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Atrial fibrillation (AF) is prevalent in common conditions and ac-
quired forms of heart disease, including diabetes mellitus (DM), hy-
pertension, cardiac hypertrophy, and heart failure. AF is also
prevalent in aging. Although acquired heart disease is common in
aging individuals, age is also an independent risk factor for AF.
Importantly, not all individuals age at the same rate. Rather, indi-
viduals of the same chronological age can vary in health status from
fit to frail. Frailty can be quantified using a frailty index, which can
be used to assess heterogeneity in individuals of the same chrono-
logical age. AF is thought to occur in association with electrical re-
modeling due to changes in ion channel expression or function as
well as structural remodeling due to fibrosis, myocyte hypertrophy,
or adiposity. These forms of remodeling can lead to triggered activ-
ity and electrical re-entry, which are fundamental mechanisms of AF
initiation and maintenance. Nevertheless, the underlying determi-
nants of electrical and structural remodeling are distinct in different
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conditions and disease states. In this focused review, we consider
the factors leading to atrial electrical and structural remodeling in
human patients and animal models of acquired cardiovascular dis-
ease or associated risk factors. Our goal is to identify similarities
and differences in the cellular and molecular bases for atrial electri-
cal and structural remodeling in conditions including DM, hyperten-
sion, hypertrophy, heart failure, aging, and frailty.
KEYWORDS Aging; Diabetes mellitus; Electrical remodeling;
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Introduction
Atrial fibrillation (AF) is well recognized as the most com-
mon sustained arrhythmia. In North America and Europe,
the overall prevalence of AF is w1%–2%, and this is pro-
jected to double over the next 2 decades.1,2 AF is associated
with substantial morbidity and mortality. This includes an
increased risk of ischemic stroke, heart failure (HF), and sig-
nificant impairment in quality of life.3,4 Major risk factors for
AF include aging, obesity, hypertension, cardiac hypertro-
phy, HF, and diabetes mellitus (DM).1,5 Current therapeutic
approaches for AF are limited by a lack of efficacy and
numerous undesirable side effects. This is likely due to an
incomplete understanding of the mechanistic basis for AF
development and progression in different conditions or dis-
ease states. Atrial remodeling, including electrical and struc-
tural remodeling, is thought to be important in the
development of a substrate for AF (Figure 1). In this focused
review, we consider the bases for atrial electrical and struc-
tural remodeling in different conditions and commonly ac-
quired forms of disease, including DM, obesity,
hypertension, hypertrophy, HF, aging, and frailty. Our goal
is to address the concept that the cellular and molecular
mechanisms that underlie atrial remodeling may be distinct
among these different conditions. Improving our understand-
ing of these phenomena in these distinct conditions could
lead to better and more effective therapeutic options for AF
prevention and treatment.

We note that there is also a genetic component to AF.6–8

Heritable genetic variants can underlie AF independently
but can also occur in combination with age and acquired
risk factors, including the common forms of heart disease
addressed in this review. Although the genetics of AF is an
important developing area of research, it will not be
considered in detail in this review. We also note that there
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KEY FINDINGS

- Atrial fibrillation is prevalent in hypertension, heart
failure, diabetes mellitus, and aging.

- Atrial fibrillation can occur in association with electri-
cal remodeling and structural remodeling in the atria.

- Studies in humans and animal models show that the
basis for atrial remodeling is distinct in different
forms of acquired cardiovascular disease.

- Determining the mechanistic basis for atrial remodel-
ing in different conditions and diseases could lead to
better therapeutic approaches for atrial fibrillation in
these conditions.
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are well-known differences in cellular electrophysiology be-
tween males and females9,10 and that the overall incidence of
AF is lower in females.9,11 The role of sex differences may be
more pronounced in some conditions compared to others. For
example, the associations between hypertension and AF may
be similar between the sexes.12,13 Conversely, some studies
have found that AF occurs more prevalently in females in
DM.14 Sex differences in AF and atrial remodeling remain
poorly understood. Accordingly, detailed mechanistic inves-
tigations of sex differences in atrial remodeling in common
conditions and acquired forms of heart disease, including in
humans and animal models, are needed.
Figure 1 Schematic illustration of the links between common conditions and di
modeling events can create a substrate for arrhythmia via triggered activity and elect
fibrillation.
Atrial physiology
In the normal heart, electrical conduction in the atria is highly
organized due to the functional properties of cardiomyocytes
and the connectivity of these myocytes via gap junctions.
Spontaneous action potentials (APs) generated in the sino-
atrial node lead to the generation of atrial APs that are prop-
agated through the right and left atria before being conducted
to the ventricular myocardium via the atrioventricular node
and the ventricular conduction system.15,16

Atrial myocytes are characterized by the presence of a sta-
ble resting membrane potential due to the activity of the in-
ward rectifier K1 channel (IK1, carried by Kir2.1 channels).
The AP upstroke is produced by the sodium current INa (car-
ried by NaV1.5 channels). Subsequently, activation of the L-
type Ca21 channel (ICa,L; carried by CaV1.2 and CaV1.3
channels) and the transient outward K1 channel (Ito; carried
by KV4.2/4.3 channels) leads to the development of a plateau
phase in the AP, which can be relatively short in atrial
myocytes. In addition to Ito, repolarization of the atrial AP
is facilitated by the activity of several more K1 currents,
including the ultrarapid delayed rectifier K1 current (IKur;
an atrial-specific K1 current carried by KV1.5 channels),
the steady-state K1 current (IKss; carried by KV2.1 channels),
the delayed rectifier K1 currents IKr and IKs (carried by
KV11.1 and KV7.1, respectively), and IK1. It is important to
note that the expression and functional role of these different
repolarizing K1 channels vary in different species. The abil-
ity of atrial myocytes to fire subsequent APs is importantly
affected by the refractory period, which is determined by
seases that lead to electrical and structural remodeling of the atria. These re-
rical re-entry, leading to conduction abnormalities and the occurrence of atrial
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the time course of repolarization and the recovery of Na1

channels from inactivation.17,18

Atrial myocytes are electrically coupled to each other via
gap junctions, which are formed from connexins. Connexin
40 (Cx40) and connexin 43 (Cx43) are the predominant con-
nexins expressed in the atria.17 Connexins ensure the rapid
spread of electrical activity throughout the atria in a well-
coordinated fashion. This is further facilitated by the struc-
tural organization of atrial myocytes, which is maintained
by the interstitial collagens (produced and secreted by fibro-
blasts) in the atrial myocardium.19 Collectively, these electri-
cal and structural properties enable the atria to contract in a
well-coordinated manner so that blood can be moved from
the atria to the ventricles.
Mechanisms of arrhythmia in AF
AF may arise when triggered activity occurs on a vulnerable
substrate leading to electrical re-entry (Figure 1).1 Forms of
triggered activity thought to contribute to AF generation
include early afterdepolarizations (EADs) and delayed after-
depolarizations (DADs). EADs typically occur when repolar-
ization of the atrial myocyte is delayed or prolonged leading
to an increase in action potential duration (APD). This allows
Ca21 channels to recover from inactivation and reactivate, re-
sulting in the generation of ectopic activity. DADs have been
attributed to abnormalities in Ca21 handling by the sarco-
plasmic reticulum (SR), leading to activation of the Na1-
Ca21 exchanger (NCX). Extrusion of Ca21 from the myocyte
via NCX results in an inward current (INCX; sometimes called
a transient inward current), which causes depolarizations that
can lead to a triggered AP before the next sinus beat.

Re-entry can be anatomic or functional in origin.1,20,21 In
anatomic re-entry, fibrosis or other structural abnormalities
can create anatomic re-entry points within the atrial myocar-
dium. In functional re-entry, premature impulses are able to
conduct around a border that was refractory in a unidirec-
tional pattern. Re-entry allows a wave of excitation to travel
a fixed pathwaywhen an excitable gap develops (ie, the tissue
behind the leading wave comes out of refractoriness to
become excitable again), leading to a stable circuit that can
develop into a tachyarrhythmia. The likelihood that re-en-
try–induced arrhythmia will ensue is determined by the
wavelength of re-entry, which is the product of the conduc-
tion velocity and the effective refractory period (ERP). Re-
ductions in either conduction velocity or ERP shorten the
wavelength, creating a larger excitable gap and increasing
the likelihood of re-entry. Atrial structural or electrical re-
modeling can develop in a number of ways in specific disease
conditions, which can increase the likelihood of triggered ac-
tivity (EADs or DADs) and/or electrical re-entry.
DM
Type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus
(T2DM) are metabolic disorders associated with the develop-
ment of hyperglycemia and changes in insulin production
and signaling.22–24 T1DM commonly manifests in childhood
and is an autoimmune disorder in which the body destroys
the insulin-producing b islet cells of the pancreas. Without
these b cells, the pancreas is unable to produce insulin, which
is responsible for stimulating glucose uptake from the blood-
stream. As a result, people with T1DM fail to maintain normal
blood glucose homeostasis, leading to hyperglycemia that must
be managed by insulin supplementation.

T2DM usually develops in older adults and is synony-
mous with insulin resistance, as the pancreas is still capable
of producing insulin but the tissues are less able to respond
to it. It should be noted, however, that more young people
(including children) are being diagnosed with T2DM in asso-
ciation with increasing rates of obesity.25 As a result, the
pancreas becomes chronically stimulated to secrete insulin.
Eventually, organs and tissues can become resistant to insulin
and hyperglycemia develops, leading to similar complica-
tions as seen in T1DM if the disease is not managed prop-
erly.22 Over time, the demand placed on the pancreatic b
cells can lead to insulin insufficiency, rendering those with
T2DM insulin deficient as well as resistant. Loss of insulin
production and hyperglycemia lead to a number of complica-
tions, including cardiovascular disease, which is prevalent in
patients with T1DM and T2DM.
Atrial remodeling and AF in T1DM
Whereas the proportion of people with T1DM is relatively
small in comparison to those with T2DM, the incidence of
T1DM continues to increase.26,27 T1DM comes with an
increased risk for AF, with women being more susceptible
than men.14,28 Consistent with this, a randomized controlled
study revealed that complex fractionated atrial electrograms,
which can be associated with atrial fibrosis, were higher in
AF patients with T1DM than in those without T1DM,29 sug-
gesting that structural remodeling is more severe in those
with AF and T1DM than in those with AF alone. Although
direct assessment of atrial fibrosis in T1DM patients is lack-
ing, a previous study observed interstitial fibrosis of the right
ventricle in a small sample of T1DM patients without a his-
tory of coronary artery disease.30 E/A ratios tend to be
smaller (in association with larger A waves) in patients
with T1DM, suggesting that the left atrium contributes
more to filling of the left ventricle in T1DM.31 This is consis-
tent with diastolic dysfunction seen in patients with T1DM31

and further suggests pathologic remodeling in the left atrium.
Animal studies have shown that atrial-specific remodeling

occurs in T1DM. Commonly used models of T1DM include
genetic models such as the Akita mouse (in which a genetic
mutation in the Ins2 gene causes proinsulin proteins to aggre-
gate within b islet cells, leading to cell death and loss of in-
sulin production) and nongenetic models that involve
treating animals (usually rodents or rabbits) with either strep-
tozotocin (STZ; an antibiotic that destroys the islet cells of
the pancreas) or alloxan (a toxic glucose analogue that is se-
lective for islet cells).32,33

Recently, it has been shown that Akita and STZ models of
T1DM are characterized by substantial increases in AF
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susceptibility and duration in association with electrical remod-
eling of the atria.34,35 P-wave durations were prolonged in both
models, and atrial conduction velocity was reduced in Akita
mice. Detailed electrophysiological and molecular studies
demonstrated that atrial AP upstroke velocity (Vmax) was
reduced, and APD was prolonged in Akita mice. These AP
morphology changes occurred in association with reductions
in atrial INa and IKur. Atrial INa was reduced due to reductions
in expression of the SCN5a gene and a resultant decrease in
NaV1.5 protein in the atria, as well as a loss of phosphoinositide
3-kinase (PI3K) signaling via the second messenger phospha-
tidylinositol 3,4,5 trisphosphate (PIP3). These observations
are consistent with other studies showing that PI3K and PIP3
have important effects onNa1 channel function.36 Importantly,
it has been shown that insulin has important and selective ef-
fects on atrial INa in Akita mice.34 Specifically, chronic insulin
treatment increased NaV1.5 protein levels, atrial INa density,
and AP upstroke velocity. Insulin also could increase atrial
INa and AP upstroke velocity more rapidly (and to a smaller
extent compared to chronic insulin) via the rapid activation
of PIP3 signaling. These effects of insulin on atrial INa were
associated with increases in atrial conduction velocity and
were sufficient to reduce the susceptibility to AF in Akita
mice. Collectively, these studies reveal a critical role for insulin
in regulating atrial electrophysiology and AF susceptibility via
effects on atrial Na1 channel expression and function.

Structural remodeling due to increased interstitial fibrosis
has been observed in models of T1DM.35,37,38 This can be
associated with an increase in deposition of collagens as well
as the formation of advanced glycation end-products
(AGEs), which are proteins and lipids that have become gly-
cated. Interstitial collagen depositionwas found to be increased
in the atria of Akita mice,35 STZ-treated rodents,37–39 and
alloxan-treated rabbits.40 Fibrosis is also exacerbated by angio-
tensin II (Ang II),41 and evidence indicates that inhibiting type
1 Ang II receptors prevented interstitial fibrosis in STZ-treated
rats,38 suggesting a role of profibrotic Ang II signaling in
T1DM. Evidence also suggests that inhibiting dipeptidyl
peptidase-4 (DPP4) may prevent atrial fibrosis in T1DM40;
however, the mechanisms for this are unclear. In contrast,
another study suggests that using glibenclamide (a sulfonyl-
urea antidiabetic agent but not a DPP-4 inhibitor) is critical
for preventing atrial fibrosis.42 This study suggested that
lowering blood glucose levels is more important than DPP4
for reducing fibrosis. This conclusion is also supported by
the finding that improving glycemic control in Akita mice
with insulin treatment for 4 weeks prevented atrial fibrosis.35

Prolonged hyperglycemia is associated with the formation
of AGEs. Although this is a normal process, hyperglycemic
conditions lead to excessive formation of AGEs, resulting
in the formation of cross-links that can contribute to stiff-
ening of myocardial tissue. AGEs also bind to receptors for
AGE, which contribute to profibrotic signaling and fibroblast
proliferation. AGE inhibitors have been of interest in pre-
venting fibrosis in the context of diseases such as diabetes.
AGE inhibition was shown to prevent fibrosis as well as
stiffening of the atrial myocardium in STZ rats.42 Altogether,
the available evidence indicates that T1DM induces struc-
tural remodeling of the atria, which increases susceptibility
to AF. The presence of fibrosis can also contribute to reduced
conduction velocity and slow interatrial conduction time,
which could further contribute to the substrate for re-entry
and maintenance of arrhythmia.

In addition to fibrosis and atrial INa, conduction velocity in
the atria is determined by connexins, which facilitate the
spread of conduction to adjacent cardiomyocytes. Cx40 is
prevalent in the atria, and reductions in its expression have
been observed in AF patients.43 In an STZ-induced rat model
of T1DM, Cx40 expression in the left atrium was reduced,
leading to reduced conduction velocity as well as increased
conduction heterogeneity, ultimately promoting arrhythmo-
genesis.39 In contrast, Akita atrial myocytes showed no
changes in mRNA expression of Cx40.34 Cx43 is also ex-
pressed in the atria but was unchanged in the atria in Akita
mice.34 More research is needed in this area to understand
the role connexins play in T1DM.

Oxidative stress, which has been implicated in DM, can pro-
mote atrial remodeling through the upregulation of profibrotic
signaling pathways as well as by altering cellular electrophys-
iology. In STZ-treatedmice, small conductance Ca21-activated
K1 channels (SK2 and SK3) were reduced and atrial APD was
prolonged in association with oxidative stress.44 Additionally,
treating alloxan-induced diabetic rabbits with antioxidant com-
pounds improved ICa,L and INa, reducing AF susceptibility.45,46

In addition to improving cellular electrophysiology, these anti-
oxidants shortened P-wave morphology and atrial effective re-
fractory period (AERP).
Atrial remodeling and AF in T2DM
Clinical research investigating atrial remodeling in T2DM is
more common than in T1DM. Impaired Ca21 handling has
been a common theme in these studies. One study showed
that Ca21 transient rise time is prolonged in atrial myocytes
of T2DM patients, whereas the decay phase was un-
changed.47 This study proposed that reduced ryanodine re-
ceptor (RyR2) expression was responsible for these
changes. In contrast, a separate study found that RyR2 was
unchanged in atrial myocytes of T2DM patients, whereas
sarcoplasmic/endoplasmic reticulum Ca21 adenosine tri-
phosphatase 2a (SERCA2a) was upregulated and phospho-
lamban was downregulated.48 This study suggested this
may be a compensation mechanism for the impaired relaxa-
tion they observed in atrial trabeculae in T2DM. Both of
these studies were conducted in nonfailing myocardium
from diabetic patients. Thus, Ca21 handling seems to be
impaired in the atria in T2DM patients; however, further
studies are needed to definitively establish the underlying
mechanisms involved. Increases in cytosolic Ca21 could
trigger arrhythmia via DADs.

It has been shown that interstitial fibrosis was increased in
T2DM patients.48 Consistent with this, fibroblasts isolated
from the atria of T2DM patients expressed increased levels
of collagen type 1 in comparison to nondiabetic controls.49
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Although structural remodeling in T1DM is exacerbated by
hyperglycemia, its basis in T2DM could be more multifacto-
rial as hyperglycemia is not necessarily the only determinant
in this group. T2DM is commonly associated with obesity
and hypertension (metabolic syndrome) as well as atheroscle-
rosis and other cardiovascular complications. Obesity itself
(ie, even without overt DM) is linked to increased amounts
of epicardial adipose tissue and creates a substrate for
AF.50 These fatty deposits are unique to visceral fat as they
lie directly adjacent to the myocardium, underneath the peri-
cardial sac. This fat can infiltrate the myocardium and has
been observed in obese patients.51 Adipose tissue (similar
to collagen fibers) is less conductive than cardiomyocytes,
and this can create barriers that promote or sustain arrhyth-
mogenesis.52,53

Experimental work in animal models has provided critical
insight into atrial remodeling and arrhythmogenesis in
T2DM. Two common mouse models of T2DM are db/db
and ob/ob mice.32 Both models arose as the result of sponta-
neous mutations in the leptin receptor and leptin, respec-
tively. Leptin is critical for appetite control, and without a
functioning leptin receptor (db/db) or circulating leptin (ob/
ob), these mice become obese and hyperglycemic early in
life. Zucker diabetic fatty (ZDF) rats are similar to db/db
mice as they also have a mutation in the leptin receptor; how-
ever, they are not overtly hyperglycemic, and females are less
affected than males.33 These genetic models of T2DM pro-
vide relevant models for diabetes in humans.

Diet-induced diabetes is a widely used approach in ro-
dents as well as larger mammals.32,33 In this approach, ani-
mals are given a high-fat or “Western-style” (high-fat and
high-sugar) diet for a period of time in order to gain weight.
Eventually these animals become insulin resistant, similar to
humans; however, these models tend to be less hyperglyce-
mic than the genetic models. As a result, a low dose of
STZ is sometimes used in conjunction with a high-fat or
Western diet. This mimics late-stage T2DM in which the islet
cells are unable to keep up with the demand for increased in-
sulin production and atrophy.

Studies of atrial electrical remodeling have shown ZDF
rats exhibit prolonged APDs due to reduced Ito, IKur, and
ICa,L in association with decreases in their corresponding
ion channel subunits (Kv4.3, Kv1.5, and CaV1.2, respec-
tively).54 It is possible that the loss of insulin signaling con-
tributes to these changes as Kv4.2 expression is also reduced
in an insulin receptor knockout mouse.55 ZDF rats also
exhibit increased left atrial size as well as fibrosis.54,56

Together, these pathologic changes resulted in enhanced
AF susceptibility.

Increased Ca21 spark frequency and reduced conduction
velocity have been described in rats with diet-induced dia-
betes.57 Although no changes in AP morphology were
observed, there were increases in reactive oxygen species,
collagens, and transforming growth factor b (TGFb) in atrial
tissue. Optical mapping of atria being induced into AF with
simultaneous voltage and Ca21 imaging suggests Ca21

handling abnormalities contribute to arrhythmogenesis in
this model. This may be due to an increase in oxidized
Ca21/calmodulin dependent kinase II (CaMKII), which is
associated with arrhythmia independently of DM.58 Consis-
tent with this, O-GlcNAcylation of CaMKII has been shown
to be proarrhythmic by augmenting RyR2 leak and subse-
quent Ca21 sparks in ventricular myocytes in diabetic
rats.59 O-GlcNAc of CaMKII was increased in hearts and
brains of those with T2DM compared to heathy controls as
well as when ventricular myocytes were kept in hyperglyce-
mic conditions. Both inhibition of O-GlcNAc of CaMKII and
CaMKII itself reduced spontaneous DAD activity, high-
lighting the significance of this modification secondary to hy-
perglycemia. The role of O-GlcNAc of CaMKII in the atrial
myocardium in DM is yet to be investigated.

Studies of connexin function in T2DM have found that
neither Cx40 or Cx43 expression is changed; however, later-
alization of Cx43 has been observed in ZDF rats.56 This later-
alization of connexins could result in increased conduction
heterogeneity, which could lead to the creation of a substrate
for arrhythmogenesis. Thus, a number of studies have identi-
fied determinants of electrical remodeling in animal models
of T2DM; however, further studies of these phenomena,
the mechanisms involved, and their role in AF are still
needed.

Both genetic and diet-induced models of T2DM display
atrial structural remodeling, including fibrosis, inflammation,
and lipidosis in association with increased susceptibility to
AF.56,57,60 Adipokines such as leptin have been implicated
in the exacerbation of atrial fibrosis of diabetic mice,61

emphasizing the complex relationship between T2DM and
obesity. Increased fibrosis also may depend on several mech-
anisms, including increased collagen deposition as well as
others. Cathepsin A, which is a proteolytic enzyme active
in the extracellular space, has been shown to play a role in
augmenting the levels of atrial fibrosis in ZDF rats.56 Its
expression was increased specifically in the atria, and inhib-
iting its enzymatic activity pharmacologically prevented
fibrosis (as well as connexin remodeling).

Although increasing insulin levels can reverse some of the
adverse atrial remodeling in animal models of T1DM, this
may not be as effective in T2DM due to insulin resistance.
Therefore, a common goal for treating patients with T2DM
is to increase their sensitivity to insulin via other pathways.
Incretin hormone analogues are a class of compounds that
may achieve this. Incretin hormones are derived from the
gut in response to the presence of glucose in the blood-
stream.62,63 They are endogenous insulin sensitizers,
enhancing the ability of tissues to respond to insulin, take
up glucose from the blood, and prevent hyperglycemia. In-
cretins include gastric inhibitory peptide and glucagon-like
peptide 1 (GLP-1). GLP-1 has become an important target
with respect to synthesizing pharmaceutical compounds.
The GLP-1 receptor (GLP-1R) is a G-protein–coupled recep-
tor. When activated by GLP-1, stimulatory G proteins acti-
vate adenylyl cyclase, which increase cyclic adenosine
monophosphate production and protein kinase A activity.
Evidence suggests that GLP-1R activation may also directly
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stimulate the PI3K-Akt pathway in cultured atrial myo-
cytes.63

The active form of GLP-1 (ie, GLP-1 [7-36 amide]) is a
short-acting compound with a half-life of only 1–2 minutes;
however, novel mimetics of this peptide, such as liraglutide,
have a half-life of up to 13 hours.64 Liraglutide is a
commonly used medication injected once per day to improve
glucose-dependent responses to hyperglycemia. Other strate-
gies to harness the insulin-sensitizing effects of GLP-1
include inhibitors of DPP-4, which converts active GLP-1
(7-36 amide) into inactive GLP-1 (9-36 amide).63 GLP-1
has also been associated with reduced ventricular fibrosis in
obese, hypertensive, and aging hearts.65 In nondiabetic ta-
chypaced dogs, liraglutide prevented pacing-induced atrial
electrical remodeling, suppressing AF susceptibility and
changes in conduction velocity compared to placebo-
treated controls.66 In a study of tachypaced-induced HF in
rabbits, the DPP-4 inhibitor alogliptin was found to prevent
atrial fibrosis.67 These studies in nondiabetic animals suggest
that enhancing GLP-1 signaling pathways may be cardiopro-
tective regardless of diabetic state. More studies of the effects
of GLP-1 signaling on atrial electrical and structural remod-
eling in DM are needed.
Atrial remodeling and AF in hypertension
Globally, chronic hypertension is a leading cause of cardio-
vascular disease andmortality. Hypertension involves activa-
tion of the renin-angiotensin system (RAS), which is a key
regulator of blood pressure and blood volume.68 Patients
diagnosed with hypertension have enhanced RAS and
increased circulating levels of Ang II, the key effector mole-
cule of the RAS.68 A manifestation of untreated hypertension
in the clinical setting is cardiac hypertrophy, left atrial
enlargement, and prolongation of P-wave duration, which
is indicative of atrial remodeling.69,70 Hypertension is an
important risk factor for AF.71

The effects of chronic hypertension on atrial arrhythmo-
genesis and structural and electrical remodeling have been
investigated using a variety of animal models, including
spontaneously hypertensive rats (SHRs) and Ang II infusion
in mice. Consistent with observations made in clinical prac-
tice, SHRs develop systolic blood pressure.150mmHg and
have an increased susceptibility to induced AF.72–74 This
enhanced arrhythmogenesis occurs in association with an
increase in atrial mass and volume and a prolongation in
P-wave duration indicating atrial hypertrophy and atrial
remodeling in SHRs.

Structurally, SHRs have increased levels of interstitial
fibrosis.74,75 This has been attributed to an increase in profi-
brotic gene expression, including collagen type I (col1a),
collagen type III (col3a), TGFb, and connective tissue
growth factor (CTGF).73,75 In addition, alterations in matrix
metalloproteinase 2 (MMP2) and metalloproteinase 9
(MMP9) have been identified in SHRs, indicating that extra-
cellular matrix remodeling contributes to the enhanced levels
of interstitial fibrosis.73
Calcium handling is altered in SHRs. SHRs exhibit a
reduction in ICa,L density in atrial myocytes without alter-
ations in activation or inactivation kinetics.75–77 Western
blot analysis identified a reduction in the CaV1.2 (a1C)
protein subunit in SHRs that contributes to the reduction in
calcium influx. Inward and outward INCX also is reduced in
SHRs,75 which indicates that calcium removal from the my-
ocyte through NCX also is altered. Left atrial myocytes from
SHRs have an increase in SR calcium load, a decrease in frac-
tional calcium release, and a reduction in subsarcolemmal
calcium transients. Mechanistically, these alterations in SR
calcium handling occur in conjunction with a decrease in to-
tal RyR2 protein levels and an increase in phosphorylated
RyR2 without changes in calsequestrin (CSQ), phospholam-
ban (PLB), or SERCA2a protein levels. Lastly, the authors of
that study observed an increase in spontaneous calcium
release and calcium alternans that, when taken together,
can serve as triggers for initiating AF.75

In the laboratory setting, rodents can be implanted with
subcutaneous miniosmotic pumps to allow for continuous
delivery of Ang II. This results in a rapid increase in systolic
blood pressure to .140–150 mm Hg and diastolic blood
pressure z100 mmHg in Ang II–infused mice.78–80 Ang II
infusion results in atrial enlargement indicating cardiac
hypertrophy. The susceptibility to AF is increased in Ang
II–infused mice.78–81 This occurs in association with
prolongation in P-wave duration and AERP in vivo.
Furthermore, high-resolution optical mapping studies have
identified a reduction in right and left atrial conduction veloc-
ity in isolated atrial preparations in Ang II–infused mice.78,80

These data indicate that Ang II–induced hypertension is asso-
ciated with atrial remodeling and increased AF burden.

Ang II–induced hypertension causes distinct patterns of
electrical remodeling in the right and left atria, as assessed us-
ing the patch-clamp technique in isolated atrial myo-
cytes.78,80 AP upstroke velocity (Vmax) was selectively
reduced in left atrial myocytes from Ang II–infused mice
but remained unchanged in the right atrium. Consistent
with this finding, INa was reduced by approximately 50%
in association with a significant reduction in maximum
conductance and a right shift in the V1/2 of activation in
left atrial myocytes. INa density and activation kinetics re-
mained unaltered in the right atrium. This indicates that
Ang II infusion alters the biophysical properties of sodium
channels in the left atrium. Mechanistically, the reduction
in left atrial INa was attributed to enhanced protein kinase
Ca (PKCa) expression, as dialysis with bisindolylmaleimide
1 (BIM1; a PKC inhibitor) normalized INa density and activa-
tion kinetics in left atrial myocytes isolated from Ang II–
infused mice. In addition, PKCa protein expression was
selectively increased in the left, but not the right, atrium of
Ang II–infused mice. This indicates an important role for
PKCa in the left atrium of Ang II–infused mice.78

AP repolarization is altered in Ang II–infused mice. APD
was prolonged throughout repolarization in right and left
atrial myocytes after Ang II infusion.78,80 The prolongation
in APD was greater in the left atrium compared to the right
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atrium, indicating more severe impairments in left atrial
repolarization. Mechanistically, the prolongation in APD
occurred in conjunction with a significant reduction in out-
ward IK, which was attributed to reductions in Ito and IKur
densities independent of a change in Kv4.2, KV4.3, KChIP2,
and Kv1.5 protein levels. Furthermore, Ito current densities
were reduced to a greater extent in left atrial myocytes and
occurred in conjunction with a shift in Ito activation kinetics
in Ang II–infused mice. In contrast, ICa,L density was not
altered in right or left atrial myocytes from Ang II–infused
mice. Collectively, these studies demonstrate distinct pat-
terns of atrial electrical remodeling that can lead to a substrate
for AF in chronic hypertension.

The effects of Ang II–induced hypertension on right and
left atrial structural remodeling has been investigated. Levels
of interstitial fibrosis were increased in the right and left atria
of Ang II–infused mice.78,80 In the right atrial appendage,
there were no alterations in col1a2, col3a1, TGFb, tissue in-
hibitor of metalloproteinase 1 (TIMP1), tissue inhibitor of
metalloproteinase 2 (TIMP2), or tissue inhibitor of metallo-
proteinase 4 (TIMP4) mRNA expression, whereas MMP2
and MMP9 mRNA expression was reduced in Ang II–
infused mice. In contrast, there were increases in col1a2,
col3a1, MMP2, and TIMP1, and reductions in MMP9 and
TIMP3 expression in the left atrium of Ang II–infused
mice. This indicates that the enhanced fibrosis in chronic hy-
pertension results from increased collagen deposition in addi-
tion to altered extracellular matrix remodeling. Oxidative
stress has also been linked to atrial fibrosis after Ang II
infusion.81,82
Atrial remodeling and AF in hypertrophy
Pathologic cardiac hypertrophy is characterized by an in-
crease in heart mass that occurs as a result of increased hemo-
dynamic stress.83,84 Cardiac hypertrophy can be classified as
either concentric or eccentric. Concentric hypertrophy occurs
as a result of increased pressure overload, whereas eccentric
hypertrophy results from volume overload. Initially, patho-
logic cardiac hypertrophy is an adaptive response to preserve
cardiac function;, however, it becomes maladaptive if left un-
treated and can lead to HF and death.

AF affects approximately 20% of patients with hypertro-
phic cardiomyopathy.85,86 A 6-year follow-up study identi-
fied a positive correlation between left atrial diameter and
the probability of developing AF in patients with hypertro-
phic cardiomyopathy. In the study, 30% of patients with
left atrial diameter .50 mm developed AF compared to
,10% of patients with left atrial diameter ,44 mm.85

Furthermore, patients with hypertrophic cardiomyopathy
and AF have an increased mortality rate compared to patients
with hypertrophic cardiomyopathy in normal sinus rhythm.86

Patients with hypertrophic cardiomyopathy have an in-
crease in both P-wave duration and left atrial size.87 Using
cardiac magnetic resonance imaging, a recent study demon-
strated that atrial enlargement in patients with hypertrophic
cardiomyopathy occurs in conjunction with enhanced levels
of left atrial fibrosis compared healthy controls.88 These
studies indicate atrial structural remodeling in patients with
cardiac hypertrophy that can lead to enhanced atrial arrhyth-
mogenesis.

Although poorly understood, some studies in animal
models have investigated the cellular and molecular alter-
ations that occur in the setting of cardiac hypertrophy. A
chronic left atrial overload model in goats induced via a
left thoracotomy procedure, in which a vascular shunt is im-
planted between the aorta and left atrium for 4 weeks,89 leads
to an increase in left atrial pressure and left atrial enlargement
as well as an increase in the overall incidence and severity of
AF compared to sham controls. Persistent AF that lasted .1
week was induced in 50% of goats after vascular shunt sur-
gery and was correlated with the extent of left atrial dilation.
The increase in arrhythmogenesis occurred in association
with an increase in AERP measurements, indicating electri-
cal remodeling of the atrial myocardium. In a separate study,
left atrial diameter was greater in a rabbit model of chronic
volume overload (CVO) induced by arterial venous shunts.90

Optical mapping studies revealed a reduction in right and left
atrial conduction velocity in CVO rabbits compared to sham
controls. Atrial tachyarrhythmias were induced in the major-
ity of CVO hearts and observed with both focal atrial tachy-
cardia and re-entrant pathways in Langendorff-perfused
hearts, further indicating atrial remodeling in animal models
of cardiac hypertrophy.

The underlying mechanisms responsible for the enhanced
atrial arrhythmogenesis in cardiac hypertrophy have been
explored in more detail using the transverse aortic constric-
tion (TAC) mouse model. TAC mice display an enhanced
susceptibility and severity to AF in association with
increased atrial volume, increased atrial cardiomyocyte
area, increased levels of interstitial fibrosis, and increased
collagen content compared to sham controls.91–95 The
enhanced fibrosis is attributed to an increase in TGFb
expression, which activates the pSMAD pathway to
enhance col1a and col3a gene transcription.91 An increase
in MMP2 and a trend toward increased TIMP1 expression
also has been reported,93 suggesting that extracellular remod-
eling is altered in cardiac hypertrophy in addition to enhanced
collagen synthesis.

Evidence suggests altered atrial electrophysiology in car-
diac hypertrophy. Optical mapping studies have revealed a
prolongation in APD to a greater extent in the left atrium
compared to the right atrium in TAC mice, with a corre-
sponding reduction in Ito density.

91 In addition, a significant
prolongation in APD90 has been observed in isolated right
and left atrial myocytes from a rabbit model of left ventricular
hypertrophy.96 The authors of the study demonstrated that
the impairments in late repolarization occur as a result of
increased late INa in left atrial myocytes from hypertrophic
hearts. Spontaneous EADs and increased automaticity also
was observed, which can serve as triggers for AF. The effects
of hypertrophy on other ionic currents and the mechanisms
underlying atrial electrical remodeling in hypertrophy remain
incompletely understood.
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Atrial remodeling and AF in HF
HF is characterized as a chronic functional impairment that
occurs secondary to etiologies such as DM, hypertrophy, hy-
pertension, and advanced age. HF affects approximately 2%
of the adult population and can be classified as heart failure
with preserved ejection fraction (HFpEF) or heart failure
with reduced ejection fraction (HFrEF).97,98 AF is the most
common cardiac arrhythmia in patients with HF.99 A recent
study indicated that 53% of patients with HFrEF and 63%
of patients with HFpEF were also diagnosed with AF.100

AF in these patients is associated with progression of HF.
Although limited, some studies have investigated the ef-

fects of HF on atrial function and remodeling in humans.
Morphologically, echocardiographic studies have identified
an increase in both left atrial volume and pressure as well
as left atrial wall stiffness in patients with either HFpEF or
HFrEF.98,101 In addition, atrial conduction times were pro-
longed and ERP measurements were increased in patients
with HFrEF.102 Bipolar voltage mapping has identified areas
of low voltage and patchy electrical silence in the right atria
of patients with HFrEF, which further indicates the presence
of conduction impairments in these patients.102 Enhanced left
atrial interstitial fibrosis and right atrial fibrotic scars have
been observed in patients with HF.98,102 Taken together,
these studies demonstrate that HF is associated with both
structural and electrical remodeling.

The effects of HF on atrial remodeling have been studied us-
ing animal models of HF, including rapid pacing in dogs and
coronary artery ligation in rodents. There is an increase in the
incidence of AF in association with an increase in ERP mea-
surements in dogs103–105 and rodents106,107 with HF. The
enhanced arrhythmogenesis occurs in association with left
atrial enlargement and fibrosis,103,105,107–109 indicating
structural remodeling in HF. Furthermore, there is a positive
correlation between left atrial area and AF severity. This is
consistent with clinical studies demonstrating that left atrial
volume is a predictor of increased arrhythmogenesis and
mortality in patients with HF.110,111

The effects of HF on atrial electrophysiology have been
investigated in a number of studies in order to identify the un-
derlying currents responsible for the increase in ERP. Patch-
clamp experiments have revealed a significant prolongation
in atrial APD in animals with HF.103,112 This occurs in asso-
ciation with a reduction in ICa,L density that occurs indepen-
dently of changes in ICa,L activation or inactivation kinetics
or CaV1.2 protein expression.104,106,108,112 In addition, Ito
and IKs densities are reduced in atrial myocytes isolated
from animals with HF which would be expected to further
prolong AP.104,112 Combined, these alterations in cellular
electrophysiology could lead to DADs and create a substrate
for AF.
Atrial remodeling and AF in aging and frailty
The prevalence of AF rises with increasing age, and an esti-
mated 13% of individuals aged .80 years have AF.1,113

Epidemiologic studies have demonstrated that the
progression from paroxysmal to persistent AF is associated
with increased chronological age.113 Although the preva-
lence of cardiovascular disease increases with chronological
age, there is emerging evidence that advanced age, indepen-
dent of other comorbidities, is an independent risk factor for
developing AF.114

The structure and function of the atria are altered as a func-
tion of chronological age, independent of underlying disease.
In the human heart, several studies have identified alterations
in the gross morphology of the senescent atria. This includes
an age-related reduction in the number of atrial cardiomyo-
cytes, increases in atrial size, cardiomyocyte hypertrophy,
increased abundance of cardiac fibroblasts, and increased
presence of epicardial adipose tissue deposits.53,115–119

Furthermore, there is a positive correlation between
chronological age and the level of interstitial fibrosis in the
human right atrial appendage.120,121 This indicates progres-
sive and continual structural remodeling of the atrial myocar-
dium with aging.

Electrophysiological studies have identified age-dependent
alterations in the human heart. There is an age-dependent in-
crease in P-wave duration,122 increased ERP,120,122 and nega-
tive correlation between age and atrial conduction velocity in
the right and left atria in otherwise healthy humans.119,122,123

Electrophysiological mapping of the human right atrium iden-
tified an increase in fractionated electrograms in adults older
than 60 years compared to adults younger than 30 years.122,123

Combined, these patterns of nonuniform conduction across the
atria of aged individuals may contribute to a substrate for AF.
Although the underlyingmechanisms and changes in ionic cur-
rents require further investigation, these studies demonstrate
age-related changes to the structure and function of the human
heart.

Evidence suggests that calcium handling is altered in the
aged human heart. One study characterized calcium homeo-
stasis in the human right atrium using tissue biopsies from pa-
tients aged,55 years, 55–74 years, and.75 years without a
history of AF and with normal left atrial dimensions.124 Us-
ing confocal microscopy, the authors identified a stepwise
reduction in calcium transient amplitude with increased chro-
nological age that occurred in association with an increase in
the calcium transient duration. Furthermore, propagation of
calcium transients toward the center of the cell was slower
in patients .75 years of age. In addition, ICa,L density was
significantly reduced in right atrial myocytes from patients
.75 years of age compared to those ,55 years of age.
This occurred in conjunction with an increase in the fast
and slow steady-state ICa,L inactivation times in patients
.75 years of age. The reduction in ICa,L and altered inactiva-
tion kinetics were attributed to an age-dependent reduction in
CaV1.2 protein expression. Therefore, there is an age-
dependent reduction in calcium entry into the cell. Mechanis-
tically, the alterations in calcium homeostasis were also
attributed to an age-dependent alteration in SR calcium con-
tent. Total calcium load released after the application of cal-
cium was reduced in patients .55 years of age compared to
those,55 years of age. The reduction in SR content occurred
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in association with reductions in SERCA2 and CSQ2 protein
levels in the aged population. Collectively, these findings
demonstrate several age-dependent alterations in calcium ho-
meostasis in the human right atrium.

Studies in animal models have further enhanced our un-
derstanding of the effects of aging on atrial structure and elec-
trophysiology. Consistent with clinical studies, in vivo
studies have demonstrated that advanced chronological age
is associated with an increase in the susceptibility to AF in
conjunction with an increase in P-wave duration, prolonga-
tion in AERP, and reductions in conduction velocity across
the right and left atria in aged mice,115,125,126 rats,116,127

and dogs.128–130 These alterations in atrial function have
been attributed to structural and electrical remodeling of
the atria.

Consistent with histologic studies of human atrial biopsy
samples, levels of right and left atrial interstitial fibrosis are
increased in animal models of aging, including mice,115,125

rats,116,127 dogs,129 and sheep.53,118 Mechanistically,
enhanced fibrosis is attributed to an increase in total collagen
content that occurs independently of an increase in collagen
type I and collagen type III or expression of profibrotic genes
such as TGFb or CTGF.125 Rather, enhanced fibrosis has
been attributed to altered extracellular matrix remodeling
that is driven by a shift in the balance between MMPs and
TIMPs in the atria. MMPs function to degrade extracellular
proteins, whereas TIMPs inhibit MMPs. The balance in
expression and function of these enzymes regulates mainte-
nance and remodeling of the extracellular matrix.131 In
aged mice, TIMP1/MMP2 and TIMP2/MMP2 expression ra-
tios were increased, whereas TIMP3/MMP9 ratio was
reduced in the left atrium of aged mice. TIMP3/MMP9 ratio
was reduced in the right atrium of aged mice, and TIMP4/
MMP2 ratio was increased in both the right and left atria of
aged mice.125 These findings suggest that remodeling of
the extracellular matrix by MMPs and TIMPs is a critical
determinant of atrial fibrosis in aging.

Although incompletely understood, some studies have
investigated electrical remodeling of the atria in animal
models of aging. Previous studies have identified alterations
in AP morphology using high-resolution optical mapping or
the patch-clamp technique in isolated atrial myocytes,
although there is considerable variability in the results. For
example, a study in aged dogs observed no change in AP
Vmax

129 or a reduction in Vmax
128 using microelectrode re-

cordings in atrial preparations isolated from old dogs. Simi-
larly, previous studies have reported no change in Vmax

132

in right atrial preparations or an age-dependent reduction in
Vmax in left atrial appendage preparations in rabbits.133

Several studies have identified changes in atrial APD in
aged animals. Using high-resolution optical mapping of atrial
preparations isolated from adult and aged mice, no changes
were seen in APD50, but APD90 was shortened.

125 One study
in aged rats reported no change in APD50 or APD95 in atrial
preparations,134 whereas another study observed an increase
in APD90 in isolated left atrial myocytes from aged rats.127

Studies in aged dogs have shown no change in APD50,
whereas APD90 was increased in atrial preparations128,129

and in isolated atrial myocytes.130,135 Increases in APD50

and APD90
133 or a reduction in APD90

132 have been observed
in aged rabbits. Although few studies have investigated the
effects of aging on ionic currents, an age-dependent reduction
in ICa,L density has been observed with a corresponding
reduction in CaV1.2 protein in aged dogs

130,135 and sheep.117

An increase in Ito current density has been observed in aged
dogs136 and mice.115 Collectively, these studies indicate that,
although poorly understood, there are age-dependent alter-
ations in atrial AP morphology and ionic currents. These
studies demonstrate that although age is an independent
risk factor for the development of AF, further studies are
needed to determine the cellular and molecular bases and to
address inconsistencies reported in the literature.

Calcium homeostasis is altered in animal models of aging,
which could contribute to a substrate for AF. In aged mice, an
approximately 3-fold increase in Ca21 spark frequency and
spontaneous Ca21 transient occurrence has been observed
without any alterations in Ca21 spark or transient ampli-
tude.137 Western blot analysis determined that although there
was no difference in total RyR2 protein expression, there was
a substantial increase in the level of oxidized RyR2 and phos-
phorylated RyR2 at serine 2814, indicating that RyR2 activ-
ity is altered in aged mice. Mechanistically, the increase in
RyR2 activity was attributed to enhanced reactive oxygen
species and CaMKII activity in the aged atria, as exposure
of aged atrial myocytes to dithiothreitol (DTT; an antioxi-
dant) or KN93 (CaMKII inhibitor) reduced both Ca21 spark
frequency and spontaneous Ca21 transients compared to con-
trols. These alterations in calcium handling could lead to
DADs, which can serve as a trigger for AF.
Frailty as a determinant of atrial remodeling in
aging
Frailty is a measure of biological age and is defined as an
increased vulnerability to adverse health outcomes,
including death.138–140 As individuals age, they accumulate
health deficits that are health-related signs, symptoms, dis-
eases, disabilities, and laboratory abnormalities.141 Impor-
tantly, there is heterogeneity in the rate with which these
deficits accumulate, such that 2 individuals of the same chro-
nological age can vary in overall health status from very fit to
frail. In addition, the rate at which deficits accumulate in-
creases exponentially with age and in individuals with
poor health status. Epidemiologic studies have demonstrated
that the prevalence of AF is higher in frail patients compared
to less frail patients of the same chronological age and that
frailty can be used as a predictor of mortality in patients
with AF.142–144 Frailty can be quantified in both the
clinical and laboratory setting using a frailty index
(FI).141,145 Accordingly, frailty can be used as a powerful
tool to investigate heterogeneity in the effects of age on car-
diovascular function and arrhythmogenesis.

The effects of age and frailty on atrial arrhythmogenesis,
function, and remodeling have been investigated in
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mice.125,146 These studies demonstrated that AF duration was
longer in aged mice and mice with higher FI scores. Not only
was P-wave duration prolonged in aged mice, but there was a
positive correlation between P-wave duration and FI score
such that a higher FI score corresponded with a longer P-
wave duration. High-resolution optical mapping studies
demonstrate that conduction velocity in the right and left
atrial appendages was reduced in aged mice and that there
was a negative correlation between atrial conduction velocity
and FI score.

The effects of age and frailty on structural and electrical
remodeling in the right and left atria were studied to deter-
mine how these processes contribute to the alterations in con-
duction velocity and in vivo function.125 There was an
increase in interstitial collagen levels and total collagen con-
tent in aged mice. In addition, there was a positive correla-
tion between interstitial fibrosis and total collagen content
in the right and left atrial appendages and FI score. Mecha-
nistically, the increase in fibrosis levels was attributed to
altered MMP/TIMP ratios rather than alterations in collagen
type I and collagen type III expression. The effects of age
and frailty on electrical remodeling also were characterized
using high-resolution optical mapping. APD90 was reduced
in the right and left atria of aged mice, whereas APD50 re-
mained unchanged. Importantly, when assessed as a function
of frailty there was a negative correlation between right atrial
APD50, right atrial APD90, and left atrial APD90 and FI
score. Thus, this novel approach to quantifying frailty in an-
imal models showed that frailty is a powerful predictor of
atrial structure and function, including at the cellular and mo-
lecular levels. Furthermore, the data demonstrate that, in
some cases, frailty can better identify alterations in atrial re-
modeling than chronological age. Ongoing studies are neces-
sary to further understand the impacts of age and frailty on
atrial remodeling and how frailty could be modified in these
contexts.
Conclusion
AF is prevalent in common conditions and acquired disease
states. Electrical and structural remodeling of the atria is a
common theme in the creation of a substrate for AF to
develop and progress; however, the cellular and molecular
bases for atrial remodeling are distinct in different conditions
and diseases. Although significant progress has been made,
these phenomena remain incompletely or poorly understood,
which likely contributes to the limited effectiveness of thera-
peutic approaches for AF. Improved understanding of the
mechanistic basis for AF in different conditions may facili-
tate the development of novel antiarrhythmic approaches
that target the specific components of atrial remodeling that
are altered in different disease states or conditions. This rep-
resents both a challenge and an opportunity. Thus, ongoing
research in human patients and animal models is essential
and should lead to improved therapeutic approaches that
could be tailored based on the specific conditions in which
AF is present.
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