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ABSTRACT

A novel isothermal titration calorimetry (ITC) method
was applied to investigate RNA helical packing
driven by the GAAA tetraloop–receptor interaction
in magnesium and potassium solutions. Both
the kinetics and thermodynamics were obtained in
individual ITC experiments, and analysis of the
kinetic data over a range of temperatures
provided Arrhenius activation energies ("Hz) and
Eyring transition state entropies ("Sz). The result-
ing rich dataset reveals strongly contrasting
kinetic and thermodynamic profiles for this RNA
folding system when stabilized by potassium
versus magnesium. In potassium, association
is highly exothermic ("H25�C =�41.6 ± 1.2 kcal/mol
in 150 mM KCl) and the transition state is
enthalpically barrierless ("Hz=�0.6 ± 0.5). These
parameters are sigificantly positively shifted in
magnesium ("H25�C =�20.5 ± 2.1 kcal/mol, "Hz=
7.3 ± 2.2 kcal/mol in 0.5 mM MgCl2). Mixed salt solu-
tions approximating physiological conditions exhibit
an intermediate thermodynamic character. The
cation-dependent thermodynamic landscape may
reflect either a salt-dependent unbound receptor
conformation, or alternatively and more generally,
it may reflect a small per-cation enthalpic penalty
associated with folding-coupled magnesium
uptake.

INTRODUCTION

Proper tertiary folding of RNA is crucial to its array of
enzymatic and regulatory functions (1). Due to the
significant increase in anionic charge density and
structure-dependent apposition of phosphate oxygens
that accompany RNA tertiary folding, metal ions play a
significant and nuanced role in the folding equilibrium.

Beginning with the seminal series of tRNA folding
studies (2–8), the highly stabilizing role of the divalent
cation magnesium (Mg2+) has been an experimental
focal point. Misra and Draper (9) demonstrated that
Mg2+ can confer this stability to folded tRNA entirely
through diffuse (hydrated) ion accumulation, consistent
with the fact that tRNA can fold in magnesium salt or
monovalent salt alone (2). For some other RNA
structures, magnesium is directly coordinated and essen-
tial for folding (10,11); in principle, intermediate hydra-
tion states are also possible although the prevalence and
thermodynamic stability afforded by these types of ions is
not well understood. Such molecular considerations
may underlie the systematic underestimation of magne-
sium accumulation by Poisson–Boltzmann theory (12).
As theoretical work continues in this area (13–15),
additional complementary experiments studying this
crucial component of RNA stability are also necessary.

In addition to the nature of association (11) and the
change in charge density accompanying RNA folding
(16), the quantitative role of magnesium depends
strongly on the concentration and identity of other
metal ions (17). This is an important consideration given
in vivo free potassium (K+) concentrations near 150mM.
The Tetrahymena thermophila Group I self-splicing intron
provides an excellent case study. For the P4–P6 domain of
this ribozyme, the GAAA tetraloop–receptor tertiary
interaction can form in solutions containing either
MgCl2 or monovalent salt (NaCl) alone (18–20), but for-
mation of the A-rich bulge tertiary contact requires mag-
nesium (20). While the uptake of Mg2+ and Na+ is tied to
tertiary folding, and addition of either improves folding
stability via a reduced entropic penalty, in some concen-
tration regimes when both ions are present they act com-
petitively (21). Interestingly, salt-dependent differences in
RNA folding kinetics have also been observed. For
example, at salt concentrations that elicit similar overall
folding stabilities, intron folding is faster when driven by
monovalent cations than when driven by a multivalent
cation such as magnesium (22–24). The underlying
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thermodynamic composition of these findings is not yet
understood.

The ubiquitous GAAA tetraloop receptor mediates
helical packing (25) in Groups I and II self-splicing
introns (26–28) and RNase P (29,30). In this work we
examine a bimolecular helical packing event driven by
this interaction (Figure 1) (31), in solutions containing
either one of the physiologically dominant cations, K+

or Mg2+. This domain separation strategy has proven suc-
cessful in determining RNA folding principles (32–35) and
allows access to the rich thermodynamic information
provided by calorimetry. The approach involves two
helical RNA molecules, one containing two tetraloop
receptor motifs phased by one helical turn (termed RR)
and another containing two cognate GAAA tetraloops
(TT). The helices therefore assemble in parallel into a
well-defined structure mediated solely by the tetraloop–
receptor interaction (Figure 1), as demonstrated by our
previous thermodynamic investigation (32) and excellent
agreement with single molecule fluorescence resonance
energy transfer (FRET) studies of tethered tetraloop re-
ceptors (36). We have also solved the nuclear magnetic
resonance structure of this interaction, which within ex-
perimental error is superimposable with previous crystal
structures (18,28,37).

Mg2+accumulation in the tetraloop–receptor contact is
entirely or largely diffuse (10,11) in character (18,28).
Thus a direct comparison of folding in MgCl2 and KCl
can potentially uncover core energetic differences in Mg2+

and K+ accumulation. Here, by application of a novel
titration calorimetry approach, we characterize the
thermodynamic and kinetic landscape of tetraloop–
receptor mediated helical packing interaction when
stabilized by either K+or Mg2+. We find that the thermo-
dynamic and kinetic profiles for tetraloop–receptor asso-
ciation are indeed significantly dependent on the identity
of the cation, such that the transition state enthalpy
barrier is on average 9 kcal/mol larger and the overall

binding enthalpy is 19 kcal/mol less exothermic in MgCl2
relative to the values in KCl.

MATERIALS AND METHODS

Preparative methods

TT and RR RNA were prepared by in vitro transcription
and quantitated as described previously (32,37). All
samples were prepared for calorimetry by extensive
dialysis. Magnesium solutions contained 20mM 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)
and MgCl2 at the stated concentration; potassium solu-
tions contained 20mM HEPES, 1mM ethylenediaminete-
traacetic acid, and the stated KCl concentration. Both
solutions were titrated to pH 7.0 at room temperature
before dialysis.

ITC thermodynamics analysis

Binding data were analyzed as described previously. A
small fraction of TT misfolds during preparation (32).
This is accounted for using a TT ‘activity’ term in the
binding data and in [RNA]free determinations used in
kinetics analysis below; the fraction of active TT in the
experiments herein ranged from 0.75–1.0. Error estimates
throughout this work reflect a potential uncertainty in the
active TT concentration of ±10%. As per standard
protocol, the first data point is removed from analysis
due to syringe dead volume complications.

ITC kinetics analysis

Following baseline subtraction and deconvolution [(38),
Supplementary Data], an injection power trace reflects
the real-time derivative of the negative of heat evolution
within the calorimeter cell, and subsequent integration
results in the negative of the corresponding heat evolu-
tion as a function of time (Qev). Qev for each injection is
approximately described as the time-dependent

Figure 1. Structure of the TT–RR system. Red/salmon: tetraloop; green/mint: receptor. (A) Secondary structure of dual receptor (RR) and dual
tetraloop (TT) constructs employed in this study. (B) Cartoon model of TT–RR complex. (C) Close-up view of tetraloop–receptor interaction,
structurally stabilized by stacking of the tetraloop 50 adenine on the 30 adenine of the receptor AA platform, in addition to 10 intermolecular
hydrogen bonds (PDB code 1HR2).
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concentration of new complex formed [C*(t)] scaled by the
binding enthalpy and the sample cell volume
(V0=1.42ml).

QevðtÞ ¼ ��HV0C
�ðtÞ ð1Þ

The equilibrium involves three species, so knowledge of the
total TT and RR concentrations reduces the description of
all solution concentrations to a single degree of freedom,
which can be defined in terms of the displacement from
equilibrium, l. Here we define l as the difference between
the equilibrium concentration [C]eq and the current con-
centration [C]. The reaction rate can then be written

@½C�

@t
¼ �

@�

@t
¼ konð½TT�eq+�Þð½RR�eq+�Þ � koffð½C�eq � �Þ

ð2Þ

Assuming only that Kd= koff/kon, Equation (3) is the re-
sulting most general expression for l, which cannot be
expressed analytically.

ln
�t¼0
�
�
½TT�eq+½RR�eq+Kd+�

½TT�eq+½RR�eq+Kd+�t¼0

 !

¼ � ½TT�eq+½RR�eq
�

+KdÞkont

ð3Þ

Here lt=0 is the displacement from equilibrium following
addition of RNA. More precisely in the case of an ITC
experiment, it is the displacement at a theoretical time
point following the injection period but preceding forma-
tion of any new complexes. lt=0 also reflects concentra-
tion changes caused by the addition of titrant and by
the dilution of all species due to the injection volume
(lt=0= [C]eq�[C]t=0+, where [C]t=0+ is the starting [C]
after accounting for the injection-caused dilution).
Equation (3) shows that in the most general case, deter-
mination of l(t) requires prior knowledge of kon, Ka

(i.e. koff), and the total starting concentrations. In our
application, the latter two terms are known: the total
RNA concentrations are defined for each injection by
the experimental setup, and Ka is obtained directly in the
same experiment or through an extrapolation from higher
temperature according to the van’t Hoff equation.
Because l cannot be determined analytically, its numer-

ical solution from Equation (3) is wrapped within a least
squares procedure for determining kon. The predicted heat
evolution function is given by

Qev ¼ ��HV0ð�t¼0 � �Þ ð4Þ

where lt=0 is a known quantity defined by the Ka and the
RNA concentrations and l is a function of kon. Data were
fit to a time regime starting at the minimum in the raw
power trace (to exclude the injection period from
analysis), and the final fitted time point never exceeded
10 times a prior-estimated half-time (to avoid over-
weighting the baseline). Only injections from the first
half of a titration were analyzed because signal-to-noise
decreases significantly for subsequent injections.
Kinetic data fitting may be performed by integrating the

post-deconvolution power trace to obtain Qev for least
squares minimization with target Equation (4).

Alternatively, Equations (3) and (4) can be differentiated
for comparison with the deconvolved power trace (Edc).
We implemented the latter approach here (Figure 2).

All experiments were performed on a GE Healthcare
Microcal VP-ITC, using a feedback setting of ‘high’,
a stirring rate of 307 rpm, and an injection rate of
0.5 mL/sec. The feedback setting was chosen to maximize
the instrument response rate constant; the latter two
settings have little effect on the instrument response
time. The slow kinetics are also not complicated by any
RNA dilution effect (Supplementary Figure S1).

Error analysis

A weighted average kon was determined for each titration
experiment from the population of individual injection

Figure 2. Extraction of both thermodynamic and kinetic parameters
from a single binding titration. Forward titration with titrant
[TT]=229 mM, starting cell [RR]=10 mM, using 5 mL injections, at
20�C in 0.5mM MgCl2 solution. (A) Raw power trace following
baseline subtraction to present excess power [E=(qQ/qt)].
(B) Binding curve following integration of each peak to plot the
concentration-normalized heat evolved (Qnorm) against the current
molar ratio. Best fit parameters for the displayed dataset are listed.
(C) Injection Peak 2 following deconvolution (Edc); best-fit curve and
resulting kon value for the peak using fit methodology as described in
‘Materials and Methods’ section are provided.
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measurements. The underlying error in these individual
determinations is a combination of random noise,
baseline drift and uncertainty in the instrumental rate
constant (kITC). The true uncertainty also contains contri-
butions from uncertainty in Ka and in the RNA concen-
trations. All of these error sources were incorporated into
both kon and koff measurements through error propaga-
tion as described in Supplementary Data. Higher order
analysis of data, such as measurement of slope values to
determine �Hz, used a ‘nested’ bootstrap approach to
properly estimate error (Supplementary Data). All data
processing and analysis routines were implemented and
performed using the high-level programming language in
Igor Pro 6.

RESULTS

Extraction of thermodynamic and kinetic parameters
from a single ITC experiment

Figure 2 shows a typical ITC experiment in which both
thermodynamic and kinetic measurements are obtained.
The experiment depicted is a titration in which TT RNA
is serially injected into a cell initially containing 10 mM
RR. The data demonstrate exothermic binding as a
series of TT injection-induced negative deflections in the
compensatory power trace followed by a slow decay back
to the relative baseline value of 0.0mW (Figure 2A).
Integration of each peak yields the heat evolved by
binding, which is plotted against the corresponding
molar ratio ([TT]/[RR]) for each injection to generate an
ITC binding isotherm (Figure 2B). The binding enthalpy
(�H) and binding constant (Ka) are determined through
least squares fits to these binding data (‘Materials and
Methods’ section).

A typical titration microcalorimeter power compensa-
tion trace can be viewed as the convolution of a
binding-generated ‘impulse’ heat evolution function with
the calorimeter ‘response’ function. Using a Laplace
Transform approach with an instrumental time constant
of 12.5 s, the heat evolution function is recovered
(deconvolved) for each injection [(38), Supplementary
Data]. A representative deconvolved peak and the
associated least squares-minimized kinetics curve are dis-
played in Figure 2C. This fitting procedure in general
requires knowledge of the equilibrium RNA concentra-
tions (‘Materials and Methods’ section); in Figure 2,

these values were obtained from the total RNA concen-
trations and the measured binding constant (Figure 2B).
Below, the thermodynamic results from this study are
analyzed first, then the corresponding kinetic data are
considered.

Comparison of the thermodynamics of tetraloop–receptor
association in KCl and MgCl2

Analysis of TT–RR binding data reveals strikingly differ-
ent thermodynamic profiles for this helical packing event
in MgCl2 and KCl solutions (Figure 3). Representative
experiments performed at 20�C in either 0.5mM MgCl2
or 150mM KCl demonstrate that, while binding is
enthalpy-driven in both salts, in KCl it is significantly
more exothermic (for these conditions, on average
��H=�21.7 (±3.7) kcal/mol) and less favorable
entropically (�(�TDS)=+22.4 (±3.8) kcal/mol) (Figure
3A). The differences in these terms represent contributions
to �G that are nearly three times greater than the overall
stabilities.
To more fully describe the folding landscapes in MgCl2

and KCl, we performed calorimetry experiments in a
range of salt concentrations and temperatures (Tables 1
and 2). In aggregate the thermodynamic data are highly
self-consistent. Ka increases as a function of added MgCl2
or KCl, and it decreases with increasing temperature.
Figure 3B plots the thermodynamics for TT–RR

binding across the full set of examined salt conditions at
a common temperature (25�C); the values are also listed in
Table 3. The significant discrepancy in MgCl2 and KCl
thermodynamic profiles persists across the examined salt
concentrations. �H25C is bounded by �24.6 and
�20.5 kcal/mol in the ensemble of MgCl2 solutions; in
KCl the minimum and maximum values are �41.6 and
�34.0, respectively. Contrastingly, TDS25C ranges from
�16.5 to �10.7 kcal/mol in MgCl2 while it is much more
unfavorable in KCl solutions, ranging from �27.4 to
�33.8 kcal/mol.
These 25�C thermodynamic quantities are maximum

likelihood (i.e. ‘optimized’) values from the full set of
measurements across a range of experimental tempera-
tures. �H25C values were calculated for each salt condi-
tion from linear fits of individual �H measurements
plotted against the experimental temperature. The
average slopes from these measurements are also given
in Table 3 as the heat capacity change (�Cp= q�H/qt).
For data collected in 1.0mM MgCl2, the fit excluded data

Figure 3. Thermodynamics of TT–RR binding in MgCl2 and KCl solutions. (A) Representative titration comparison in conditions eliciting com-
parable complex stabilities. Open circles, 0.5mM MgCl2, 20

�C, titrant [TT]=229mM, starting cell [RR]=10 mM. Solid squares, 150mM KCl, 20�C,
titrant [TT]=145mM, starting cell [RR]=10 mM. (B) Left, linear fit-determined maximum likelihood �G25C, �H25C and TDS25C in 0.3 (red), 0.5
(green), 0.7 (blue) and 1.0mM (black) MgCl2. Right, �G25C, �H25C and TDS25C in 100 (red), 150 (green) and 200 (blue) mM KCl.

Nucleic Acids Research, 2012, Vol. 40, No. 5 2143

http://nar.oxfordjournals.org/cgi/content/full/gkr894/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr894/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr894/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr894/DC1


above 30�C, where the binding enthalpy displays a statis-
tically significant change in slope (Supplementary Figure S2).
This observation corroborates our previous hypothesis
that the free receptor exists in a temperature-dependent
conformation (32). In other words, the enthalpy
becomes increasingly temperature dependent at tempera-
tures where the melting intermediate becomes significantly
populated. While the shift in �Cp may begin between 20
and 30�C (Tables 1 and 2, Supplementary Figure S2),
overall the �Cp is small and negative for the full set of
experiments conducted below 30�C. The average �Cp

below 30�C are similar in MgCl2 and KCl solutions: boot-
strap analysis yields �0.14 (±0.02) kcal/mol/K in MgCl2

versus �0.04 (±0.08) kcal/mol/K in KCl. The weighted
average �Cp for a single tetraloop–receptor interaction is
therefore �0.06 (±0.02) kcal/mol/K. This value is not far
from that predicted by a coarse-grained surface area
burial calculation (�0.002 kcal/mol/K) (39).

The free energy at 25�C (�G25C) in Table 3 is also a
maximum likelihood value (interpolated in 5 of the 7 salt
conditions) determined from Ka (�G�=�RTlnKa) ac-
cording to its temperature dependence using the van’t
Hoff equation.

@ lnKa

@1=T
¼ �

�HVH

R
ð5Þ

Table 1. Thermodynamic and kinetic parameters for TT–RR binding in Mg2+

Temp. (�C) Ka (M�1)� 105 �G�obs (kcal/mol) �H�obs (kcal/mol) TDS�obs (kcal/mol) kon (M�1s�1) koff (s
�1)� 10�5

0.3mM MgCl2
10 –a –a �20.5 (±3.3) –a 200 (±80) 3.2 (±1.3)
20 18 (±5) �8.4 (±0.4) �21.9 (±5.0) �13.6 (±5.2) 270 (±60) 13 (±10)
30 5.6 (±1.3) �8.0 (±0.3) �26.9 (±4.2) �19.0 (±4.0) 510 (±210) 87 (±13)

0.5mM MgCl2
2 – – �20.7 (±4.1) – 310 (±180) 0.4 (±0.5)
5 – – �19.6 (±2.1) – 420 (±60) 1.0 (±0.1)
10 – – �17.8 (±2.7) – 600 (±140) 3.3 (±0.7)
15 – – �19.6 (±3.9) – 630 (±410) 6.4 (±6.2)
20 64 (±7) �9.1 (±0.2) �18.9 (±2.0) �9.8 (±2.0) 940 (±80) 16 (±4)
30 24 (±1) �8.9 (±0.1) �23.2 (±1.9) �14.3 (±1.9) 1530 (±120) 62 (±7)

0.7mM MgCl2
10 – – �20.5 (±3.0) – 1240 (±30) 1.7 (±0.1)
20 160 (± 4) �9.7 (±0.1) �24.8 (±3.2) �15.1 (±3.2) 2360 (±60) 14 (±1)
30 56 (± 2) �9.4 (±0.1) �22.4 (±3.1) �13.1 (±3.1) 3130 (±550) 58 (±8)

1.0mM MgCl2
5 – – �19.4 (±3.0) – 1690 (±270) 0.7 (±0.1)
10 – – �18.4 (±2.2) – 2230 (±210) 2.2 (±0.2)
15 – – �18.9 (±3.7) – 3180 (±630) 6.7 (±1.3)
20 – – �19.5 (±2.3) – 3950 (±540) 15 (±2)
25 – – �23.6 (±4.7) – 5660 (±4890) 57 (±42)
30 – – �21.3 (±2.1) – 5800 (±580) 68 (±6)
35 55 (±7) �9.5 (±0.2) �23.9 (±3.0) �14.3 (±3.1) 6810 (±1510) 120 (±20)
40 23 (±5) �9.1 (±0.3) �26.7 (±3.7) �17.5 (±3.8) 7840 (±2060) 310 (±50)
45 9.9 (±2.1) �8.7 (±0.3) �28.6 (±5.5) �19.9 (±5.8) – –

– not determined because ITC c-value greater than 200
–a not determined because post-injection decay too slow to accurately integrate throughout titration

Table 2. Thermodynamic and kinetic parameters for TT–RR binding in K+

Temp. (�C) Ka (M�1)� 105 �G�obs (kcal/mol) �H�obs (kcal/mol) TDS�obs (kcal/mol) kon (M�1s�1) koff (s
�1)� 10�5

100mM KCl
5 52 (±3) �8.5 (±0.1) �35.1 (±3.8) �26.6 (±3.8) 550 (±60) 10 (±1)
15 5.9 (±0.7) �7.6 (±0.2) �34.9 (±2.8) �27.3 (±2.8) 530 (±90) 95 (±14)

150mM KCl
5 – – �39.4 (±1.5) – 2290 (±200) 3.9 (±0.3)
10 – – �38.7 (±1.6) – 2250 (±80) 12 (±1)
15 58 (±4) �8.9 (±0.1) �40.4 (±2.6) �31.5 (±2.6) 2300 (±70) 38 (±8)
20 18 (±1) �8.4 (±0.1) �40.6 (±1.7) �32.2 (±1.8) 2200 (±60) 110 (±20)
25 4.7 (±0.2) �7.7 (±0.1) �41.8 (±1.9) �34.1 (±1.9) 2190 (±90) 440 (±30)

200mM KCl
5 – – �37.9 (±5.2) � 6080 (±200) 3.2 (±0.3)
10 – – �37.1 (±3.3) – 6060 (±460) 9.5 (±0.7)
20 76 (±3) �9.2 (±0.1) �40.0 (±4.2) �30.8 (±4.1) 5680 (±1040) 76 (±16)
25 27 (±5) �8.8 (±0.2) �46.3 (±4.8) �37.4 (±4.8) 6170 (±370) 180 (±50)
30 9.4 (±6.9) �8.3 (±0.1) �43.9 (±4.2) �35.7 (±4.3) 5810 (±650) 650 (±90)

– not determined because ITC c-value greater than 200.
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The van’t Hoff enthalpies (�HVH) determined from
Equation (5) agree well with the �H25C values (Table 3).
Only in 1.0mM MgCl2 is there a noticeable discrepancy
between �H25C and �HVH, because Ka measurements in
1.0mM MgCl2 were performed across the temperature
range 30–45�C, where �H is significantly more exothermic
than it is from 10 to 30�C. The overall strong agreement
shown in Table 3 corroborates homogeneous, one-to-one
binding and underscores the robustness of van’t Hoff
equation-based extrapolations of Ka for kinetics analysis
(below).

The 25�C entropy contribution (TDS25C) in Table 3 was
calculated according to the Gibbs equation using �G25C

and �H25C. TDS25C is large and negative in all cases,
indicating an unfavorable contribution. Parameter uncer-
tainty and the relatively small number of salt concentra-
tions examined in this study do not allow an unambiguous
determination of whether the [salt]-dependence of the
stability is largely entropically or enthalpically based,
but additional data show it to be largely entropic as
expected (16,40,41) (Supplementary Figure S3).

Comparison of the kinetics of tetraloop–receptor
association in KCl and MgCl2

Representative kinetic analyses of the titrations in
Figures 2 and 3 are displayed in Figure 4. Figure 4A
plots the deconvolved power trace and respective fitted
curves for injections 2, 7 and 12 from the representative
titration collected in 0.5mM MgCl2, 20

�C, and a similar
sampling of peaks and fits from the 150mM KCl, 20�C
dataset is displayed in Panel B. The resulting forward rate
constants, kon, are plotted for each injection from the first
half of each titration (all injections such that
[TT]total> [RR]total) in Figure 4C. As is visible in the raw
data (Figure 2A), the observed rate of association de-
creases appreciably with each subsequent injection over
the course of the first half of the titration, reflecting the
decreasing concentration of unbound RR. Because kon is a
microscopic rate constant, it is independent of the RNA
concentration (Figure 4C); the weighted-average kon for
these experiments are 860 (±50) M�1 s�1 in MgCl2 and
2180 (±240) M�1 s�1 in KCl. The faster association of
TT–RR in KCl versus MgCl2 solution at ambient tem-
peratures and respective salt concentrations eliciting
similar stabilities is consistent with extant RNA folding
literature (22–24).

The bimolecular kinetics equation applied to obtain
kon requires knowledge of Ka (‘Materials and Methods’
section). For many conditions in this work, the binding
strength is in an optimal window, so Ka can be obtained
with high precision and the measured value can be directly
inserted into the kinetic analysis. However, in many of the
low temperature experiments, the binding constant is
greater than 2� 107M�1 (i.e. c> 200), so in these cases
Ka was determined by van’t Hoff extrapolation. Note
that for these roughly stoichiometric binding scenarios,
error in Ka only weakly influences kon (‘Materials and
Methods’ section). koff was subsequently calculated ac-
cording to the assumption of a single step mechanism,
i.e. koff= kon/Ka. kon and koff measurements for all con-
ditions are listed alongside the aforementioned thermo-
dynamic results in Tables 1 and 2. The rate constants
observed in this work are consistent with those obtained
by Downey et al. (19), using a tethered tetraloop–receptor
construct (Supplementary Data).
Analysis of the temperature dependence of kon and koff

using the Eyring equation allows a thermodynamic char-
acterization of the transition state.

lnðkÞ ¼ lnð�Þ+
�Sz

R
�

�Hz

RT
ð6Þ

The slope in a plot of ln(k) against the inverse temperature
reveals the transition state enthalpy (�Hz) in the slope and
a term containing the transition state entropy (�Sz) in the
y-intercept. The so-called pre-exponential term (�) (42) is
necessary to recover �Sz and has been discussed in the
context of RNA folding elsewhere (43,44); here we
simply assume a value within the range of possible
values for macromolecular folding (43–46), as our inten-
tion is merely to provide �Sz values for comparison
among salt conditions. Because turnover probability is a
fundamental property of the transition state, it is almost
certainly not influenced by salt type or concentration,
thus application of a single a-value to all conditions is
the only requirement for rigorous comparative analysis.
Additionally, the logarithmic relationship between �Sz

and � means the likely maximum error in TDSz is no
more than a few kcal/mol.
Figure 5 plots the logarithms of kon and koff against

inverse temperature for all of the experiments in this
work. In MgCl2 (Figure 5A), the slopes (��Hz/R) for
each salt concentration and both reaction directions are

Table 3. Average Thermodynamic parameters

Salt Temp (�C) �G25C (kcal/mol) �H25C (kcal/mol) TDS25C (kcal/mol) �Cp (kcal/mol/K) �HVH (kcal/mol)

0.3mM MgCl2 10–30 �8.1 (±0.1) �24.6 (±4.3) �16.5 (±4.4) �0.21 (±0.15) �24.2 (±0.6)
0.5mM MgCl2 2–30 �9.0 (±0.1) �20.5 (±2.1) �11.6 (±2.1) �0.12 (±0.10) �17.4 (±2.9)
0.7mM MgCl2 10–30 �9.5 (±0.1) �23.9 (±2.0) �14.4 (±2.0) �0.17 (±0.06) �17.8 (±1.0)
1.0mM MgCl2 5–45 �10.2 (±0.2) �20.9 (±2.1) �10.7 (±2.3) �0.11 (±0.05) �31.0 (±6.7)a

�0.57 (±0.29)a

100mM KCl 5–15 �6.6 (±0.3) �34.0 (±4.1) �27.4 (±4.5) 0.11 (±0.31) �36.4 (±3.8)
150mM KCl 5–25 �7.8 (±0.1) �41.6 (±1.3) �33.8 (±1.4) �0.13 (±0.07) �42.4 (±2.5)
200mM KCl 5–30 �8.8 (±0.1) �40.4 (±3.3) �31.7 (±3.3) �0.16 (±0.10) �37.6 (±3.5)

aDetermined from 30–45�C; all other values determined using temperatures �30�C.
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negative, indicating that �Hz is large and positive for both
association and dissociation. The full set of transition state
theory thermodynamic quantities are listed in Table 4.
�Hzon is on average 8.1 (±0.5) kcal/mol in MgCl2 solu-
tions. This is consistent with a previous measurement,
which used an oligonucleotide linker to monitor intra-
construct tetraloop–receptor association via FRET, and
determined an upper limit �Hzon of 12.7 kcal/mol in
10mM MgCl2 (19). Using the aforementioned a-value,
the average entropy contribution to forming the transition
state (TDSzon) from the unbound starting state is small
and slightly favorable: 2.4 (±0.5) kcal/mol. For dissoci-
ation (koff), the slopes are significantly steeper than the
association plots, indicating even larger values for �H

z

off.

The difference in association and dissociation transition
state enthalpies is consistent with the binding
exothermicity (Table 3). Also notable in Figure 5A is the
difference between the [MgCl2]-dependence of the associ-
ation and dissociation profiles. In plots of kon there exists
a significant and systematic trend in the rate constants
measured at a common temperature, manifested as a hori-
zontal offset. However, for koff the temperature-dependent
plots are nearly collinear. This behavior reflects a much
more significant [MgCl2]-dependence in kon than in koff.

Eyring plots obtained in KCl are displayed in
Figure 5B. The data bear a strong resemblance to
MgCl2 data with one particularly striking difference: the
temperature-dependence of kon is almost entirely absent
and is in fact slightly in the opposite direction as the
MgCl2 data for all KCl solutions, indicating that �Hzon
is slightly negative. Thus, the cation identity-based differ-
ence in �Hzon parallels the observed difference in �H for
the equilibrium binding process (Figure 3 and Table 3).
The average �Hzon value in KCl is �0.5 (±0.3) kcal/mol in
KCl, a slightly favorable contribution that is much less
than the unfavorable average value of 8.1 (±0.5) in
MgCl2. T�Szon is similarly reduced in KCl to an unfavor-
able average value of �5.9 (±0.3) kcal/mol, contrasting
with the transition state entropy term in MgCl2.

Trends in the salt concentration dependence of binding
and rate constants are listed in Table 5, according to the
log–log slope, using the molal salt activity (asalt) as
the dependent variable. These dependences report the
change in the salt preferential interaction coefficient
(��salt) for a process (16,34), which conveys the net
cation uptake into the RNA coulombic atmosphere. The
salt activity dependence for the equilibrium binding event,
qlnKa/qln(asalt) is 6.2 (±0.5) in KCl and 2.8 (±0.1) in
MgCl2. This approximately 2-fold difference is consistent
with the cation valences.

In MgCl2, the [salt]-dependence of the binding constant
is almost entirely explained through the on-rate. The de-
pendence of kon (qlnkon/qln(aMgCl2)) accounts for most of
the dependence of Ka on aMgCl2, whereas the off-rate
exhibits a negligible aMgCl2-dependence (Table 5). In
KCl the situation is slightly more balanced: the kon aKCl-
dependence is 61% as large as qlnKa/qln(aKCl), while the
relative magnitude of the reverse rate constant quantity is
approximately half as large.

DISCUSSION

TT–RR association in the context of RNA folding

As generally observed for RNA folding, tetraloop–
receptor driven helical packing exhibits highly salt-
dependent behavior (20,47,48) and is enthalpy-driven
(2,4,49–55). The results here demonstrate that the
exothermicity can be extremely solution dependent, with
the association enthalpy varying by as much as
20 kcal/mol. Additional data indicate that it is the
balance of Mg2+ and K+ concentrations that is most
relevant to the thermodynamic structure of the folding
landscape (17) (Supplementary Figures S4 and S5).
Mikulecky et al. (54) also observed a significantly less

Figure 4. Representative kinetics (kon) measurements from titrations in
either 0.5mM MgCl2 or 150mM KCl at 20�C (titrations are the same
as those in Figures 2 and 3). (A) Selected deconvolved energies (Edc)
and fits for peaks 2, 7 and 12 for titration performed in 0.5mM MgCl2,
20�C. Bold red lines represent target function description of the data
using best-fit parameters over the time range used in fitting; extrapola-
tions of these functions are displayed in thin red lines. Peaks 7 and 12
are arbitrarily offset from 0 to aid visualization. (B) Representative
peaks and fit functions for titration in 150mM KCl, 20�C.
(C) Corresponding complete population of kon values from sampled
titrations. Solid squares, KCl data; Open circles, MgCl2 data.
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negative enthalpy for folding the hammerhead ribozyme
in a solution containing added MgCl2, with a ��H of
24 kcal/mol in solutions containing 100mM NaCl and
either 0 or 10mM MgCl2.

Kinetic studies of RNA folding have generally observed
a (large) positive activation enthalpy (3–5,44,47,56–63),

and these studies were almost all conducted in solutions
containing millimolar concentrations of MgCl2.
Interestingly though, Cole and Crothers (3) identified a
tRNA tertiary structure transition with �Hz 	0 kcal/
mol for formation in a solution lacking MgCl2 (4). Here
we observe a large positive �Hzon in MgCl2 solutions but a
lower, near-zero enthalpic barrier in KCl solutions. The
tRNA result and the [MgCl2]-dependent hammerhead
ribozyme �H suggests potential generality to these
findings.
Figure 6 summarizes the thermodynamic reaction co-

ordinate profiles for TT–RR binding in solutions contain-
ing either MgCl2 or KCl, using representative conditions
(0.5mM MgCl2 or 150mM KCl). A sizeable enthalpic

Figure 5. Eyring plot of both association (kon) and dissociation (koff) rate constants measured in MgCl2 and KCl solutions. Each symbol represents
the average rate constant measurement from a single titration, and error bars represent the measurement’s true uncertainty as described in
Supplementary Material. Circles, kon; squares, koff. For both rate constants, closed symbols reflect data that were obtained from titrations where
Ka was measured directly (1� 105M�1<Ka< 2� 107M�1), while for open symbols, Ka> 2� 107M�1. Lines were generated using best-fit regression
parameters. (A) MgCl2 data, (B) KCl data. Y- and X-axis scaling are identical in the two panels.

Table 4. Average kinetic parameters

Salt Temp (�C) kon,25C (M�1s�1) �H
z
on (kcal/mol) aTDSzon,25C

(kcal/mol)
koff,25C (s�1) �H

z
off

(kcal/mol)

aTDSzoff,25C
(kcal/mol)

0.3mM MgCl2 10–30 380 (±140) 6.3 (±1.4) �0.5 (±1.5) 3.3 (±1.8)� 10�4 25.8 (±6.0) 10.7 (±6.4)
0.5mM MgCl2 2–30 1160 (±100) 7.3 (±2.4) 1.2 (±2.4) 3.3 (±0.6)� 10�4 26.9 (±2.4) 11.9 (±2.5)
0.7mM MgCl2 10–30 2770 (±140) 8.7 (±0.7) 3.1 (±0.7) 2.8 (±0.3)� 10�4 30.3 (±1.7) 15.1 (±1.9)
1.0mM MgCl2 5–40 4840 (±630) 7.8 (±1.1) 2.5 (±1.1) 3.1 (±0.5)� 10�4 28.8 (±1.8) 13.8 (±1.8)
100mM KCl 5–15 510 (±100) �1.0 (±1.4) �7.5 (±1.5) 7.6 (±2.0)� 10�3 35.4 (±2.3) 22.3 (±2.4)
150mM KCl 5–25 2200 (±50) �0.4 (±0.6) �6.2 (±0.6) 3.9 (±0.5)� 10�3 38.6 (±1.1) 25.0 (±1.2)
200mM KCl 5–30 5770 (±270) �0.5 (±0.4) �5.6 (±0.4) 2.2 (±0.2)� 10�3 35.3 (±1.4) 21.5 (±1.5)

aDetermined using pre-exponential term �=1� 1010 s�1 (for comparison, application of �=6� 1012 s�1 would decrease all T�Sz by
	3.8 kcal/mol).

Table 5. Salt activity dependence decomposition, ��salt

Salt @ lnKa

@ lnðasaltÞ
@ ln kon
@ lnðasaltÞ

@ ln koff
@ lnðasaltÞ

MgCl2 2.8 (±0.1) 2.2 (±0.2) �0.1 (±0.3)
KCl 6.2 (±0.5) 3.8 (±0.2) �2.0 (±0.4)
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barrier to association in MgCl2 of 7.3 kcal/mol contrasts
with the slightly negative �Hzon of �0.6 kcal/mol in KCl
(Figure 6A). The overall binding process is 21.7 kcal/mol
more exothermic in KCl. Thus both steps in the reaction,
formation of the transition state from the unbound state
and conversion to the bound state from the transition
state, are more favorable enthalpically in KCl than in
MgCl2 (by 7.9 and 13.8 kcal/mol, respectively). The
entropic contribution to binding (TDS) is essentially the
reverse energetically of the enthalpic diagram (Figure 6B).
In other words, formation of the transition state and sub-
sequent conversion to the bound state are each more
entropically opposed in KCl than in MgCl2. The reason
for the stepwise disparity cannot be resolved from our
data; it may relate to the bivalent construct design if the
folding pathway traverses two similar activation barriers
on the way to the final bound state.
The data suggest that the transition state is relatively

compact; in other words, the transition state is at least a
partially associated TT–RR complex. In both MgCl2 and
KCl, the forward rate constant [salt]-dependence, qlnkon/
qln(asalt) constitutes most of the asalt-dependence of the
overall association process, qlnKa/qln(asalt) (Table 5).
This result is in line with the analogous process of
double helix formation (64), and suggests the charge
density of the rate-limiting transition state is most
similar to that of the final bound state. The [salt]-depend-
ence breakdown for TT–RR is also similar to that previ-
ously identified by Nesbitt and co-workers using a
tethered tetraloop–receptor design. They found qlnkon/
qln[MgCl2]=0.49 to be approximately 2/3 of the overall
qlnKa/qln[MgCl2]=0.74 (65). This agreement suggests
that a compact transition state is not specific to the bimol-
ecular design in our study.
While the evidence points to a compact transition state,

it may not involve tertiary contacts. Previous investiga-
tions of RNA folding identified an ‘early’ transition
state; i.e. a state lacking specific stabilizing tertiary
contacts (43,44,66). Bokinsky et al. (66) went on to also
characterize the [salt]-dependence of hairpin ribozyme
folding. As is true here for tetraloop–receptor mediated
helical packing, the [salt]-dependence of hairpin
ribozyme folding is almost entirely in the forward

direction in MgCl2. Moreover, in the monovalent salt
NaCl, the hairpin ribozyme [salt]-dependence is more
balanced between the forward and reverse rate constants,
further paralleling our TT–RR association data.
Bokinsky et al. concluded that the transition state is
compact yet early, and further hypothesized that in
monovalent salt, the transition state may be slightly
less compact than in MgCl2. This interpretation is con-
sistent with the data herein for tetraloop–receptor
mediated helical packing.

Potential explanations for cation-dependent "H and "Hz

We consider two conceptual explanations for the
cation-dependent TT–RR binding profile highlighted by
Figure 6. Either there is a cation-dependent difference in
the RNA structure that influences the thermodynamics of
folding, or the explanation lies in the difference in the
thermodynamics of potassium and magnesium ion
uptake that occurs concomitant with tetraloop–receptor
association. The difference is not directly related to the
potassium ‘binding’ site (28,34,67) (Supplementary Table
S2 and Figure S6). In the discussion below we focus on the
cation-dependence in enthalpy terms because entropy
terms are strongly [salt]-dependent, whereas �H is only
weakly [salt]-dependent in these physiological salt concen-
tration regimes (16,40) (Supplementary Figure S3).

In terms of structural explanations, we think the most
likely interpretation invokes a salt-dependent unbound
receptor conformation. For example, if a free receptor
conformation such as that previously observed (68) were
stabilized by magnesium, the unbound state would be
enthalpically stabilized and a corresponding penalty for
obligate disruption of this structure would be observed
in forming the transition state and final bound state in
MgCl2, but not in KCl. There is some precedence for
this functional behavior as kinetic traps in large RNA
folding are more prevalent in solutions containing Mg2+

and little or no monovalent salt (22,48,57). The effect here
does not appear to be related to a structural effect induced
by some level of ‘ionic strength’, however (Supplementary
Figure S4).

Alternatively and potentially of more generality, cation
hydration may explain the divergent thermodynamic

Figure 6. (A) Enthalpic (DH) and (B) entropic (TDS) contributions to the free energy of TT–RR association in KCl (solid line) and MgCl2 (dashed
line) solutions, relative to the starting state. The schemes represent values in 150mM KCl or 0.5mM MgCl2 at 25�C.
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profiles in KCl and MgCl2. Formation of the transition or
bound state from the unbound state requires an uptake of
cations due to the increased charge density (Table 5). Thus
it may be that the uptake of diffuse monovalent and
divalent cations by the tetraloop–receptor contact in par-
ticular, or in folded RNA structures in general, occurs
with different thermodynamic signatures. Most simply,
partial dehydration of one or more Mg2+ accumulated
in the local domain of the RNA might incur an additional
enthalpic penalty concomitant with formation of both the
transition state and final bound state. Given a Mg2+

dehydration enthalpy of 	450 kcal/mol, even a slight dis-
turbance in an outer hydration shell could explain this
difference (69).

We favor this ion hydration hypothesis because it is
consistent with an early but compact transition state.
There is evidence that Mg2+ accumulation by nucleic
acids is accompanied by partial dehydration and is par-
tially non-coulombic in nature (70,71), and replacement of
sodium with magnesium in the local domain of polyU or
polyA-polyU may be accompanied by a slightly positive
�H (72). On the other hand, low-resolution data argue
against a difference in �H for magnesium and monova-
lent cation accumulation near RNA (2,6).

The magnitude and generality of the phenomenon
observed here may of course depend on RNA structural
details. A slight variation on (or addition to) the ion hy-
dration hypothesis focuses on differences in how cations
affect RNA hydration. Magnesium, more than a monova-
lent cation, preferentially accumulates in the most electro-
negative regions of nucleic acids (9,73). Thus relative to
K+, complexation in the presence of Mg2+ is accompanied
by a disproportionate release of RNA hydrating waters
from these regions; if these water molecules possess a sig-
nificantly favorable solvating enthalpy term, then their
displacement will be observed as a positive �H contribu-
tion. Accumulation of Mg2+ may therefore displace a
larger quantity of such highly enthalpically stabilized
hydrating waters from the RNA than does K+. As
above this would yield the observed behavior that
magnesium-driven RNA folding is associated with a
larger enthalpic penalty.

Overall the data provide new insight into RNA folding
in a physiological, mixed salt solution. Preliminary data
suggest tertiary folding in physiological conditions may ex-
hibit a balance of K+ and Mg2+ stabilization
(Supplemental Figure S5). One consequence of this
finding would be that RNA folding in vivo does not
exhibit the extreme temperature dependence in the rate
of folding predicted by most in vitro studies, which have
been conducted in solutions dominated by MgCl2.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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