IAs usually causes death or severe damage to the patients. To
enhance the clinical diagnosis of IAs, we present a deep learningmodel (GLIA-Net) for IA detection and seg-
mentation without laborious human intervention, which achieves superior diagnostic performance vali-
dated by quantitative evaluations as well as a sophisticated clinical study. We anticipate that the publicly
released data and the artificial intelligence technique would help to transform the clinical diagnostics and
precision treatments of cerebrovascular diseases. They may also revolutionize the landscape of healthcare
and biomedical research in the future.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Intracranial aneurysm (IA) is an enormous threat to human health, which often results in nontraumatic sub-
arachnoid hemorrhage or dismal prognosis. Diagnosing IAs on commonly used computed tomographic angi-
ography (CTA) examinations remains laborious and time consuming, leading to error-prone results in clinical
practice, especially for small targets. In this study, we propose a fully automatic deep-learning model for IA
segmentation that can be applied to CTA images. Our model, called Global Localization-based IA Network
(GLIA-Net), can incorporate the global localization prior and generates the fine-grain three-dimensional seg-
mentation. GLIA-Net is trained and evaluated on a big internal dataset (1,338 scans from six institutions) and
two external datasets. Evaluations show that our model exhibits good tolerance to different settings and
achieves superior performance to other models. A clinical experiment further demonstrates the clinical utility
of our technique, which helps radiologists in the diagnosis of IAs.
INTRODUCTION andmortality.2 According to statistics, 80%of nontraumatic sub-
The diagnosis and treatment of intracranial aneurysms (IAs) are

important and difficult in clinical assessment. As reported, the

prevalence of IAs in the general population can be up to 6%,1

and the rupture of IAs is always associated with severe morbidity
This is an open access article under the CC BY-N
arachnoid hemorrhages are caused by the rupture of IAs,3,4 and

most of the nontraumatic subarachnoid hemorrhages will result

in death or dismal prognosis.5,6 However, the small size of IAs

and low-intensity contrast to normal vessels in medical image

scans makes even subspecialty-trained radiologists need to
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Figure 1. The workflow of our GLIA-Net model in IA segmentation

The original CTA image is directly used as the global image. A 3D tiling method is adopted and generates many local images. The model consists of two parts: (1)

global positioning network, which analyzes the global image and gives a risk distribution map roughly to the (2) local segmentation network, which uses the local

images to generate voxel-wise segmentation results. The final segmentation map is constructed from all the local image patches.
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check up to hundreds of image slices carefully for one patient.

Moreover, individual radiologists may not make consistent as-

sessments, also emphasizing the diagnostic difficulties. Aiming

to improve the diagnosis, delicately developed algorithms for

the detection of IAs from computed tomography angiography

(CTA) and magnetic resonance angiography (MRA) have been

proposed over the past several decades.7–10 Although digital

subtraction angiography (DSA) is still the gold standard for diag-

nosing IAs, CTA has been proved to be able to diagnose IAs in

most situations11–14 and is a non-invasive, time-saving, and

cost-effective technique with usually wider availability.15 Be-

sides, comparedwithMRA,CTA is a faster,widely available diag-

nostic technique that costs less and has higher image resolution.

The essential role of clinical diagnosis is to detect IAs and

generate three-dimensional (3D) segmentation. Despite the

rapid development of biomedicine, radiologists still need to

make great efforts in the manual detection of IA lesions from

medical images, and with highly limited computer assistance.

Conventional automatic or semi-automatic segmentation

methods for IAs have been proposed during the past few

years.16,17 However, they are quite sensitive to different device

settings and require a lot of laborious pre and post operations.

Offering an alternative solution, recent advances in deep

learning have shown great potential for medical image interpre-

tation, which promises to assist radiologists and clinicians to

speed up and improve the clinical diagnosis. Inspired by the

development of deep learning on segmentation for natural image

interpretation, several deep neural networks, such asU-Net,18 V-

net,19 3D U-Net,20 and P-Net,21 have been validated success-

fully on biomedical datasets recently. Such successes stimulate

an upsurge of research interest in deep-learning-based biomed-

ical applications, including the diagnosis of IAs.7,8 Nevertheless,

current deep learning models for IA image interpretation seldom

consider the inherent characteristics of biomedical data and still
2 Patterns 2, 100197, February 12, 2021
need human interventions like brain extraction or bone removal,

which highly depend on the human and device resources in

different institutions. Besides, the training datasets of these

models are pretty small, comprising no more than a few hun-

dreds of aneurysms. Given that the training data are usually

collected from a single institution, it is hard to guarantee the

generalization capability of the learned models when facing a

large, multi-institutional cohort.

To take a step further in the diagnosis of IAs, we first investi-

gatedall the difficulties in achieving IA segmentation frommedical

images. Thedifficulties are listedas follows.Medical images for IA

diagnosis are typically quite large (over 500 pixels in all the three

dimensions) and it is difficult to identify the 3D structural lesion re-

gions from just a single 2D image. Besides, patientsmay undergo

thorough examinations that cover not only the head region but

also the neck or lung/heart region, which increases the size of

the original CTA scans. However, processing 3D images directly

has been impossible for such a large image size so far because

of the limited computation resources. Besides, the size of IAs is

generally small compared with the whole image, making it hardly

possible to down-sample the image to meet the computation

resource requirement as the aneurysms may be lost.

There are some methods that were designed to deal with the

huge amount of data in medical images. Some methods directly

use 2D or 2.5D segmentation methods.22–24 Kong et al.25 used a

recurrent neural network (RNN) to encode information among

several 2D slices, but these methods only work well for large ob-

ject segmentation, such as cardiac and kidney partition. As a

compromise between 3D feature requirement and limited

computation resource, somemethods use the 3D patching strat-

egy, which clips a small cube as an input sample.20,26 Such 3D

methods can extract local shape information very well but raise

another problem: the global structure information is lost in clip-

ped patches. This can be ignored in some applications like tumor



Figure 2. Flowchart of data selection and di-

vision

The n in the flowchart means the number of cases.
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detection in pathology slices but is very important for the lesions

that have a global position tendency in the body, like IAs.

Although there are some works considering that multi-level

feature fusion can achieve a plausible effect on targets with

different sizes,27,28 they still adopt the whole image as input,

which means they cannot accommodate such huge CTA images

in one glance. Some medical imaging models do consider the

location information,29–31 but they just directly use the coordinate

values without delicately extracting and representing the location

information, thus they are closely attached to the data they use.

Based on these considerations, in this paper, we propose a

strategy to adopt global structure information in the normal 3D

patching segmentation network. Our model is called the Global

Localization-based IA Network (GLIA-Net). The overview of our

model is shown in Figure 1. This method can be used in any 3D

sliding-cube convolution tasks, especially for those requiring

strong global position information. Besides, we propose a strat-

egy to design spatial variant losses for annotated pixels. This is

to consider the annotation inconsistency on the lesion edges.32

We use CTA images because they have a short examination

period in emergency treatment and are more economical to

obtain in many countries. The segmentation model in this work

does not need any pre- or postprocessing procedures with hu-

man intervention, like brain extraction or bone removal, and can

also work on CTA images containing neck or lung regions without

any advanced accessory equipment or medical software. The in-

ternal dataset in this work contains 1,338 CTA images with 1,489

IAs from six different institutions, which guarantees the general-
ization ability of the model. Compared

with the existing deep learning models,

GLIA-Net achieves a target-wise recall

rate of 82.1 (78.2–86.0, 95% confidence

interval [CI]) on the internal test set with

4.38 (2.91–5.85, 95% CI) false-positive

IAs per case, and a voxel-wise segmenta-

tion average precision (AP) of 61.9 (59.4–

64.4, 95%CI), showing superior diagnostic

performance. To further validate the clin-

ical feasibility of our model, a clinical

experiment has also been conducted.

RESULTS

Data
The large variety of IAs’ positions, shapes,

and sizes makes them hard to identify.

Thus, a large dataset with different but

complementary aspects of patients is

required for training and evaluation. We

collected an internal dataset from six insti-

tutions (Guizhou Provincial People’s Hos-

pital, Affiliated Hospital of Zunyi Medical

University, Tongren Municipal People’s
Hospital, Xingyi Municipal People’s Hospital, The Second Peo-

ple’s Hospital of Guiyang, The First People’s Hospital of Zunyi)

and two external datasets from two institutions (People’s Hospi-

tal of Anshun City, Zhijin People’s Hospital). The internal dataset

contains 1,338 CTA images with 1,489 IAs, which contributes to

a huge number of 699,266 512 3 512 2D image slides in total

(approximately 174GB of disk space). The pipeline to build the

dataset and the inclusion and exclusion criteria are shown in

Figure 2.

The images all contain the head region of the patients, some of

which may also contain the neck or heart region. The data

include non-ruptured ones and ruptured ones with subarachnoid

hemorrhage or parenchymal hemorrhage. The CTA scans in the

internal dataset were captured by 11 devices that belong to six

equipment models (SIEMENS SOMATOM Definition AS+,

SIEMENS SOMATOM Definition Flash, SIEMENS SOMATOM

Force, NMS NeuViz 128, GE MEDICAL SYSTEMS Discovery

CT, SIEMENS Sensation 64) from three manufactures (Siemens,

Neusoft, and GE Healthcare). There are four different scan layer

thicknesses (0.6 mm, 0.625 mm, 0.75 mm, and 1.0 mm). All the

patients were in the head-first-supine (HFS) position during the

examination with peak voltage between 70 and 140 kV, and

tube current between 45 and 1,275 mA.

The CTA images were annotated by five clinicians and re-

viewed by two experienced CTA diagnosis radiologists with

the associated clinical and personal information of the patients.

The identified IAs were manually segmented on each slice by us-

ing the open-source annotation software ITK-SNAP.33 The
Patterns 2, 100197, February 12, 2021 3
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Figure 3. Dataset illustration in this study

The IAs are typically tiny in the whole CTA images (about 1/1,000,000 in voxels), which makes the diagnosis a tough task.

(A) Our internal dataset contains 1,338 CTA cases (1,489 IAs) that were collected from six different institutions and the two external test set contains 71 and 67

cases (50 and 51 IAs) respectively. The CTA scans used in training were captured by 11 devices that belong to seven equipment models coming from three

manufactures with four different scan layer thicknesses.

(B) Each case contains 152–1,310 image slices with a size of 5123 512 resulting in a total of 699,266 slices, whichmay include neck and heart regions associated

with the head region as they were collected from real clinical examinations.

(C–E) (C) IAs are typically tiny compared with the whole CTA scans. The presence of IAs was annotated by five clinicians and reviewed by two experienced CTA

diagnosis radiologists with reference to the patients’ clinical reports and personal information. We also show the histograms of (D) patient age distribution and (E)

IA size distribution for the dataset, and the legend also shows the mean and SD.

ll
OPEN ACCESS Article
annotation was used as the ground truth standard both in

training and evaluation, although it should be noted that there

might be some bias or noise considering the vague boundary

of IAs in CTA images and high inter-observer variability, which

means they may not share the same labeling standard

subconsciously.

The whole internal dataset was split into 1,186 cases for

training and 152 cases for testing. The internal test set contains

50 negative cases (no IAs occur). We do not include negative

cases in the training set, because the training already suffers

from severe data imbalance as the IAs are small in the brain.

We verified that all the positive CTA images distribute roughly

equally for different institutions, ages, and genders in the internal

training and test set. The training set was used to train the model

and the test set was only used to evaluate the performance of our

model, which means that the model could not see the images in

the test set before the training is done.

To evaluate the generalization of our model, we also collected

two external datasets from another two institutions that were not

included in the internal dataset. The external test set A contains

71 (including 24 negatives) cases and the external test set B con-

tains 67 (including 22 negatives) cases. The building process of
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these external datasets was the same as that in the internal data-

set. The scans in the external dataset A were captured using one

device, a Philips Ingenuity CT model, while those in the external

dataset B were also captured using one device, a Philips Bril-

liance 64 model. These models were not included in the internal

dataset. Slice thicknesses for the two external test sets are both

0.9 mm, which does not appear in the internal dataset either. The

detailed dataset statistics can be viewed in Figure 3 and Table 1.

Performance evaluation
Our model uses a patching strategy to segment IAs across the

whole original CTA scan (the global image) without bone removal

or any other preprocessing. One CTA image is split into lots of

small patches (the local image) and the network is applied on

each patch at a time. At last, the results of all patches are com-

bined to build the entire segmentation map. The segmentation

network gives each voxel in the input 3D CTA patch a label

that indicates whether it belongs to an IA or normal tissue. Our

GLIA-Net consists of two components: (1) the global positioning

network, which extracts the information of IA distribution in the

global image; and (2) the local segmentation network, which is

used to segment voxel-wise label in the current local image.



Table 1. Dataset statistics in detail

Dataset No. of cases No. of IAs

No. of cases that contain Gender No. of cases containing

Ruptured IAs Non-ruptured IAs Male Female 0 IA 1 IA 2 IAs R3 IAs

Internal training 1,186 1,363 474 712 508 678 0 1,043 119 24

Internal test 152 126 42 60 63 89 50 85 13 4

External test A 71 50 29 18 32 39 24 44 3 0

External test B 67 51 25 20 33 34 22 40 4 1
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The input to the local segmentation network keeps the original

resolution, while that to the global positioning network is

down-sampled to fit in the limited Graphics Processing Unit

(GPU) memory. The major difference between our IA segmenta-

tion model and other segmentation models is that we use a

global positioning network to equip our patch-based local seg-

mentation network with global information that a normal seg-

mentation model cannot access. The global information is not

just conveyed by some simple features like the position coordi-

nate, but with a deep neural feature from the global image. In

the following, we will discuss the ability and performance of

our model.

Considering most IAs are small compared with the whole

brain area and our segmentation model needs to give prediction

labels for each voxel in the image, which is harder than just a bi-

nary patient classification objective, we used multiple related

metrics to evaluate the performance of our model. To begin

with, the AUC (area under curve) value computed on the ROC

(receiver operating characteristic) curve34 and the AP value

computed on the precision-recall curve35 are considered to

demonstrate the overall performance of a segmentation task,

which considers all the probability thresholds on the output.

Then, we set a fixed probability threshold of 0.5 in the following

qualitative evaluations. The precision, recall, DSC (dice similarity

coefficient),36 and 95% HD (the 95th percentile Hausdorff dis-

tance)37 values were calculated in this threshold. To show the

stability of the tested models, we also show the 95% confidence

interval (95% CI) of all evaluation metrics, which was summa-

rized from five different runs for each experiment setting. The

performance can be explained in two aspects: voxel-wise seg-

mentation performance and target-wise detection performance

(see Figure 4).

Our segmentation model was trained on the training set of our

internal dataset (see also in the Experimental procedures and the

Supplemental experimental procedures) and was tested on the

internal test set and two external test sets.

We also compared our GLIA-Net with two deep learning

models. First, we compared our GLIA-Net with the enhanced

version of U-Net,18 which is also the baseline network of our local

segmentation network. This deep learning network has been

widely used in many segmentation tasks in the past few years

and has shown great power compared with traditional models.

In our experiment, wemodified the original U-Net to a 3D version

and replaced its original convolutions with residual blocks. Then,

we compared our model with a state-of-the-art IA segmentation

network called HeadXNet.8 This model can be regarded as the

ultimate version of U-Net supported by the advanced feature ex-

tracting network SE-ResNeXt38,39 and atrous spatial pyramid

pooling.40 We chose this network as a comparison because it
showed great potential in IA segmentation and its ability was

tested on clinical data. To compare consistently, all the models

were trained on the same training dataset and used the same

training procedure.

Segmentation performance

Every test image was split into hundreds of 3D patches with

overlaps and was processed by our segmentation model.

The patches that contain IAs are called positive patches and

those containing no aneurysm are called negative patches.

To focus on the positive patches both in training and evalua-

tion of the model, positive patches were duplicated manually

to match approximately the same number as negative

patches. Next, we evaluated the segmentation performance

of our model compared with other models. The evaluation re-

sults are shown in Table 2. Our GLIA-Net increased the seg-

mentation performance by a large margin in almost all metrics

on the internal test set and two external datasets. Note that all

the tested models have a better performance on the external

test set A than on the internal test set, which may be because

that the IAs in the external test set A are easier to identify (with

bigger average size, as shown in Figure 3D). On external test

set B, the performance of our model is only slightly lower

than that on the internal test set, while other models drop a

lot, which verifies the generalization ability of our model. The

precision-recall curve and the ROC curve of our model are

shown in Figure S1.

Detection performance

One of the aims of our model is to help clinicians find all the IAs

hidden in the original CTA images. So, the performance of IA

detection is also important. Unlike voxel-wise segmentation,

target-wise detection is designed to point out where IAs exist,

in which the IA shapes and sizes do not matter. Here, we set a

standard to identify correct detection. First, we find out all the

lesion regions in the segmentation map generated by the model

and the ground truth label map. Then, if the center distance of

any two lesion regions in the segmentation map and the ground

truth map is smaller than the summation of their radiuses, we

marked themmatched. Then thematched and unmatched lesion

regions can be used to calculate the following detection metrics,

such as precision and recall.

The detection performance of our model and the comparison

with other methods are shown in Table 3. Because U-Net and

HeadXNet treat all patches from different parts of the CTA image

in the same way, they may generate many false-positive

predictions everywhere in the global image. Thanks to the global

positioning network, our GLIA-Net not only reduced the false-

positives a lot but also detected more IAs successfully. Specif-

ically, our model detected 103 (98.5–108.3, 95% CI) IAs out of

126 in the internal test set, with only 4.38 (2.91–5.85, 95% CI)
Patterns 2, 100197, February 12, 2021 5
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Figure 4. Evaluation procedures for voxel-wise segmentation performance and target-wise detection performance

(A) Generation of the prediction map using our GLIA-Net and the ground truth map on which we perform the evaluation.

(B) Segmentation performance is calculated on every voxel in the image, which measures the shape and edge of predicted IAs.

(C) Detection performance is calculated on every IA in the prediction and ground truthmaps, whichmeasures the ability of ourmodel to identify IAs in CTA images.
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false-positive predictions per case. The performance on the

external test sets are slightly lower, but still comparable with

that on the internal test set.

Results analysis
Besides the quantitative evaluations stated above and the abla-

tion study of different parts of our GLIA-Net in Table S1 and Fig-

ure S1, we also show the visualization of four CTA images and

the corresponding segmentation results predicted by our

GLIA-Net and other methods in Figure 5. These examples were

selected randomly from the internal test set. As shown in the fig-

ures, our model can identify IAs accurately even if they are ridic-

ulously small compared with the whole CTA scan. With the help

of our global positioning network, our GLIA-Net can reduce lots

of false-negative predictions at low-risk regions where other

models processing directly on local images often fail. Moreover,

because the training is less affected by structures at low-risk re-

gions, the true-positive predictions of our model are closer to the

ground truth than other methods.

The global positioning network in our model can help the local

segmentation network to learn global distribution information for

the occurrence of IAs. This is important for current patch-based

segmentation models on this task, which can only process one

small local image clipped from the global image at a time and

will lose the global structure information of the human body. To

show the effectiveness of our global positioning network, we pro-

vide a visualization of its output global risk distributionmap in Fig-

ure 6. The risk distribution map is built as follows. First, we

collected the output probability from the final layer of our global

positioning network for a small patch, which can represent the

risk probability for this patch. Second, we collected the risk prob-

abilities of all the tiled patches that can cover the whole global im-

age. Finally, the value in each voxel in the probability distribution

map was averaged by values of all the patches that contain this

voxel. Because the small patches are tiled from the global image

using the sliding-widowapproach,we set the overlap of the sliding

window to about 84% of the patch size to increase the resolution

of the risk probability distribution map.
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Red regions in Figure 6 indicate higher possibilities to contain

IAs and blue regions are the relatively safe areas. However, note

that the IAs are generally too tiny to spot in the down-sampled

global images, which means the heatmap does not point out

exactly the location of IAs, but a risk distribution in the whole

scan. Most parts in the image are predicted low-risk areas of

IAs inferred by our model, while most IAs occurred in high-risk

regions for both the ground truth and the prediction of our model.

The results show that the global positioning network can

perceive human structural knowledge in the global image and

extract useful information that is not opposed to the local seg-

mentation network. This is important because similar structures

to the IAs in other parts of the body can affect the training and

testing procedure a lot if only performed on the local image.

Clinical experiment
Besides the performance on voxel-wise segmentation and

target-wise detection, we also want to explore the clinical utility

of our model and find out how the model can help clinicians. We

performed a clinical experiment to compare the accuracy and

time spent by radiologists to segment IAs with and without the

assistance of our model. Without the assistance, the clinicians

needed to perform the judgment by themselves from the raw

CTA images. With the assistance, both the raw CTA images

and the prediction of our model were available for the clinicians

to diagnose, in which they can identify whether the results gener-

ated by our model are correct or not.

The design of our clinical experiment is shown in Figure 7. To

simulate the real environment in clinical usage, we collected

another 24CTAscans fromdaily examinations inoneof the internal

institutions (Guizhou Provincial People’s Hospital), of which 17

contain at least one IA and the others contain none. TheseCTA im-

ages were performed using our segmentation model in advance.

The time spent only consists of the diagnosis and segmentation

time by the clinicians without data-loading time. There were six

resident radiologistsandsix attending radiologists from three insti-

tutions (Guizhou Provincial People’s Hospital, The First Affiliated

Hospital of Guizhou University of Traditional Chinese Medicine,



Table 2. Voxel-wise segmentation performance

Dataset Model

Precision[

(95% CI)

Recall[

(95% CI)

DSC[

(95% CI)

95% HDY

(95% CI)

AUC[

(95% CI)

AP[

(95% CI)

Internal test U-Net 14.0 (11.9–16.2) 71.3 (63.9–78.7) 23.2 (20.5–25.9) 19.6 (17.9–21.3) 98.8 (98.6–99.0) 17.5 (14.6–20.4)

HeadXNet 16.2 (13.1–19.2) 55.6 (33.0–78.2) 23.2 (20.6–25.9) 15.9 (14.6–17.1) 98.2 (97.1–99.2) 25.0 (12.0–38.0)

GLIA-Net (ours) 48.8 (44.5–53.0) 72.9 (66.9–78.9) 57.9 (56.4–59.5) 9.07 (7.84–10.3) 98.2 (97.6–98.8) 61.9 (59.4–64.4)

External test A U-Net 23.9 (20.7–27.1) 71.0 (59.3–82.8) 35.3 (31.8–38.9) 19.5 (17.7–21.3) 97.9 (97.7–98.2) 30.2 (21.9–38.4)

HeadXNet 27.1 (20.6–33.6) 52.7 (29.2–76.2) 32.4 (25.5–39.3) 15.6 (14.2–17.0) 96.2 (92.8–99.6) 32.1 (18.6–45.6)

GLIA-Net (ours) 71.2 (65.2–77.3) 83.9 (82.2–85.7) 76.8 (73.7–79.9) 8.28 (7.05–9.52) 99.0 (98.8–99.1) 80.5 (78.6–82.3)

External test B U-Net 6.54 (5.65–7.44) 43.6 (37.9–49.3) 11.3 (9.94–12.7) 21.0 (19.7–22.3) 86.9 (83.0–90.7) 6.86 (5.22–8.49)

HeadXNet 14.8 (10.2–19.4) 32.6 (22.3–43.0) 18.1 (15.7–20.6) 15.9 (14.5–17.2) 86.1 (81.3–91.0) 14.3 (8.69–19.9)

GLIA-Net (ours) 59.8 (54.7–64.8) 57.4 (43.0–71.8) 57.2 (50.5–64.0) 8.78 (7.79–9.76) 98.2 (97.2–99.2) 55.8 (44.0–67.6)

Values are given in units of % except for 95% HD, which is given in mm.
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andRenhuai City PeopleHospital) participating in this experiment.

Only the rawCTA imagesand thepredictionmapswereaccessible

to these radiologists during the experiment, which means they

could not refer to the patient identifications, clinical reports, treat-

ment histories, or follow-up examinations. To avoid the bias of

different clinicians and different study cases, we used a crossover

experiment design. We split the radiologists into two groups, R1

and R2, both of which had six radiologists. The study cases were

also grouped into S1 and S2 equally. The radiologists in R1 diag-

nosed S1 without the assistance of our model and diagnosed S2

with the assistance. On the contrary, the radiologists in R2 diag-

nosed S1 with the assistance and diagnosed S2 without it.

We developed a CTA viewing and annotation tool by ourselves

to assist radiologists in the IA diagnosis procedure (see Fig-

ure S6), which is also used in the clinical experiment. The evalu-

ation result is shown in Table 4. We show the result in three

aspects: (1) case-wise, which is to indicate the diagnostic ability

of the radiologist; (2) target-wise, which shows the performance

to detect IA targets; (3) voxel-wise, which is to evaluate the seg-

mentation result that radiologists know about the shape and size

of the aneurysms. Most of the diagnosing metrics with the mod-

el’s assistance are better than without it, especially on the time

spent, target-wise recall rate, and case-wise sensitivity. Our

model is more helpful for resident radiologists than attending

radiologists. The diagnosing timeand target-wise recall rate of ra-

diologists have a statistically significant difference before and af-

ter model assistance (p value 0.02 and <0.01). We also give an

evaluation for radiologists from different institutions without and

with the assistance of our model (see Table S2). Although there

are diagnosing differences among different institutions, which

may be due to different diagnosis abilities of different institutions,

all radiologists can benefit from our model consistently, which

also indicates that our model can help radiologists with different

diagnosing performance in clinical practice.

The clinical experiment verifies our model’s clinical utility. Our

model helps clinicians increase their diagnosis performance in

almost all metrics and saves diagnosis time. We should also

note that the radiologists in this clinical experiment only need to

identify IAs, but the most common situation for radiologists is to

examine a variety of diseases, in which case they may need

more time, and the assistance of the model should also be very

helpful.
DISCUSSION

In this work, we collected a large IA segmentation dataset of CTA

images with pixel-wise segmentation labels. Our internal dataset

contains 1,338 CTA examinations consisting of 699,266 image

slices and 1,489 IAs overall. Then we proposed a fully automatic

segmentation technique that contains a global positioning

network to provide global risk probability information and a

patch-based local segmentation network to generate voxel-

wise predictions. Our model can be directly used in different

clinics and under different scan settings with no pre- or postpro-

cessing procedure. The result shows that our GLIA-Net can iden-

tify over 80%of IA targets with only about four false-positives per

case on the internal test set.

The improvement of our model can be explained by its global

focus design. Different frommost of the medical image segmen-

tation networks directly transformed from those for natural im-

ages, our model makes use of the statistics of medical images

as much as possible. Our design has several advantages in IA

segmentation. First, the global positioning network combining

with the patch-based local segmentation network leverages

the full resolution of the CTA images without down-sampling

the images to fit the memory limit. Otherwise, small targets like

early-stage IAs or those tiny ones hiding in the corners of the

brain may be lost. Second, such a global mechanism can pro-

vide local patches with a global location feature, which is impor-

tant for many localization tasks such as identifying IAs in the

brain, because such lesions have a strong tendency to locate

in specific regions. Patch-based segmentation methods can

work well for some segmentation tasks with subtle relation be-

tween the lesion region and its global position, such as segmen-

tation on tumor pathology whole-slide images. However, IAs are

related to the vascular network distributed in the brain, which

makes the global position information important. Third, it is not

rare for the brain CTA images to contain necks or even part of

the lungs in real-world clinical applications. The global posi-

tioning network can be treated as an additional brain detection

network, but it can give more information than just an object

detection model and does not need additional annotations. Be-

sides, a pyramid-weighted loss strategy was used in training,

which can reduce the impact of the variability and uncertainty

of expert labelers. The evaluation result shows that our
Patterns 2, 100197, February 12, 2021 7



Table 3. Target-wise detection performance

Dataset Model

TPs[

(95% CI)

FPsY

(95% CI)

FNsY

(95% CI)

Recall[

(95% CI)

FPs per caseY

(95% CI)

Internal test U-Net 92.4 (89.0–95.8) 4.68k (3.72k–5.64k) 33.6 (30.2–37.0) 73.3 (70.6–76.0) 30.8 (24.5–37.1)

HeadXNet 69.2 (45.1–93.3) 2.41k (1.21k–3.62k) 56.8 (32.7–80.1) 54.9 (35.8–74.1) 15.9 (7.96–23.8)

GLIA-Net (ours) 103 (98.5–108) 666 (443–889) 22.6 (17.7–27.5) 82.1 (78.2–86.0) 4.38 (2.91–5.85)

External test A U-Net 34.0 (30.6–37.4) 1.41k (1.07k–1.75k) 16.0 (12.6–19.4) 68.0 (61.2–74.8) 19.8 (15.0–24.7)

HeadXNet 24.2 (15.9–32.5) 670 (335–1.01k) 25.8 (17.5–34.1) 48.4 (31.8–65.0) 9.44 (4.71–14.2)

GLIA-Net (ours) 36.0 (33.9–38.1) 193 (127–259) 14.0 (11.9–16.1) 72.0 (67.7–76.3) 2.72 (1.79–3.65)

External test B U-Net 31.8 (29.4–34.2) 3.08k (21.3k–4.02k) 19.2 (16.8–21.6) 62.4 (57.7–67.0) 45.9 (31.8–60.0)

HeadXNet 24.8 (18.5–31.1) 1.64k (737–2.55k) 26.2 (19.9–32.5) 48.6 (36.3–60.9) 24.5 (11.0–38.0)

GLIA-Net (ours) 36.6 (33.3–39.9) 296 (222–371) 14.4 (11.1–17.7) 71.8 (65.4–78.2) 4.42 (3.31–5.54)

The total number of true positive (TP), false-positive (FP), and false-negative (FN) predicted IAs are shown. The target-wise recall rate in the unit of %

and the number of false-positive IAs per case are also given.
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technique is more capable in this IA segmentation task than

other methods.

In clinical practice, the size of IAs also matters in the diag-

nosing procedure. Small IAs (such as smaller than 3mm) are rela-

tively hard to identify, while large IAs are hardly missed. In our

experiment, we also quantify this influence of IA sizes (see Table

5 and Figure S2). The experiment shows that the recall rate of IAs

larger than 7 mm is about 20% higher than that of IAs smaller

than 3 mm for our GLIA-Net. Although U-Net can achieve a

compatible recall rate for targets smaller than 3 mm and larger

than 7 mm, it generates over 30 false-positive predictions per

case, which is not applicable for clinical usage. Our GLIA-Net

can identify most of the aneurysms of different sizes while keep-

ing the number of false-positive targets much smaller.

Although our GLIA-Net achieved promising results in IA seg-

mentation and could assist radiologists and clinicians in their

diagnosis, it also has some limitations. First, during the COVID-

19 pandemic, performing a clinical study with more radiologists

and larger clinical cases is much more difficult than usual. How-

ever, a continuous online validation enrolling more radiologists

and more cases with the assistance of our model in clinical prac-

tice would better demonstrate the validity of our model in the

future. Second, our model was only trained on CTA images. If

other modalities, such as MRA images and DSA (the current

gold standard for IA diagnosis), are adopted, the usage scope

can be broader, and the accuracy may be higher.

The study of IA is important for the health of the public. In the

future, beyond the identification and segmentation, predicting

the rupture of IAs based on the knowledge of the location, size,

and shape of IAs will be worth exploring. Therefore, GLIA-Net

can not only assist clinicians in the diagnosis of IAs but can also

encourage more implementations of artificial intelligence in

healthcare.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and materials should be

directed to and will be fulfilled by the Lead contact, Feng Xu (feng-xu@

tsinghua.edu.cn).

Materials availability

This study did not generate any materials.
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Data and code availability

Original data have been deposited to our data server: http://39.98.209.108/

seafile/d/34d94c4bc44a42fdb33d/. The internal and external datasets are

only available for non-commercial purposes.

The GLIA-Net, together with the training and evaluation code generated dur-

ing this study, are available at Github: https://github.com/MeteorsHub/GLIA-

Net. The annotation tool used in the clinical study is also available at Github:

https://github.com/MeteorsHub/MedLabelMe.

Methods

Deep learning usually uses artificial neural networkswithmillions and billions of

parameters to fit a mathematical function to predict or describe a specific

problem. The network needs a lot of training data to modify its parameters

and generate outputs closer and closer to the real outputs using the gradient

descentmethod. In our case, we used a deep neural network to segment every

IA with different sizes, shapes, and locations in the large CTA image scans.

The whole pipeline of our method is shown in Figure 1. We use GLIA-Net

(global positioning network) to segment IAs from CTA image scans. It takes

thewhole 3DCTAscan, calledglobal image as input,which has a variant number

of slices along the depth axis. GLIA-Net tilesmany sub-images, or patches, from

the global image with an overlap size to process, which are called the local im-

ages. GLIA-Net consists of two dataflow pathways: the global positioning

network and the local segmentation network. The global positioning network

is proposed to estimate the global probability distribution of IAs in the global im-

age. The local segmentation network is focused on local images that are tiled

from the global image and gives voxel-wise segmentation of the IA. During the

training period, a global binary loss was added to the global positioning network

and a local voxel-wise segmentation loss to the local segmentation network. Be-

sides, we propose a pyramid-weighted loss that takes the variability and uncer-

tainty of expert labelers into account in the loss design of the local segmentation

network. The data preprocessing and network details are elaborated below and

in the Supplemental experimental procedures.

Global positioning network

Because our GLIA-Net processes every local image patch one by one to

segment IA, the global location information for the current patch will be

lost if no additional global feature is adopted. Thus, a global positioning

network is proposed to extract a global positioning feature and feed it to

the local segmentation network. First, several 3D convolution blocks are

applied to the global image input and extract a global feature map. This

global feature map is expected to have global distribution information about

how IAs locate in the brain and neighboring body parts. Then, a region-of-in-

terest pooling layer41 is added to pool the feature map from the bounding

box corresponding to the current local image location. The extracted global

feature map for the current patch location is then reshaped to a fixed size by

an adaptive maximum-pooling layer, and processed by another few 3D

convolution blocks to generate the global location feature, which will be

sent to the local segmentation network to assist in segmenting fine-scale

targets.

mailto:feng-xu@tsinghua.edu.cn
mailto:feng-xu@tsinghua.edu.cn
http://39.98.209.108/seafile/d/34d94c4bc44a42fdb33d/
http://39.98.209.108/seafile/d/34d94c4bc44a42fdb33d/
https://github.com/MeteorsHub/GLIA-Net
https://github.com/MeteorsHub/GLIA-Net
https://github.com/MeteorsHub/MedLabelMe
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Figure 6. Global probability distribution generalized by the global positioning network

(A) Four examples in four rows are randomly selected from the internal test set. Generated by the global positioning network, the probability distribution maps are

shown in false color and displayed on top of the original CTA image. The first three columns are the sagittal, coronal, and axial perspectives. The final column

shows the actual position of the IAs using crosshairs, together with the risk probability value at the target center.

(B–D) (B) The risk value distribution inwhole CTA images, which summarizes all the voxels of cases in the internal test set. The percentages of high-risk regions are

quite small in thewhole scans. The risk value distributions of the center of (C) ground truth IAs and (D) predicted IAs by our GLIA-Net are summarized on all the IAs.

Most IAs occurred in high-risk regions and our model estimates the IA risk distribution successfully.

ll
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In order to guide the global positioning network with an intermediate objec-

tive, we add a global feature classification cross-entropy loss. If there are any

IA voxels in the current processing local patch, the global label is positive,

otherwise negative. A 3D convolution layer, a global maximum-pooling layer,

and a fully connected layer are added to the global position feature map,

and a softmax cross-entropy loss is computed as the global positioning loss:

LGlobal = � ðz lnbz + ð1� zÞlnð1� bzÞÞ
where z and bz are the ground truth label and the softmax probability prediction

of the global positioning network output.
Figure 5. Qualitative comparison with other models

Segmentation results of four CTA cases, (A), (B), (C), and (D), randomly selected fro

for each 3D CTA case for better visualization. The CTA images are shown using 11

of the CTA images are 600 and 200 Hounsfield Units. Because of the global positi

risk regions where other methods often generate positive, including in-head (e.g.,

[C]) regions. Besides, the segmentation results of our model are also closer to the a

viewed in a high-resolution image.
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Local segmentation network

Our objective is the 3D segmentation of IA on CTA scans, which is a difficult

segmentation task because the target region is quite small. So, our local seg-

mentation network is applied to the local images under the original image res-

olution to avoid missing any small target. We modify U-Net18 to serve as our

local segmentation network, which is an encoder-decoder structure. All the

convolution and pooling layers are transformed into a 3D version, and we

use residual network blocks42 to avoid gradient vanishing in our deep model.

The encoder architecture consists of several levels of layers to extract image

features in different scales. As for the decoder, we adopt transpose convolu-

tion layers to recover segmentation results step by step. Skip connections are
m the internal test set. There are three perspectives (axial, sagittal, and coronal)

-layer MIP (maximum intensity projection). The windowwidth and window level

oning network, our GLIA-Net has much fewer false-positive predictions at low-

sagittal in [A] and axial in [B]) and out-of-head (e.g., coronal in [B] and sagittal in

nnotation comparedwith other models (e.g., local images in [C] and [D]). Better



Figure 7. Clinical study design

Weuse a crossover clinical study design inwhich six attending and six resident radiologists from three different institutionswere split into R1 andR2, while 24CTA

cases were split into S1 and S2. The clinical test dataset was collected from daily examinations in one of the internal institutions, which is an independent

validation dataset.
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used to link each layer level between the encoder and the decoder. The loca-

tion feature extracted from the global positioning network is element-wise

multiplied to all the skip connections before adaptive pooling layers to unify

their shapes.

Because of the small target size compared with the input image, we use

exponential logarithmic loss43 that combines cross-entropy loss and dice

loss for our local segmentation network:

LLocal = uDiceLDice +uCrossLCross
Table 4. Diagnosing difference with and without the assistance of

TimeY

Voxel-wise Target-w

DSC[

(95% CI)

Precisio

(95% CI

Model 25.8 (24.9–

26.7)

30.1 (25.3–

34.8)

19.3 (14

24.4)

Attending

radiologist

without assist 132 (118–

145)

57.9 (46.2–

69.6)

91.7 (82

100)

with assist 121 (107–

135)

67.6 (58.8–

76.4)

91.7 (82

100)

Resident

radiologist

without assist 162 (150–

175)

48.2 (29.0–

67.4)

81.6 (68

94.9)

with assist 143 (131–

156)

54.4 (40.3–

68.6)

88.4 (77

99.4)

All without assist 147 (137–

156)

53.1 (41.5–

64.6)

86.6 (77

95.3)

with assist 132 (123–

142)

61.0 (51.9–

70.1)

90.0 (82

97.4)

p value 0.02 0.16 0.29

Time is given in seconds. p value is computed on 12 radiologists. Other me
whereuDice anduCross are the weights for the dice loss and cross-entropy loss,

respectively. The dice loss is used to minimize the shape difference of the seg-

mentation output and the ground truth target:

LDice = E

�
� ln

2yby + ε

y + by + ε

�gDice

where Eð �Þ is the function to compute themean value for each voxel position. y

and by are the ground truth label and the probability prediction of the local
our model in our clinical study

ise Case-wise

n[

)

Recall[

(95% CI)

Specificity[

(95% CI)

Sensitivity[

(95% CI)

ACC[

(95% CI)

.2– 85.8 (80.0–

91.5)

38.9 (26.1–

51.7)

96.2 (92.2–

100)

79.2 (75.6–

82.8)

.0– 68.8 (52.2–

85.3)

100 (100–

100)

80.6 (67.8–

93.3)

86.1 (76.9–

95.3)

.0– 88.2 (79.1–

97.3)

90.3 (79.1–

100)

88.7 (79.8–

97.6)

88.9 (79.7–

98.1)

.3– 66.0 (48.1–

83.9)

83.3 (63.0–

100)

82.4 (68.5–

96.3)

83.3 (72.4–

94.2)

.4– 84.7 (77.6–

91.8)

100 (100–

100)

84.9 (78.1–

91.6)

88.9 (83.9–

93.9)

.9– 67.4 (55.2–

79.6)

91.7 (80.4–

100)

81.5 (72.1–

90.9)

84.7 (77.6–

91.9)

.6– 86.5 (80.6–

92.3)

95.1 (88.9–

100)

86.8 (81.1–

92.4)

88.9 (83.7–

94.1)

<0.01 0.31 0.19 0.19

trics are given in %. ACC, accuracy.
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Table 5. Detection performance for aneurysms with different sizes on the internal test dataset

Aneurysm Size (mm) Metric U-Net HeadXNet GLIA-Net

<3 recall[ 74.6 (70.0–79.2) 53.5 (33.6–73.5) 70.3 (64.1–76.5)

FPs per caseY 35.9 (28.4–43.4) 15.6 (7.73–23.4) 5.22 (3.52–6.92)

3–7 recall[ 70.7 (67.3–73.8) 54.8 (36.0–73.7) 82.3 (77.8–86.7)

FPs per caseY 36.5 (28.7–44.2) 18.2 (9.47–27.0) 5.05 (3.40–6.71)

>7 recall[ 91.8 (89.2–94.3) 67.1 (49.0–85.1) 90.6 (88.1–93.1)

FPs per caseY 32.1 (24.6–39.7) 15.2 (8.31–22.2) 3.52 (2.32–4.72)

FPs per case is the number of false-positive targets predicted per case. The unit of the recall rate is %.

ll
OPEN ACCESS Article
segmentation network output. gDice is the parameter to control the nonlinear-

ities of the loss function. ε is used as a smoothing factor.

Besides, we propose a pyramid weighting strategy for the cross-entropy

loss. As mentioned above, the IAs are exceedingly small in the brain. This

causes a problem for radiologists in the dataset annotation procedure: they

may mark a precise IA position but with a relatively vague segmentation

edge considering the few voxels in that region. In the meantime, human ex-

perts’ annotation has high inter-observer variability,32 which means they

may not share the same labeling standard on the lesion edges. To solve the la-

bel uncertainty problem for small segmentation regions (see details in Figures

S3 and S5), we adopt a pyramid-weighted cross-entropy loss in our IA seg-

mentation loss. The computation detail of the pyramid weight is shown in Fig-

ure S4. The weights of the loss for voxels near the center of IAs are high and

those to the IA edges are low. In consideration of not affecting the size of

the segmentation results of large targets, where the boundary is not the crucial

component, we only compute pyramid weights for small targets less than 400

voxels, and the larger ones are set with a fixed weight. Then the loss function

for cross-entropy is:

LCross = Eðupð � ðy lnby + ð1� yÞlnð1� byÞÞÞgCross Þ
where up is the pyramid weight. To build the pyramid weights, we use mini-

mum pooling with a 3 3 3 kernel to erode the label map step by step until

the center of the region, and then sum up all the intermediate label maps.

This training technique leads the network to focus on positive region locations

with less attention to the lesion edges.

At last, we train our end-to-end model using a combined loss:

LTotal = uGlobalLGlobal +uLocalLLocal

where uGlobal and uLocal are the loss weights for global loss and local loss

respectively.
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