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Abstract: Chlorella vulgaris (CH) is usually considered a feed supplement in pig nutrition, and its use
as an ingredient is poorly studied. Among many interesting characteristics, this microalga has high
protein levels and can be a putative alternative for soybean meal. Our aim was to study the effect
of a 5% CH incorporation in the diet, individually or combined with two carbohydrases, on meat
quality traits and nutritional value. Forty-four post-weaned male piglets individually housed, with
an initial live weight of 11.2 ± 0.46 kg, were randomly distributed into four experimental groups:
control (n = 11, without CH) and three groups fed with 5% CH incorporation, plain (n = 10), with
0.005% Rovabio® Excel AP (n = 10), and with 0.01% of a pre-selected four-CAZyme mixture (n = 11).
After two weeks of trial, piglets were slaughtered and longissimus lumborum collected. CH had no
effect on piglets’ growth performance. In turn, incorporation of CH improved the nutritional value
of meat by increasing total carotenoids and n-3 PUFA content, thus contributing to a more positive
n-6/n-3 fatty acid ratio. The supplementation with Rovabio® benefited tenderness and increased
overall acceptability of pork. Our results show beyond doubt the viability of the utilization of this
microalga as a feed ingredient for swine production.

Keywords: Chlorella vulgaris; feed enzymes; weaned piglets; meat quality; nutritional quality

1. Introduction

The global population is expected to grow close to approximately 10 billion by 2050,
increasing agricultural demand by 50 percent when compared with 2013 [1]. In addition,
the growth in income per capita in low- and medium-income countries, and the consequent
higher consumption of meat, fruits, and vegetables, will lead to an increase in the land used
for agriculture and animal production, with the consequent pressure on natural resources
and ecosystems [1]. Among meats, pork is consumed worldwide (36% of total), with a
tendency to increase [2]. The sustainability of monogastric production systems depends,
therefore, on the suitability of substitute ingredients to corn and soybean. These crops
are considered as the basis of monogastric (poultry and swine) feeding. Indeed, there are
numerous issues regarding the sustainability of the feedstuffs, given the fact that they are
mostly produced in North and South America and transported to consumer markets, with
high economic and environmental costs. Furthermore, they are in direct competition with
human nutrition [3].

Microalgae have been studied for several economic applications, including animal
feeding [4]. Microalgae can be produced in non-agricultural lands. They are photosyn-
thetic organisms able to efficiently transform atmospheric carbon dioxide into high-value
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products, including carbohydrates, lipids, proteins, and pigments. Therefore, they have
promising applications in the food and feed industries [5]. Large-scale cultivation sys-
tems and new technologies are currently being developed to turn microalgae cultivation
economically feasible [6]. In addition to this challenge, the microalgae cell wall is indi-
gestible by monogastrics. The use of feed enzymes—namely, carbohydrate-active enzyme
(CAZymes) that lysate their recalcitrant cell walls—has been demonstrated to be very
efficient in improving the nutrient utilization of microalgae by monogastrics [7]. Rovabio®

Excel AP is a commercially available CAZyme mixture containing mainly xylanases and β-
glucanases for cereal-based diets. This CAZyme mixture has also been used for microalgae-
containing diets [8,9]. Moreover, a four-CAZyme mixture, consisting of alginate lyase,
exo-β-glucosaminidase, lysozyme, and peptidoglycan N-acetylmuramic acid deacetylase,
has been shown to partially disrupt the C. vulgaris cell wall in vitro [10].

In piglets, weaning is a stressful event derived from social, environmental, and nu-
tritional transitions. In order to decrease the use of antibiotics used to mitigate the piglet
post-weaning stress, prebiotics can be a solution. The prebiotic properties of microalgae,
in particular the n-3 PUFA content, have been studied by different authors [11–13]. For
instance, n-3 PUFA of microalgae improve the fatty acid composition of animal edible
tissues, with recognized beneficial health consequences for both humans and animals.

In addition, spit-roasted piglet is a meat that is consumed worldwide, very popular
in Mediterranean Europe, Latin America, Louisiana (USA), China, and several islands of
Indonesia and the Pacific. It is particularly consumed on special occasions and at family
celebrations, such as Christmas. In Mediterranean Europe, it is a highly valued gourmet
food, often considered as a regional specialty. For instance, in Portugal the most popular
specialities are Leitão da Bairrada and Leitão de Negrais, whereas in Spain the Cochinillo Asado
is a reputed specialty of the Castilla-León region. Finally, body composition at the end of
post-weaning determines production performance at the growing-finishing period and
body composition when pigs achieve 100 kg of body weight [14,15].

This work aimed to study the dietary incorporation of 5% of C. vulgaris, with or
without exogenous enzymes, on meat quality characteristics and nutritional significance of
piglets. We assessed pH, color, lipid oxidation, sensorial qualities, fatty acid composition,
and pigment profile. We hypothesized that C. vulgaris can be a viable ingredient in piglet
feeding by improving the digestibility of valuable microalga nutrients without negatively
affecting animal performance and meat traits.

2. Materials and Methods
2.1. Animals and Experimental Diets

The animal trial was performed at ISA—Instituto Superior de Agronomia (University
of Lisbon, Lisbon, Portugal) facilities. All the procedures were reviewed by the Ethics
Commission of ISA and accepted by the Animal Care Committee of the National Veterinary
Authority (Direção Geral de Alimentação e Veterinária, Lisbon, Portugal), in accordance
with the European Union legislation (2010/63/EU Directive). We selected forty-four
castrated male piglets from Large White × Landrace sows crossed with Pietrain boars; they
were weaned at 28 days of age and had an initial body weight of 11.2 ± 0.46 kg (mean ± SD).
The piglets were single housed in metabolic cages (1000 × 500 × 480 mm). During the
adaptation period of two days, to minimize stress and stabilize all metabolic conditions,
two animals failed to adapt and were not considered in the experiment. The remaining
piglets were arbitrarily distributed in 4 experimental groups: Control (n = 11, cereal and
soybean meal-based diet), CH (n = 10, control diet with 5% C. vulgaris), CH + R (n = 10,
control diet with 5% C. vulgaris and 0.005% Rovabio® Excel AP from Adisseo (Antony,
France)), and CH + M (n = 11, control diet with 5% C. vulgaris supplemented and 0.01%
of a pre-selected four-CAZyme mixture (previously described by Coelho et al. [10])). C.
vulgaris was produced as described in detail by Coelho et al. [10]. Then, this microalga was
supplied as freeze-dried powder (Allmicroalgae—Natural Products SA, Pataias, Portugal)
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and incorporated in the diets. Rovabio® Excel AP was incorporated in the diet at a 0.005%
level following the manufacturer’s recommendation.

Diets were dried at 103 ◦C to constant weight to assess dry matter (DM). Crude pro-
tein of diets was determined following the method 954.01 [16] utilizing the factor 6.25 ×
nitrogen content (N) calculated by the Kjeldahl procedure. Crude fat of diets was assessed
by an automatic Soxhlet extraction with petroleum ether (Gerhardt Analytical Systems,
Königswinter, Germany). Ash content of the experimental diets was assessed following
the 942.05 [16] method. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) were
determined by 989.03 [16] method. Metabolizable energy (ME) was estimated in accordance
with Noblet et al. [17]. Fatty acids were determined by one-step extraction and converted
to fatty acid methyl esters (FAME) through acid transesterification and gas chromatog-
raphy (GC) having heneicosanoic acid (21:0) methyl ester as the internal standard [18].
β-Carotene and tocopherols of diets were determined by direct saponification, with a
single n-hexane extraction followed by HPLC, based on the external standard technique
from a standard curve of peak area vs. concentration, as previously reported [19]. The
determination of pigments in diets was carried out in accordance with Teimouri et al. [20],
with minor alterations. In brief, diets (0.5 g) were incubated at room temperature with
acetone overnight under agitation and in the dark. Following on extraction, samples were
subjected to centrifugation at 4000 rpm during 5 min and analyzed by UV/Vis spectropho-
tometry (Ultrospec 3100; Amersham Biosciences, Little Chalfont, UK). The concentration of
pigments was assessed using methodologies described by Hynstova et al. [21] equations.
All diets were formulated to have 3440 kcal ME/kg of energy and 19.5% of crude protein,
as fed basis. The ingredients and chemical composition of diets are shown in Table 1. The
detailed chemical composition of C. vulgaris was previously described [9].

2.2. Productive Parameters

Throughout the animal trial, feed and refusals were recorded daily. Animals were
weighed once a week before feeding to calculate average daily feed intake (ADFI), average
daily weight gain (ADG), and feed conversion ratio (FCR). After 15 days of the experiment,
piglets were slaughtered at a body weight of 23.1 ± 2.56 kg, through electrical stunning
followed by exsanguination, in accordance with standard protocols applied in commercial
abattoirs. Longissimus lumborum muscle samples were extracted from both sides of the
carcass, between the third and fifth lumbar vertebrae. Muscle samples from the left carcass
side were collected, minced, vacuum packed, and stored at −20 ◦C for intramuscular fat
and fatty acid profile and for total pigments and tocopherol profile determinations. For
TBARS analysis, muscles samples were stored at −80 ◦C. Muscle samples from the right
carcass side were stored at 4 ◦C during 24 h for color and pH determinations. Then, the
samples were vacuum packed and frozen at −20 ◦C until cooking loss, shear force, and
sensory analyses.

2.3. Determination of Meat Quality Traits

The pH of longissimus lumborum at 24 h postmortem was measured using a pH meter
with a glass penetrating electrode from Hanna Instruments (Woonsocket, RI, USA) and
was determined as an average of 3 replicates. Meat color variables, such as lightness
(L*), redness (a*), and yellowness (b*) were measured 24 h postmortem on 3 spots of
cut surface of the longissimus lumborum samples using a colorimeter (Minolta CR-300;
Konica Minolta, Tokyo, Japan) after 1 h at 4 ◦C. Lipid oxidation of meat was assessed by
thiobarbituric acid reactive substances (TBARS) at days 0 and 8, stored at 4 ◦C, following
the procedure of Grau et al. [22]. TBARS were calculated in duplicate from a standard
curve of 1,1,3,3-tetraethoxypropane (Fluka, Neu Ulm, Germany) and expressed as mg of
malondialdehyde/kg of muscle.
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Table 1. Ingredients and chemical composition of experimental diets.

Diets

Item Control CH CH + R CH + M

Ingredients (% as fed basis)
Wheat 43.9 44.0 44.0 44.0
Corn 15.0 15.0 15.0 15.0

Soybean meal 48 25.0 20.0 20.0 20.0
Whey powder 10.0 10.0 10.0 10.0

Soybean oil 3.00 3.00 3.00 3.00
Chlorella vulgaris 0 5.00 5.00 5.00

Rovabio® Excel AP 0 0 0.005 0
Four-CAZyme mixture 0 0 0 0.01

Energy (kcal ME 1/kg as fed basis) 3428 3436 3449 3449
Proximate composition (% as fed basis)

Dry matter 90.5 90.8 90.8 90.9
Crude protein 19.3 19.2 19.5 19.4

Crude fat 5.29 5.39 5.39 5.63
Ash 5.43 5.65 5.47 5.60
NDF 12.9 11.9 12.9 10.4
ADF 2.76 2.45 2.58 2.54

Fatty acid composition (% total fatty acids)
14:0 0.351 0.380 0.380 0.361
16:0 10.6 11.0 10.9 11.1

16:1n-7 0.158 0.903 0.900 0.677
17:0 0.095 0.104 0.103 0.104

17:1n-8 0.040 0.583 0.643 0.828
18:0 3.35 3.33 3.38 3.26

18:1n-9 24.8 24.5 24.5 24.6
18:1n-7 0.909 1.16 1.16 1.10
18:2n-6 55.8 53.3 53.2 52.9
18:3n-3 1.55 2.18 2.23 2.52

β-Carotene and tocopherol profile (µg/g)
β-Carotene n.d. 13.3 13.7 14.5
α-Tocopherol 28.6 19.9 22.1 24.2
β-Tocopherol 1.11 1.10 1.00 1.12
γ-Tocopherol 2.52 2.00 2.21 2.11
δ-Tocopherol 0.502 0.334 0.387 0.396
α-Tocotrienol 3.43 3.73 3.58 3.53
γ-Tocotrienol 1.38 1.51 1.69 1.46

Pigments (µg/g)
Chlorophyll-a 2 3.38 109 130 135
Chlorophyll-b 3 6.05 31.9 42.6 39.8

Total chlorophylls 4 9.43 141 172 174
Total carotenoids 5 2.67 36.9 44.5 52.9

Total chlorophylls and total carotenoids 6 12.1 178 217 227

Dietary treatments: CH, Chlorella vulgaris diet; CH + R, C. vulgaris diet supplemented with 0.005% of Rovabio®

Excel AP; CH + M, C. vulgaris diet supplemented with 0.01% of four-CAZyme mixture. ADF, acid detergent fiber;
NDF, neutral detergent fiber; ME, metabolizable energy; n.d., not detected. 1 Metabolizable energy (kcal/kg DM)
= 4412 − 11.06 × ash (g/kg DM) + 3.37 × crude fat (g/kg DM) − 5.18 × ADF (g/kg DM). 2 Ca = 11.24 A662 −
2.04 A645. 3 Cb = 20.13 A645 − 4.19 A662. 4 Ca + b = 7.05 A662 + 18.09 A645. 5 Cx + c = (1000 A470 − 1.90 Ca−63.14
Cb)/214. 6 (Ca + b) + (Cx + c). Bolded words thorought the table are topic headings.

2.4. Determination of Cooking Loss and Shear Force

Meat samples were thawed at 4 ◦C overnight and cooked using a water bath at
80 ◦C until reaching 78 ◦C of internal temperature, monitored by a thermocouple (Lufft
C120; Lufft, München, Germany). After 2 h cooling at room temperature, samples were
longitudinally cut toward the fibers with a 1 cm2 cross-section for cooking loss and shear
force. Before and after cooking, meat samples were weighed to determine cooking loss.
Meat shear force was determined using a Warner-Bratzler blade coupled to a texture
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analyzer (TA-XT Plus texture analyzer; Stable Micro Systems, Surrey, UK) and is expressed
as the mean of the peak value of a minimum of 4 replicate measurements.

2.5. Trained Sensory Panel Analysis

Trained sensory analysis was carried out in muscle samples, trimmed of external
connective tissue, cut into cubes with approximately 1 cm3, and cooked in a water bath, as
previously mentioned for cooking loss. Samples were arbitrarily allocated across 5 panel
sessions, with 8 random samples per session. The attributes were tenderness, juiciness,
flavor, off-flavor, and overall acceptability in a numeric scale from 1 to 8, in which 1 was
the low/negative score and 8 was the high/positive score. For off-flavor, the scale applied
was from 0 (absence) to 8 (maximum). The sensory panel consisted of thirteen panelists,
selected after intensive training, according to Cross et al. [23].

2.6. Determination of Intramuscular Fat and Fatty Acid Profile

Intramuscular fat from lyophilized longissimus lumborum samples was extracted ac-
cording to Folch et al. [24], utilizing dichloromethane–methanol (2:1, v/v) as reported by
Carlson [25], and measured gravimetrically by weighing the fatty residue after solvent
evaporation. Fatty acids were converted to FAME through a combined alkaline and acid
sequential transesterification, in accordance with Raes et al. [26]. The fatty acid composition
was analyzed by GC (HP6890A; Hewlett-Packard, Avondale, PA, USA), equipped with
a flame ionization detector, as described [9]. The identification of FAME was achieved
using a reference standard (FAME mixture of 37 compounds, Supelco Inc., Bellefonte, PA,
USA) corroborated by GC along with mass spectrometry using a GC-MS QP2010-Plus
(Shimadzu, Kyoto, Japan). FAME calculation was based on the internal standard technique
with heneicosanoic acid (21:0). Fatty acids are expressed as a percentage of the sum of
identified fatty acids.

2.7. Determination of Total Pigments, Cholesterol, and Tocopherols

Chlorophyll a, chlorophyll b, and total carotenoids contents were quantified in meat,
in accordance with Teimouri et al. [20]. Samples were subjected to incubation overnight
with acetone (Merck KGaA, Darmstadt, Germany) and agitation at room temperature in
the dark. Following on centrifugation, the absorbance was read at a UV/Vis spectropho-
tometer (Ultrospec 3100 pro; Amersham Biosciences, Little Chalfont, UK) and results were
determined in accordance with Hynstova et al. [21]. The parallel quantification of total
cholesterol, β-Carotene, and tocopherols, in duplicate, in meat samples was carried out,
according to Prates et al. [19].

2.8. Statistics

All data were analyzed with the PROC GLM of SAS software package (version 9.4;
SAS Institute Inc., Cary, NC, USA). Data were checked for normal distribution and variance
homogeneity. The statistical model assumed the dietary treatment as the single effect
and the piglet as the experimental unit. When significant effects of dietary treatments
were observed, least-squares means for multiple comparisons were generated using the
PDIFF option adjusted with Tukey–Kramer method. Results were considered significantly
different at p < 0.05.

3. Results
3.1. Zootechnical Parameters

Table 2 shows results on growth performance parameters and feed intake of piglets.
Diets had no significant effect on growth performance variables, such as final live weight,
ADG, and FCR (p > 0.05). The reference group had lower ADFI than groups fed with C.
vulgaris (p = 0.008), although this difference had no impact on piglets’ growth.
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Table 2. Effect of experimental diets on feed intake and growth performance of piglets.

Diets

Control CH CH + R CH + M SEM p-Value

Initial live weight (kg) 11.1 11.1 11.3 11.2 0.105 0.851
Final live weight (kg) 22.3 23.3 23.5 23.1 0.247 0.349

ADFI (g) 1 768 a 852 b 857 b 856 b 11.6 0.008
ADG (g) 2 535 581 579 569 8.50 0.189

FCR 3 1.44 1.47 1.48 1.51 0.013 0.282

Dietary treatments: CH, Chlorella vulgaris diet; CH + R, C. vulgaris diet supplemented with 0.005% of Rovabio®

Excel AP; CH + M, C. vulgaris diet supplemented with 0.01% of four-CAZyme mixture. 1 ADFI, average daily
feed intake. 2 ADG, average daily weight gain. 3 FCR, feed conversion ratio. a,b Values with different superscript
letters in the same row are significantly different (p < 0.05). Bolded words thorought the table are topic headings.

3.2. Meat Quality Traits
3.2.1. pH, Color, and Susceptibility to Lipid Oxidation

The impact of experimental diets on meat quality traits from piglets is shown in Table 3.
Diets did not affect pH 24 h postmortem and color parameters (p > 0.05). Although TBARS
were not detected in meat at day 0, their levels were diminished in the reference group
relative to CH + M (0.151 vs. 0.805 mg of malondialdehyde/kg of muscle, respectively)
after 8 days under refrigeration (p = 0.019).

Table 3. Effect of experimental diets on pH 24 h, CIE color parameters (L*, a*, b*) and TBARS levels
(mg malondialdehyde/kg muscle) after 0 and 8 days under refrigeration in longissimus lumborum
muscle.

Diets

Control CH CH + R CH + M SEM p-Value

pH 24 h 5.61 5.54 5.57 5.61 0.033 0.401
Color

L* 48.6 48.6 48.5 47.3 0.810 0.582
a* 6.20 6.50 6.79 7.26 0.321 0.112
b* −0.528 −0.157 −0.391 −0.821 0.2458 0.275

TBARS 1

Day 0 n.d. n.d. n.d. n.d. - -
Day 8 0.151 a 0.752 ab 0.621 ab 0.805 b 0.161 0.019

Dietary treatments: CH, Chlorella vulgaris diet; CH + R, C. vulgaris diet supplemented with 0.005% of Rovabio®

Excel AP; CH + M, C. vulgaris diet supplemented with 0.01% of four-CAZyme mixture. 1 TBARS-thiobarbituric
acid reactive substances; n.d., not detected (<0.020 mg malondialdehyde/kg muscle). a,b Values with different
superscript letters in the same row are significantly different (p < 0.05). Bolded words thorought the table are
topic headings.

3.2.2. Cooking Loss, Shear Force, and Sensory Panel Analysis

Table 4 shows the impact of experimental diets on cooking loss, shear force, and
sensory panel analysis of meat. Cooking loss had a statistically higher value in the control
group compared with the CH + M group (p = 0.011). Shear force was unaffected by
diets (p > 0.05). Juiciness, flavor, and off-flavor presented no significant differences among
diets (p > 0.05). However, for tenderness, the CH + R group showed the tenderest meat
(p < 0.001). In line with this finding, the overall acceptability was higher in the CH + R
muscle compared with the other diets (p = 0.000).
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Table 4. Effect of experimental diets on cooking loss (%), shear force (kg) and sensory panel analysis
in longissimus lumborum.

Diets

Control CH CH + R CH + M SEM p-Value

Cooking loss 28.5 b 27.5 ab 25.5 ab 24.7 a 0.881 0.011
Shear force 3.99 4.04 3.68 4.29 0.269 0.466

Sensory panel scores
Tenderness 4.95 a 5.10 a 5.69 b 5.04 a 0.121 <0.001

Juiciness 5.08 5.34 5.48 5.21 0.109 0.056
Flavor 4.90 4.92 4.96 4.96 0.111 0.965

Off-flavor 0.276 0.362 0.298 0.378 0.0764 0.714
Overall acceptability 4.91 a 5.09 a 5.54 b 5.03 a 0.112 0.000

Dietary treatments: CH, Chlorella vulgaris diet; CH + R, C. vulgaris diet supplemented with 0.005% of Rovabio®

Excel AP; CH + M, C. vulgaris diet supplemented with 0.01% of four-CAZyme mixture. a,b Values with different
superscript letters in the same row are significantly different (p < 0.05). Bolded words thorought the table are
topic headings.

3.3. Intramuscular Fat, Total Cholesterol, and Fatty Acid Profile of Meat

The impact of experimental diets on intramuscular fat, total cholesterol, and fatty acid
profile of longissimus lumborum muscle samples is shown in Table 5. Intramuscular fat and
cholesterol contents were unaffected by diets (p > 0.05). Dietary treatments influenced only
a few fatty acids, specifically 15:0, 17:0, 17:1n-8, 18:0, 20:1n-9, 20:2n-6, 22:1n-9, 22:5n-3, and
22:6n-3. Compared with Chlorella-fed piglets, the control group had a higher percentage
of 15:0 (p < 0.0001), 17:0 (p < 0.001), and 17:1n-8 (p < 0.001). Interestingly, stearic acid
(18:0) was lower in control and CH + M groups in comparison with the other groups
(p = 0.023). In contrast, the proportion of 20:2n-6 increased in piglets fed control and CH +
M diets (p = 0.004). Additionally, the reference group had a higher proportion of 20:1n-9
(p = 0.009) but a lower proportion of 22:1n-9 (p = 0.004) than piglets fed CH. Conversely,
the proportions of 22:5n-3 (DPA, docosapentaenoic acid) (p < 0.001) and 22:6n-3 (DHA,
docosahexaenoic acid) (p = 0.001) were enhanced in piglets fed CH and CH + M. Indeed,
both DPA and DHA increased at least 1.79-fold and 2.35-fold in CH and CH + M groups,
respectively.

Concerning the partial sums and ratios of fatty acids, only the n-3 PUFA sum was
enhanced in CH and CH + M groups (p < 0.001) compared with the other groups. The
remaining partial sums of fatty acids, as well as the PUFA/SFA ratio, were similar across all
dietary treatments (p > 0.05). Nevertheless, the n-6/n-3 ratio was reduced in microalga-fed
groups in comparison with the control group (p < 0.001).

3.4. Total Pigments and Tocopherol Profile of Meat

Total carotenoids, chlorophylls, and tocopherols of longissimus lumborum samples are
shown in Table 6. The pigment contents and tocopherol profile were identical for all dietary
treatments (p > 0.05), expect for total carotenoids. Meat from Chlorella-fed piglets had
values of total carotenoids 2 times higher than the reference group (p = 0.002). β-Carotene
was undetected in any of the groups.
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Table 5. Effect of experimental diets on intramuscular fat content (g/100 g muscle), total cholesterol
(mg/100 g muscle), and fatty acid (FA) composition (% of total FA) in longissimus lumborum.

Diets

Control CH CH + R CH + M SEM p-Value

Intramuscular fat 1.36 1.14 1.31 1.35 0.078 0.159
Total cholesterol 54.8 53.4 44.4 48.4 0.029 0.058

Fatty acid composition
10:0 0.024 0.028 0.032 0.019 0.005 0.204
12:0 0.046 0.049 0.047 0.054 0.005 0.660
14:0 0.839 0.826 0.943 0.948 0.091 0.661

14:1n-5 0.015 0.015 0.015 0.012 0.003 0.924
15:0 0.310 b 0.149 a 0.128 a 0.135 a 0.028 <0.001

DMA-16:0 0.128 0.131 0.122 0.136 0.022 0.974
16:0 21.7 23.8 24.5 23.7 1.03 0.244

16:1n-9 0.442 0.510 0.468 0.487 0.017 0.043
16:1n-7 2.11 1.95 2.51 2.24 0.170 0.139

17:0 1.25 b 0.730 a 0.620 a 0.710 a 0.122 0.001
17:1n-8 0.864 b 0.500 a 0.451 a 0.467 a 0.080 0.001

DMA-18:0 0.030 0.039 0.027 0.043 0.006 0.210
DMA-18:1 0.029 0.053 0.036 0.047 0.009 0.203

18:0 12.7 a 14.3 b 14.3 b 13.8 ab 0.427 0.023
18:1n-9 28.8 26.8 30.1 29.0 1.26 0.314
18:1n-7 3.35 3.31 3.25 3.26 0.073 0.717
18:2n-6 19.3 17.9 15.9 16.7 1.85 0.558

18:2t9t12 0.074 0.070 0.074 0.073 0.007 0.979
18:3n-6 0.131 0.149 0.106 0.113 0.020 0.431
18:3n-3 0.382 0.358 0.378 0.424 0.050 0.809

20:0 0.187 0.210 0.187 0.190 0.010 0.333
20:1n-9 0.586 b 0.463 a 0.543 ab 0.514 ab 0.025 0.009
20:2n-6 0.720 b 0.487 a 0.465 a 0.514 ab 0.053 0.004
20:3n-6 0.369 0.358 0.251 0.295 0.054 0.363
20:4n-6 2.69 3.07 1.64 2.11 0.462 0.150
20:3n-3 0.056 0.051 0.057 0.051 0.007 0.868
20:5n-3 0.053 0.082 0.060 0.065 0.009 0.139

22:0 0.083 0.110 0.092 0.085 0.009 0.171
22:1n-9 0.050 a 0.093 b 0.069 ab 0.065 ab 0.008 0.004
22:2n-6 0.040 0.040 0.035 0.032 0.007 0.766
22:5n-3 0.275 a 0.595 b 0.231 a 0.491 b 0.056 <0.001
22:6n-3 0.305 a 0.889 b 0.621 ab 0.716 b 0.096 0.001

23:0 0.155 0.254 0.181 0.202 0.026 0.062
Others 1.89 1.63 1.56 2.35 0.299 0.229

Partial sums of fatty
acids

∑ SFA 1 37.3 40.4 41.0 39.8 1.29 0.173
∑ MUFA 2 36.2 33.6 37.4 36.0 1.40 0.288
∑ PUFA 3 24.4 24.1 19.8 21.6 2.36 0.458

∑ n-3 PUFA 4 1.07 a 1.97 b 1.35 a 1.75 b 0.101 <0.001
∑ n-6 PUFA 5 23.3 22.0 18.4 19.8 2.38 0.453

Ratios of fatty acids
PUFA/SFA 0.661 0.632 0.491 0.573 0.075 0.386

n-6/n-3 21.9 b 11.7 a 13.5 a 12.7 a 1.51 <0.001

Dietary treatments: CH, Chlorella vulgaris diet; CH + R, C. vulgaris diet supplemented with 0.005% of Rovabio®

Excel AP; CH + L, C. vulgaris diet supplemented with 0.01% of four-CAZyme mixture. SEM, standard error of the
mean; FA, fatty acids; DMA, dimethylacetal; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids;
PUFA, polyunsaturated fatty acids. 1 10:0 + 12:0 + 14:0 + 15:0 + 16:0 + 17:0 + 18:0 + 20:0 + 22:0 + 23:0. 2 14:1n-5
+ 16:1n-9 + 16:1n-7 + 17:1n-8 + 18:1n-9 + 18:1n-7 + 20:1n-9 + 22:1n-9. 3 18:2n-6 + 18:3n-6 + 18:3n-3 + 20:2n-6 +
20:3n-6 + 20:4n-6 + 20:3n-3 + 20:5n-3 + 22:2n-6 + 22:5n-3 + 22:6n-3. 4 18:3n-3 + 20:3n-3 + 20:5n-3 + 22:5n-3 + 22:6n-3.
5 18:2n-6 + 18:3n-6 + 20:2n-6 + 20:3n-6 + 20:4n-6. a,b Values with different superscript letters in the same row are
significantly different (p < 0.05). Bolded words thorought the table are topic headings.
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Table 6. Effect of experimental diets on total pigments and tocopherol profile (µg/g) in longissimus
lumborum.

Diets

Control CH CH + R CH + M SEM p-Value

Pigments
β-Carotene n.d n.d n.d n.d - -

Chlorophyll-a 1 6.87 14.1 14.1 16.4 2.92 0.107
Chlorophyll-b 2 13.3 22.5 21.9 25.0 5.44 0.420

Total chlorophylls 3 20.2 36.5 36.0 41.4 8.30 0.273
Total carotenoids 4 3.75 a 7.14 b 7.99 b 7.51 b 0.819 0.002

Total chlorophylls and
total carotenoids 5 23.9 43.7 44.1 48.9 8.49 0.154

Tocopherols
α-Tocopherol 1.13 1.08 0.947 1.03 0.066 0.257
γ-Tocopherol 0.025 0.024 0.026 0.027 0.001 0.217

Dietary treatments: CH, Chlorella vulgaris diet; CH + R, C. vulgaris diet supplemented with 0.005% of Rovabio®

Excel AP; CH + M, C. vulgaris diet supplemented with 0.01% of four-CAZyme mixture. 1 Ca = 11.24 A662 − 2.04
A645. 2 Cb = 20.13 A645 − 4.19 A662. 3 Ca + b = 7.05 A662 + 18.09 A645. 4 Cx + c = (1000 A470 − 1.90 Ca − 63.14
Cb)/214. 5 (Ca + b) + (Cx + c); n.d., not detected. a,b Values with different superscript letters in the same row are
significantly different (p < 0.05). Bolded words thorought the table are topic headings.

4. Discussion

To the best of our knowledge, this is the first study ever to use C. vulgaris microalga
as a feedstuff in piglets’ diet, supplemented or not with exogenous enzyme cocktails,
such as the Rovabio® Excel AP and the preselected four-CAZyme mixture [10]. In this
work, a zootechnical trial was performed along with the determination of pork quality and
nutritional traits. The dietary incorporation of 5% of C. vulgaris had no impact on growth
performance of piglets. In agreement, Furbeyre et al. [11] using Spirulina and C. vulgaris,
both at a supplement level of 1%, showed no effects over ADFI and ADG in weaned piglets
(9.1 to 20 kg LW). The authors studied the administration of the same microalgae via
drinking water (385 mg/kg LW) and found no effect on growth performance in suckling
(4.9 kg LW) and weaned piglets (9.04 kg LW) [11]. Like other studies using microalgae as
a dietary supplement, Yan et al. [27] described that 0.1 and 0.2% dietary incorporation of
fermented C. vulgaris in pigs’ diets (26.6 to 53.0 kg LW) promoted an increase in the ADG
of 655 g/d relative to the reference diet. For the first time, Martins et al. [8] used Spirulina
as an ingredient (10% of dietary inclusion) and described that the growth performance of
piglets was reduced, thus highlighting the need of feed enzymes to enhance the digestive
utilization of this microalga. In our study, no significant effects on the growth performance
of piglets were found, revealing that the dietary level of 5% C. vulgaris did not compromise
the productive variables. The exogenous carbohydrases applied had no consequences to
the point of a higher level of supplementation being necessary, as advanced by Martins
et al. [8].

Regarding meat quality traits, the level of 5% C. vulgaris incorporation, when com-
bined with the pre-selected four-CAZyme mixture, only affected the oxidative stability of
longissimus lumborum at day 8 postmortem (storage at 4 ◦C). After 8 days under refrigera-
tion, the increased TBARS reflect a higher instability of meat from microalga-fed piglets
with the four-CAZyme mixture in comparison with the control group. This is likely due
to poor radical-scavenging activity of the intrinsic antioxidants for mitigating the lipid
oxidation promoted by enhanced n-3 PUFA content. TBARS over 0.5 mg malondialde-
hyde/kg of fresh meat are recognized as crucial since, at this level of lipid oxidation, the
rancid off-flavors are easily perceived by the consumers [28]. In the current study, only at
day 8 of storage, TBARS were above this threshold value. Moreover, TBARS values for
the four-CAZyme mixture diet-fed animals were lower than 0.9 mg malondialdehyde/kg
of meat, proposed by Jayasingh and Cornforth [29] for ground and cooked pork. Martins
et al. [8] found that in comparison with the reference diet, the incorporation of 10% of



Foods 2021, 10, 1155 10 of 12

Spirulina in piglets’ diet, without enzyme supplementation, increased TBARS at three days
of storage under refrigeration. Likewise, data on the oxidative stability of meat did not
match the antioxidant power of Spirulina, as in the present case of C. vulgaris.

An existing relationship between cooking loss and juiciness in pork was described by
Aaslyng et al. [30]. The higher value in cooking loss found in the reference group influenced
the lower value of juiciness for the same diet. Sensory attributes such as tenderness and
overall acceptability were increased by Rovabio® commercial supplementation relative to
the other diets, suggesting that overall consumer acceptability is mostly determined by
tenderness. Furthermore, and according to our trained sensory panel, C. vulgaris had no
negative effect on meat flavor, thus contributing to consumer’s acceptance of this meat.

Feeding piglets with 5% of C. vulgaris, individually or combined with the four-
CAZyme mixture, increased DPA and DHA, showing a positive correspondence between n-
3 PUFA in the diet and n-3 PUFA deposited in longissimus lumborum muscle. n-3 long-chain
PUFA display health beneficial effects [31]. In fact, several animal and epidemiological re-
ports have proven the advantages of n-3 PUFA on cardiovascular disease outcomes [32,33].
Furthermore, the FAO, the WHO, and the American Heart Association recommended EPA
(20:5n-3; eicosapentaenoic acid) plus DHA daily intake from 140 to 600 mg/d, depending
on the authority guidelines [34,35]. However, most Western populations consume an aver-
age below 500 mg/day of n-3 long-chain PUFA [36]. For instance, piglets’ diet receiving
5% of C. vulgaris combined with the four-CAZyme mixture could be a valuable source of
these protective fatty acids to both animals and humans. Consistent with our findings, the
dietary C. vulgaris at this level of incorporation also produced an increment in n-3 PUFA
amount in finishing pigs [9]. The enhancement of n-3 PUFA content subsequently resulted
in a positive decline in n-6/n-3 ratio in muscle with incorporation of C. vulgaris in piglets’
diet. Although the n-6/n-3 ratios were considerably elevated, our data indicate that meat
from piglets fed this microalga complies more (around 12.6) with the advised n-6/n-3 ratio
(below 4), thus promoting health-protecting cardiovascular effects for consumers [37] and
improving meat quality.

A significant increase of total carotenoids in longissimus lumborum muscle was observed
in piglets fed C. vulgaris, which reflects diet composition. In fact, the incorporation of this
microalga led to higher content of pigments in the diets, in particular about 17 times more
total carotenoids if compared with the reference diet. As highlighted by Coelho et al. [9],
the transfer of carotenoids from the microalga to the meat adds extra nutritional value to
pork. Our data are in accordance with these authors, who also found 2 times higher total
carotenoid contents in meat from finishing pigs fed with 5% of C. vulgaris. Similar to the
study by Coelho et al. [9], β-Carotene (pro-vitamin A) was undetected in meat, possibly
indicating that this pigment was rapidly metabolized into vitamin A because pigs are
unable to synthesize carotenoids.

5. Conclusions

The incorporation of C. vulgaris at a level of 5% in the diet does not impair growth
performance of piglets or their meat quality traits. In contrast, at this level of dietary
inclusion, it seems that an improvement in the nutritional value of pork occurs, in particular
through the increment of total carotenoids and n-3 PUFA content, which promotes a
beneficial n-6/n-3 PUFA ratio for the consumers. Additionally, the supplementation with
exogenous enzymes, both the commercial Rovabio® formulation and the pre-selected
four-CAZyme mixture, seems to have a minor impact on the multiple parameters assessed.
One exception is the increased score for tenderness and overall acceptability of pork
from piglets fed C. vulgaris combined with Rovabio®. In view of these findings, further
research is warranted, focusing in particular on higher levels of C. vulgaris incorporation,
individually or supplemented with feed enzymes, in order to ascertain whether C. vulgaris
is a cost-effective alternative feedstock for livestock production.
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