
����������
�������

Citation: Nenu, I.; Stefanescu, H.;

Procopet, B.; Sparchez, Z.; Minciuna,

I.; Mocan, T.; Leucuta, D.; Morar, C.;

Grigorescu, M.; Filip, G.A.; et al.

Navigating through the Lipid

Metabolism Maze: Diagnosis and

Prognosis Metabolites of

Hepatocellular Carcinoma versus

Compensated Cirrhosis. J. Clin. Med.

2022, 11, 1292. https://doi.org/

10.3390/jcm11051292

Academic Editor: Jiangao Fan

Received: 31 January 2022

Accepted: 24 February 2022

Published: 26 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Navigating through the Lipid Metabolism Maze: Diagnosis and
Prognosis Metabolites of Hepatocellular Carcinoma versus
Compensated Cirrhosis
Iuliana Nenu 1,2,*, Horia Stefanescu 2,* , Bogdan Procopet 1,2, Zeno Sparchez 1,2, Iulia Minciuna 1,2,
Tudor Mocan 1,2 , Daniel Leucuta 3, Corina Morar 4, Mircea Grigorescu 1,2, Gabriela Adriana Filip 5

and Carmen Socaciu 4

1 3rd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy,
400162 Cluj-Napoca, Romania; procopet.bogdan@umfcluj.ro (B.P.); sparchez.zeno@umfcluj.ro (Z.S.);
minciuna.iulia@elearn.umfcluj.ro (I.M.); mocan.tudor@umfcluj.ro (T.M.); grigorescu.mircea@umfcluj.ro (M.G.)

2 Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
3 Department of Medical Statistics, “Iuliu Hatieganu” University of Medicine and Pharmacy,

400349 Cluj-Napoca, Romania; leucuta.daniel@umfcluj.ro
4 Center for Applied Biotechnology BIODIATECH, SC Proplanta, 400478 Cluj-Napoca, Romania;

corina.hebristean@yahoo.co.uk (C.M.); csocaciudac@gmail.com (C.S.)
5 Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy,

400006 Cluj-Napoca, Romania; gabriela.filip@umfcluj.ro
* Correspondence: iuliana.nenu@gmail.com (I.N.); horia.stefanescu@irgh.ro (H.S.)

Abstract: (1) Background: The pursuit of finding biomarkers for the diagnosis and prognosis of
hepatocellular carcinoma (HCC) has never been so paramount in the days of personalized medicine.
The main objective of our study is to identify new biomarkers for diagnosing HCC, and to identify
which patients are at risk of developing tumor recurrence, decompensation, or even possesses the risk
of cancer-related death. (2) Methods: We have conducted an untargeted metabolomics study from the
serum of 69 European patients—32 compensated cirrhotic patients without HCC (controls), and 37 cir-
rhotic patients with HCC with compensated underlying liver disease (cases), that underwent curative
treatment (surgery or ablation), performing ultra-high-performance liquid chromatography coupled
with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-QTOF- (ESI+)-
MS) with an emphasis on lipid metabolites. (3) Results: 1,25-dihydroxy cholesterol (m/z = 419.281),
myristyl palmitate (m/z = 453.165), 25-hydroxy vitamin D2 (m/z = 413.265), 12-ketodeoxycholic
acid (m/z = 391.283), lysoPC (21:4) (m/z = 558.291), and lysoPE (22:2) (m/z = 534.286) represent
notable biomarkers that differentiate compensated cirrhosis from early HCC, and ceramide species
are depleted in the serum of HCC patients. Regarding prognosis, no metabolite identified in our
study could determine tumor relapse. To distinguish between the HCC patients that survived cu-
rative treatment and those at risk that developed tumor burden, we have identified two notable
phosphocholines (PC (30:2); PC (30:1)) with AUROCs of 0.820 and 0.807, respectively, that seem to
increase when patients are at risk. In a univariate analysis, arachidonic acid was the only metabolite
to predict decompensation (OR = 0.1, 95% CI: 0–0.16, p < 0.005), while in the multivariate analysis,
dismally, no variable was associated with decompensation. Furthermore, in the multivariate analysis,
we have found out for the first time that the increased expression of 1,25-dihydroxy cholesterol,
myristyl palmitate, 12-keto deoxycholic acid, lysoPC (21:4), and lysoPE (22:2) are independent mark-
ers of survival. (4) Conclusions: Our study reveals that lipids play a crucial role in discriminating
compensated cirrhosis and early hepatocellular carcinoma, and might represent markers of survival
and prognosis in personalized and minimally invasive medicine.
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1. Introduction

One of the challenges that hepatologists face nowadays is the troublesome occurrence
of hepatocellular carcinoma (HCC), the sixth most common cause of cancer worldwide,
with an increasing incidence. Moreover, the World Health Organization estimates that
more than a million people will die from liver cancer in 2030 [1,2]. In addition, due to
late or limiting diagnosis methods, HCC has become more and more frequent on the
doctor’s agenda, often diagnosed in advanced stages, with a median overall survival time
of 6–8 months [3].

Although α-fetoprotein (AFP) is the most often used screening biomarker in clinical
practice for early HCC detection, predicting tumor recurrence, and monitoring the oncolog-
ical treatment, its poor sensitivity and specificity make it an unsatisfactory marker [4]. For
this reason, new biomarkers are needed to identify among cirrhotic patients those at risk
of developing liver malignancy, or to monitor treatment efficacy in the case of oncological
patients. Along these lines, the concept of liquid biopsy has appeared in oncology for a
minimally invasive positive diagnosis, prognosis, and overall disease monitoring. The term
liquid biopsy can apply to cancer by-products, including circulating tumor cells (CTC),
cell-free DNA (cfDNA), cell-free RNA (cfRNA), microRNA (miRNA), and extracellular
vesicles (EVs), and last but not least, to metabolomics as well [5]. Because no organ other
than the liver encompasses a myriad of lipids and other metabolites that are constantly
interchanging in many biochemical reactions, metabolomics, which represents a compres-
sive fingerprint of cell metabolism, also plays a crucial role in pursuing new diagnostic
biomarkers and in identifying biochemical networks involved in prognosis and treatment
monitoring [6,7].

Metabolic reprogramming is a hallmark characteristic of all cancer cells [8]. The most
well-studied metabolic peculiarity is the Warburg effect, in which cancer cells use aero-
bic glycolysis instead of mitochondrial oxidative phosphorylation, leading to increased
lactate production with a consequent role in cellular proliferation [9,10]. Because the
liver is the primary metabolic hub of lipid metabolism through lipid homeostasis and
energy balance maintenance, it is plausible to assume that many biochemical pathways
involving lipids are disrupted [11]. Indeed, increased lipogenesis and lipolysis promote
cancer cell growth, proliferation, and survival [11]. Moreover, fatty acid metabolism is en-
hanced, and phosphatidyl-choline (PC) and lyso-phosphatidylcholine (LPC) increase, while
phosphatidyl-ethanolamine, -serine (PS) and -inositol, and ceramides are markedly reduced
in HCC [11,12]. Other lipid metabolites play a double-edged sword role. Sphingolipid
metabolism is quite controversial because ceramides induce a proapoptotic effect, whereas
their phosphorylated compounds are involved in cancer growth, survival, and motility [13].
There are limited data regarding the involvement of ceramides and sphingosine-1 phos-
phate (S1P) as significant regulators of hepatocarcinogenesis, and their possible roles as
biomarkers in HCC [14]. Some authors report a highly significant upregulation of long
and very-long-chain ceramides (C16–C24) in the serum of patients with HCC compared
to patients with cirrhosis, while other authors find a ceramide depletion in the serum of
HCC patients [15,16]. Bile acids also have a dual role, with both protective and pathogenic
roles being a matter of debate in drug-induced liver injury, NAFLD, and colon and liver
cancers [17].

The main objective of our study is to identify new serum biomarkers, mainly lipids,
and to define prognosis markers of early hepatocellular carcinoma, based on ultra-high-
performance liquid chromatography coupled with electrospray ionization quadrupole
time-of-flight mass spectrometry (UHPLC-QTOF- (ESI+)-MS). The present study iden-
tifies which patients are at risk of developing tumor recurrence, decompensation, and
increased mortality.
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2. Patients and Methods
2.1. Patient Characteristics and Sample Collection

We have conducted a retrospective analysis of a prospectively collected database. The
patients were admitted during 2016–2017 at the “Prof. Octavian Fodor” Regional Institute
of Gastroenterology and Hepatology Cluj-Napoca, Romania, as follows: 37 patients with
HCC (BCLC stages 0, A, and B) and 32 with compensated cirrhosis were admitted, with
a period of three years of follow-up. The diagnosis of HCC was established based on the
EASL guidelines for HCC using imaging and/or histopathology, and the stadialisation was
performed according to the Barcelona clinic liver cancer (BCLC) score. All patients with
compensated cirrhosis, representing the control group, had hepatitis C virus etiology and
were referred to interferon-free treatment. The diagnosis of liver cirrhosis was made using
non-invasive methods such as abdominal ultrasound, transient elastography, serology,
and liver biopsy in certain situations. HCC confirmation included two dynamic imaging
examinations according to the EASL guidelines. Clinical characteristics included age,
gender, and the etiology of the underlying liver disease. Liver function was determined
using the Child-Pugh score, the model for end-stage liver disease (MELD) score, the alpha-
fetoprotein (AFP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT)
levels, the platelet count, and the gamma-glutamyl transpeptidase (GGT) level.

Hepatic venous pressure gradient (HVPG) was performed to determine the portal
hypertension grade, where clinically significant portal hypertension was defined over
10 mmHg [18]. Tumor size and tumor number were assessed via imagistic tools at the time
of inclusion, and, for HCC patients, the BCLC stage was determined. Contrast-enhanced
CT or contrast-enhanced MRI were performed every three months during the first year
and at least every 4–6 months thereafter to monitor disease progression. Independent
physicians performed all follow-up examinations without prior knowledge of the study.
The development of decompensation events was noted in the HCC group and was defined
by the appearance of jaundice, ascites, hepatorenal syndrome, hepatic encephalopathy,
and/or variceal bleeding. In the control group, patients with liver nodules or those with
a history of decompensation or current symptoms of such were excluded. Patients with
HCC developed on the non-cirrhotic liver, patients with advanced HCC (BCLC classes
C and D), and those with concomitant cancer other than HCC were also excluded from
the study group. Pregnant patients, as well as patients younger than 18 years old were
excluded. The patients were followed up until November 2020. The study was performed
according to the Declaration of Helsinki, and both groups signed the informed consent of
the examination approved by the local ethical guidelines for storing biological samples. The
cohort was prospectively studied, and serum lipid parameters were analyzed in retained
serum samples, stored previously at −80 ◦C.

2.2. Metabolomic Analysis
2.2.1. Sample Preparation

The patients included in this study had blood collected by venipuncture in sterile
vacutainers anticoagulant, and samples were kept at −80 ◦C. They were labeled using
confidential numerical codes. A volume of 0.6 mL methanol (99%) was added for each
volume of 0.2 mL of plasma, and the mixture was vortexed to precipitate proteins for 30 s.
Afterward, the composition was kept for 5 min in an ultrasonication instrument, followed
by 5 min at −20 ◦C. The supernatant was collected following centrifugation at 10,000 rpm
for 10 min (4 ◦C).

Afterward, probes were subjected to ultrasound in a water bath for 5 min and left at
−20 ◦C to increase protein precipitation. The samples were centrifuged at 5000 rpm for
10 min to separate the protein supernatant. The supernatant was collected and filtered
using nylon filters (0.2 µm). The samples were placed in vials, and then in an autosampler
to be injected into the UHPLC MS system.
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2.2.2. UHPLC-QTOF-ESI+-MS Analysis

Plasma metabolomic profiling was performed using ultra-high-performance liquid
chromatography coupled with electrospray ionization-quadrupole-time of flight-mass
spectrometry (UHPLC-QTOF-ESI+-MS) in a ThermoFisher Scientific UHPLC Ultimate
3000 instrument equipped with a quaternary pump, a Dionex delivery system, and MS de-
tection equipment with MaXis Impact (Bruker Daltonics). The metabolites were separated
using a Thermo Scientific Acclaim C18 column (3 µm, 2.1 × 50 mm, pore size 30 nm) at
40 ◦C. The mobile phase consisted of 0.1% formic acid in water (A) and 0.1% formic acid
in acetonitrile (B). The flow rate was set at 0.5 mL min−1. The gradient was: 5 to 15% A
(0–3 min), 15–50% A (3–6 min), 50–95% (6–9 min), isocratic until 15 min, and afterwards
decreased from 95 to 5% (15–20 min). The elution time was set for 20 min. The volume
of the injected extract was 5 µL, the column temperature was 40 ◦C. Several QC samples
obtained from each group were used in parallel to calibrate the separations.

Metabolite identification was performed using specific MS parameters: ionization mode
ESI+ positive, MS calibration with sodium formate, capillary voltage 3500 V, pressure for the
nebulizing gas 2.8 bar, drying gas flow 12 l/min, drying temperature 300 ◦C. The control of the
instrument and the data processing were conducted using the specific software TofControl 3.2,
HyStar 3.2, Data Analysis 4.2 (Bruker, Daltonics), and Chromeleon, respectively.

2.3. Data Processing and Statistical Analysis

The base peak chromatograms and all MS spectra were first processed by Compass
DataAnalysis 4.2 (Bruker Daltonics, GmbH, Bremen, Germany), using the find molecu-
lar feature (FMF) algorithm, and matrix generation was achieved using Profile Analysis
2.1 (Bruker Daltonics, GmbH, Bremen, Germany). The time alignment, spectral background
extraction, MS recalibration, normalization by the sum of the bucket values in analysis, and
an 80% bucket filter were the chosen parameters.

MetaboAnalyst v5.0 online software was used for univariate and multivariate analy-
ses. The matrices representing the peak intensity versus m/z values for each sample and
subgroups of samples were tested using the most relevant statistical parameters to reflect
the discrimination between groups, the prediction, and the correlation maps. Therefore, the
comparative statistical approaches selected were the volcano test, the variable importance
in the projection (VIP) values, the scores and loadings plots of principal component analysis
(PCA) and partial least square discriminant analysis (PLSDA) including cross-validation
parameters, the random forest-based prediction, and the calculation of p-values by t-test
via ANOVA. The same software was applied to build the receiver operating characteristic
(ROC) curves and area values under ROC curves (AUC) to evaluate the potential biomark-
ers’ sensibility and selectivity. Finally, enrichment analysis and pathway matches were
established to find the significant metabolites for altered pathways. The relevant molecules,
according to statistical analysis, were identified by searches on specialized databases, such
as Lipid Maps (http://www.lipidmaps.org (accessed on 20 December 2021)) and the Hu-
man Metabolome Database (http://www.hmdb.ca (accessed on 20 December 2021)), and
PubChem (https://pubchem.ncbi.nlm.nih.gov/ (accessed on 20 December 2021). The
PubChem database codes of each identified metabolite were included.

2.4. Data Processing and Statistical Analysis for Prognosis

Regarding prognosis, the overall survival was defined as the time from treatment
until death or the study ending date (November 2020). Disease-free survival was defined
as the time from treatment until recurrence or the study’s end date (November 2020).
Further, known predictors for survival were added as adjusting variables in multivariate
Cox regression models. The proportional hazard assumption was checked with a formal
statistical test for all models, while the linear functional form for continuous variables was
checked using model residuals plots inspection. For multivariate models, multicollinearity
was checked with variance inflation factors. The two-tailed p-value was computed for all
statistical tests, and the results were statistically significant for values below 0.05. Data were

http://www.lipidmaps.org
http://www.hmdb.ca
https://pubchem.ncbi.nlm.nih.gov/
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analyzed using the R environment for statistical computing and graphics (R Foundation
for Statistical Computing, Vienna, Austria), version 3.6.3 [R Core Team. R: A Language
and Environment for Statistical Computing and IBM SPSS Statistics 25.0.] (IBM, Armonk,
NY, USA).

3. Results
3.1. Patient Characteristics

The present study included patients with HCC (group HCC) and patients with com-
pensated cirrhosis as controls (group C). Because all HCV patients from the control group
received interferon-free treatment, they were rigorously evaluated clinically and biochem-
ically, and imaging (ultrasound ± CT) was performed. In effect, the national protocol
in 2016 banned interferon-free therapy in patients who had cancers, including HCC and
decompensated (or a history of decompensated) liver disease. Thus, all of our control
patients had compensated hepatitis C cirrhosis. Precisely for this reason, knowing with
certainty that the patients from the control group did not have liver tumors, we compared
patients with liver cirrhosis with those with HCC to determine different biomarkers of
diagnosis and prognosis.

Most patients with HCC had compensated liver disease, with hepatitis C virus (HCV)
representing the primary etiology—43.24%, followed by alcoholic cirrhosis (32.4%), and
chronic hepatitis B (HBV) infection (16.21%). Only six patients had Child–Pugh B class
7 points with preserved liver function. All 37 HCC patients received curative treatment:
9 (24.32%) underwent surgical resection and 28 (75.67%) received percutaneous ultrasound-
guided tumor ablation. The mean duration of follow-up was 29.23 ± 10.74 months. Within
the observation time, 13 (35.13%) patients died (group HCd), while 24 survived (group
HCs). One patient from the cirrhotic control group died, but without liver-related causes.
Regarding tumor relapse, 22 patients (59.45%) were diagnosed with tumor recurrence.

Regarding BCLC class, the HCC patients are classified as follows: 4 BCLC 0, 15 BCLC
A, and 18 BCLC B with compensated underlying liver disease. BCLC-B class is characterized
by extensive heterogeneity due to the wide range of liver function (Child–Pugh A or B
cirrhosis) and variable lesion number and size. Bolondi et al. proposed a sub-classification
of intermediate stage HCC so that BCLC B patients might benefit from other treatment
options besides transarterial chemoembolization [19]. All 18 BCLC B patients from our
study had undergone curative treatment. Of these, 16 correspond to “up to seven criteria” as
follows: 9 patients had tumors less than 6.5 cm diameter and underwent surgery, 7 patients
had two or three nodules, with a total sum diameter less than 8 cm. The last 2 patients
had four nodules, in which surgery and ablation were combined. Unfortunately, liver
transplantation is not feasible in our center, so surgical resection or percutaneous ablation
were also performed in patients who met the Milan criteria.

None of the patients with HCC and HCV received interferon-free treatment before
diagnosis of liver tumors. One had a history of treatment with ribavirin and interferon with
no virological response. Subsequently, after the curative treatment, out of the sixteen pa-
tients with HCC and HCV, eight underwent DAA treatment with sofosbuvir/ledipasvir. Of
these, two had recurrence. Of the six patients with HCC and HBV, one was on lamivudine
therapy. Subsequently, none of these were treated with entecavir after curative treatment.
All the patients included in this study, including those with HCC and ethanolic cirrhosis,
were abstinent.

The baseline characteristics of the study population are depicted in Table 1.

3.2. Univariate and Multivariate Analysis of Metabolic Profile
3.2.1. Analysis of Raw Data Based on UHPLC-QTOF-ESI+-MS Peak Intensities

The data released from the UHPLC-QTOF-ESI+-MS analysis were included in matrices
representing the m/z values and peak intensities for each of the more than 300 molecules
separated. After eliminating small signals with S/N values < 10 and molecules with peak
intensities less than 25,000, the number of peaks remained at around 250. Only metabolites
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detected in more than 80% of the samples (n = 154) were subsequently included in the
statistical analysis. The aligned matrix was converted to a .csv file and processed using the
online software Metaboanalyst 5.0.

Table 1. Baseline characteristics of the study population.

HCC (Group HC) Cirrhosis (Group C) p Value
General Data

Number 37 32

Age mean SD * 64.62 (6.29) 55.97 (8.1) <0.001

Sex, no (%) **
Females 10 (27.03) 20 (62.5)
Males 27 (72.97) 11 (37.5) <0.003

Etiology (%) **
HCV 16 (43.24) 32 (100%)
HVB 6 (16.21)

Alcohol 12 (32.4)
Cholestatic 1 (2.7)

NAFLD 2 (5.4) <0.01

Dead (yes), no (%) 13 (35.13) 1 (3.33) <0.001
Laboratory values

ALAT * 37 (21–59) 74.5 (46.25–108.25) 0.015

ASAT * 57 (35–82) 72.5 (52.25–97.75) 0.76

γGT * 61 (33.5–91.5) 60 (42–129) 0.67

Total bilirubin * 1 (0.8–1.6) 1.15 (0.9–1.35) 0.67

Creatinine * 0.73 (0.61–0.95) 0.72 (0.58–0.84) 0.2

Albumin * 3.8 (3.6–4.1) 4.1 (4–4.3) <0.01

Hemoglobin * 14.2 (12.2–15.2) 14.5 (13.7–15.8) 0.06

PMN count * 3.37 (2.5–4.62) 3.11 (2.52–3.95) 0.089

Platelet count* 117 (82–147) 103 (79–144.5) 0.725

Na * 140 (138–142) 140 (139–143.25) 0.3

K * 4.3 (4.07–4.6) 3.9 (3.8–4.3) 0.012

AFP * 10.1 (5.5–58.8) 13.5 (8.33–19.62) 0.016
The severity of Liver Disease

Child–Pugh **
A 31 (74.1%) 32 (100%) <0.01
B 6 (22.2%)

MELD **
≤9 16 (43.24%) 19 (59.38%) 0.23

10–19 1 (2.7%) 13 (40.62 %)
20 (54.5%)

Portal pressure *
HVPG 15 (11–18) 14 (11–16) 0.448

HCC staging
BCLC **

0 4 (11%)
A 15 (40%)
B 18 (49%)

Tumor number **
<3 34 (91.89%)
3–5 3 (8.11%)
>5 0

Milan criteria **
In 19 (51.35%)

Out 18 (48.65%)
* = values expressed as median IQR; ** = values expressed as absolute value + per cents; AFP = alpha-feto protein;
HCC = hepatocellular carcinoma; p = level of significance; HCV = hepatitis C virus; HBV = hepatitis B virus;
NAFLD = non-alcoholic fatty liver disease; ALAT = alanine aminotransferase; ASAT = aspartate aminotransferase;
Γgt = gamma glutamyl transferase; Na = sodium; K = potassium; MELD = model for end stage liver disease;
HVPG = hepatic venous pressure gradient; BCLC = Barcelona clinic liver cancer.
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Table S1 (Supplementary File) includes a list of molecules separated and identified
(n = 154), and their average LC-MS peak intensities and standard deviations (SD). The
m/z values represent [M + 1] where M is the individual molecular mass. Table S2 (Sup-
plementary File) includes a list of the same molecules and their average intensities for the
subgroups HCd (n = 13) vs. HCs (n = 24).

The main classes of molecules are represented by fatty acid derivatives (31), glyc-
erophospholipids and lysoderivates (15 and 27, respectively), diacyl- and monoacyl glyc-
erols and phosphoglycerols (18, 6, and 5 respectively), ceramides and sphingosine deriva-
tives (18), sterols and bile acids (11), and acylcarnitines (11), as well amino acids, choline
derivatives (9) and oxylipins as eicosanoid inflammatory mediators (4). Their relative levels
in the HCC (HC group) vs. cirrhosis group (C), and their values in the HCd group vs.
survivals of the HC group, are presented in Table 2.

Table 2. Metabolites separated and identified in different patient groups (HC, C, HCd, and HCs) and
the ratios of their levels in the groups HC vs. C, and HCd vs. HCs.

m/z HC/C HCd/HCs m/z HC/C HCd/HCs

Steroids, Incl.Bile Acids Fatty Acid Derivatives

419.281 1,25 DiOH cholesterol 6.90 0.96 453.165 Myristyl palmitate 4.12 0.97

391.283 12-Ketodeoxycholic acid 3.24 0.89 313.255 Icosanoic (arahidic) acid C20:0 2.25 0.93

413.265 25-hydroxy vitamin D2 3.06 0.89 331.284 Docosapentenoic acid (C22:5) 2.07 0.95

409.328 Ursocholic acid 1.38 0.9 303.181 Eicosapentenoic acid (C20:5) 1.85 0.86

473.327 3-Sulfodeoxycholic acid 1.36 0.91 425.130 Lauryl palmitate 1.83 1.09

271.264 Estrone 1.17 1.13 325.250 Methyl-7-eicosenoic acid 1.79 0.92

585.268 Cholic acid glucuronide 1.14 1.19 318.291 N-methyl arachidonoyl amine 1.76 1.07

289.159 Testosterone/DHEA 1.14 1.02 397.268 Hexacosanoic acid (C26:0) 1.59 1.02

421.338 Dihomodeoxycholic acid 0.60 0.92 427.390 N-stearoyl arginine 1.23 1.03

369.295 Testosterone sulfate/DHEAS 0.55 0.92 326.354 Oleoyl Ethanolamide 1.17 1.03

273.174 Estradiol 0.50 0.7 350.338 Dihomo-gamma-linolenoyl (C18:3)
Ethanolamine 1.10 1.01

Oxylipins 299.126 2-hydroxy oleic acid (C18:1) 1.06 1.04

353.271 Prostaglandin E2 2.54 0.93 338.341 Docosenamide (C22) 1.02 1.01

267.266 Tetranor 12-HETE 1.15 0.96 324.325 Linoleoyl ethanolamide 1.01 0.95

406.328 15-HETE-GABA 0.49 0.77 341.298 Docosanoic acid (C22:0) 0.94 0.96

383.207 12-Oxo-trihydroxy-leukotriene
B4 0.22 1.06 348.319 O-Arachidonoyl (C20:4, n-6)

Ethanolamine 0.86 1.06

Acyl carnitines 269.217 Heptadecenoic acid (C17:1) 0.65 1.03

414.289 Heptadecanoyl carnitine 3.92 2.47 501.375 Palmitoleyl linolenate 0.55 0.93

290.261 Adipoyl carnitine 2.81 1.09 301.142 Eicosahexaenoic acid (C20:6) 0.45 0.96

316.317 Decanoylcarnitine 1.90 1.1 529.407 Linoleyl linoleate 0.43 1.04

304.295 Pimelyl carnitine 1.78 1.03 285.282 Stearic acid 0.42 1.06

288.266 Octanoyl carnitine 1.66 1.08 295.182 2-Hydroxy linolenic acid (C16:3) 0.40 0.97

230.24 Butenyl carnitine 1.28 1.01 279.160 Linolenic acid (C18:3) 0.33 0.98

332.327 3-hydroxydecanoyl carnitine 1.21 0.99 163.052 Hydroxy adipic acid 0.26 1.18

312.326 Decadienoyl carnitine 1.18 1.01 249.189 Hexadecatetraenoic acid C16:4 0.22 1.05

374.259 Dodecanedioylcarnitine 1.15 0.93 229.131 Myristic acid (C14) 0.21 1.03

388.355 3-Hydroxytetradecanoyl
carnitine 1.09 1.04 257.204 Palmitic acid (C16:0) 0.20 0.93

310.308 Decatrienoyl carnitine 0.98 0.93 339.366 Dimethyl-2-eicosenoic acid (C22) 0.16 1.09

Aminoacid and choline derivatives 245.077 Hydroxy myristic acid (C14) 0.14 1.02

258.265 Glycerophosphocholine 1.69 1.02 305.145 Arahidonic acid (C20:4) 2.83 1.51



J. Clin. Med. 2022, 11, 1292 8 of 20

Table 2. Cont.

m/z HC/C HCd/HCs m/z HC/C HCd/HCs

Steroids, Incl.Bile Acids Fatty Acid Derivatives

166.073 Phenyl alanine 1.10 0.94 415.209 Ascorbyl palmitate 2.94 0.99

183.082 Phosphoryl choline 0.46 0.98 Sphingolipids

161.1 Tryptamine 0.43 0.59 274.265 C16-Sphingosine 1.64 1.07

149.024 Methionine 0.27 0.98 526.518 Ceramide (d18:1/14:0 (2OH)) 1.49 1.05

158.15 Tiglylglycine 0.12 1.08 554.547 Ceramide (d18:1/16:0 (2OH)) 1.10 1.04

171.14 Glyceraldehyde 3-phosphate 0.06 1.04 354.360 C16 Sphinganine 1-P 0.99 1.03

364.346 a-linolenyl choline (C18:3) 0.63 0.96 623.245 Ceramide (d18:1/22:0) 0.88 1

366.374 a-linoleyl choline (C18:2) 0.87 1.09 584.464 Ceramide (d18:0/18:0 (2OH)) 0.63 0.99

Lyso Phospholipids 582.576 Ceramide (d18:1/18:0 (2OH)) 0.61 1.08

558.291 LysoPC (21:4) 2.83 1.07 628.495 Ceramide (t18:0/20:0 (2OH)) 0.58 0.98

522.357 LysoPC (18:1) 2.11 1.06 540.441 Ceramide (d18:0/16:0) 0.58 1

534.286 LysoPE (22:2) 2.08 1.09 672.525 GlycoCeramide (d18:1/14:0) 0.58 0.93

437.191 LysoPA (18:1/0:0) 1.89 0.99 703.574 Sphingomyelin 18:2/16:0 0.50 1

524.37 LysoPC (18:0) 1.68 1.02 496.419 Ceramide (d15:1/16:0) 0.49 0.97

482.338 LysoPE (18:0) 1.54 1.25 596.512 Ceramide (d20:0/18:0) 0.48 1.28

483.121 LysoPA (22:6/0:0) 1.51 1.23 508.459 Ceramide (d18:2/14:0) & isom. 0.47 1.05

510.372 LysoPE (20:0) 1.49 1.21 568.469 Ceramide (d18:0/18:0) 0.45 1.23

480.332 LysoPE (18:1) 1.42 1.18 524.448 Ceramide (d14:1/18:1 (2OH))
isomizom 0.39 1.31

520.342 LysoPC (18:2) 1.41 1.16 612.503 Ceramide (d18:0/20:0 (2OH)) 0.36 1.08

495.297 LysoPA (22:0/0:0) 1.38 0.97 Monoacyl glycerols

546.354 LysoPC (20:3) 1.35 1.06 379.263 MG (20:4/0:0/0:0) 1.45 0.83

491.371 LysoPA (22:2/0:0) 1.25 1.14 359.313 MG (18:0/0:0/0:0) 1.15 0.98

494.329 LysoPC (16:1) 1.22 1.27 381.304 MG (20:3/0:0/0:0) 1.03 1.02

544.341 LysoPC (20:4) 1.22 1.01 357.093 MG (18:1/0:0/0:0) 0.78 1.05

568.342 LysoPC (22:6) 1.11 1.03 403.234 MG (22:6/0:0/0:0) 0.22 0.96

502.299 LysoPE (20:4) 1.09 0.9 355.358 MG (0:0/18:2/0:0) 0.15 1.08

454.294 LysoPE (16:0) 1.08 0.97 Diacyl glycerols

518.325 LysoPC (18:3) 0.98 0.98 643.283 DG (18:0/20:5/0:0) 1.96 0.59

496.342 LysoPC (16:0) 0.9 0.91 591.15 DG (16:0/18:3/0:0) 1.6 1.14

542.323 LysoPC (20:5) 0.88 1.04 609.161 DG (18:1/17:0/0:0) 1.6 1.17

508.359 LysoPE (20:1) 0.74 0.93 631.144 DG (18:4/19:0/0:0) 1.23 1.09

545.402 LysoPI (14:0/0:0) 0.63 1.02 561.403 DG (14:1/18:3/0:0) 1.07 0.93

452.392 LysoPE (16:1) 0.51 0.92 607.251 DG (18:2/17:0/0:0) 1.01 1.03

478.32 LysoPE (18:2) 0.44 0.52 617.259 DG (18:2/18:2/0:0) 0.96 1.16

480.424 Lyso PC (O-16:1/0:0) 0.43 1.42 663.457 DG (20:4/20:5/0:0) 0.91 0.99

Glycerophospholipids 599.247 DG (18:4/17:2/0:0) 0.85 1.07

780.553 PC (36:5) [M + H] 2.05 1.29 601.264 DG (18:3/17:2/0:0) 0.83 1.09

758.568 PC (34:2) [M + H] 1.09 1.01 615.244 DG (18:2/18:3/0:0) 0.77 1.11

816.59 PC (38:2) [M + H] 0.99 1.08 603.22 DG (18:2/17:2/0:0) 0.66 1.2

744.585 PE (36:2) 0.96 1.17 589.428 DG (16:1/18:3/0:0) 0.62 1.01

784.583 PC (36:3) [M + H] 0.95 1.06 513.415 DG (12:0/16:0/0:0) 0.56 1.04

760.582 PC (34:1) [M + H] 0.92 0.98 635.143 DG (18:2/19:0/0:0) 0.48 0.94

734.569 PC (32:0) [M + H] 0.90 1.1 633.147 DG (18:3/19:0/0:0) 0.46 0.9
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Table 2. Cont.

m/z HC/C HCd/HCs m/z HC/C HCd/HCs

Steroids, Incl.Bile Acids Fatty Acid Derivatives

810.596 PC (36:1) [M + Na] 0.83 1.41 579.294 DG (16:1/17:1/0:0) 0.37 0.94

808.582 PC (36:2) [M + Na] 0.80 1.24 665.582 DG (20:3/20:5/0:0) 0.07 1.36

633.254 PA (O-16:0/16:1) 0.79 1.08 Phosphoglycerols

786.602 PC (36:2) [M + H] 0.78 1.02 509.322 PG (18:2/0:0) 1.32 0.78

806.568 PC (36:3) [M + Na] 0.76 0.93 483.347 PG (16:1/0:0) 0.88 0.81

782.564 PC (36:4)[M + H] 0.69 1.14 485.376 PG (16:0/0:0) 0.48 1.2

804.55 PC (36:4) [M + Na] 0.24 1 709.164 PG (O-16:0/16:0) 0.26 0.85

704.21 PC (30:1) 0.24 0.83 707.167 PG (O-16:0/16:1) 0.26 0.84

702.213 PC (30:2) 0.23 0.83

3.2.2. Discrimination Analysis: PCA and PLSDA for HC vs. C Groups

First, the unsupervised PCA was conducted, showing an explained co-variance of
40.6% for the first two components in the HC vs. C groups (data not shown). The discrimi-
nation between the HC and C groups was better represented by PLSDA (with a co-variance
of 40.1%) (Figure 1a) and the VIP scores derived from the PLSDA loadings showed the first
15 molecules to be considered as putative biomarkers of discrimination between the two
groups (Figure 1b). The cross-validation algorithm showed high accuracy (close to one), a
high R2 and significantly high Q2 values > 0.95. These data indicated good predictability
for this model.
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Figure 1. (a) PLSDA plot with samples’ identification, showing the discrimination between C and
HC groups. (b) VIP scores derived from PLSDA loadings.

Based on the PLSDA loadings graphic and VIP scores, there were noticeably increased
levels of six molecules in the HC group: 1,25-dihydroxy cholesterol (m/z = 419.281), myristyl
palmitate (m/z = 453.165), 25-hydroxy vitamin D2 (m/z = 413.265), 12-ketodeoxycholic
acid (m/z = 391.283), lysoPC (21:4) (m/z = 558.291), and lysoPE (22:2) (m/z = 534.286).
Meanwhile, decreases in the HC group were observed for ceramide (d18:0/20:0 (2OH))
(m/z = 612.503), MG (0:0/18:2/0:0) (m/z = 355.358), decenoic acid C10 (m/z = 171.140),
hydroxy adipic acid (m/z = 163.052), PG (O-16:0/16:0) (m/z = 709.164), DG (12:0/16:0/0:0)
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(m/z = 513.415), lysoPE (20:1) (m/z = 508.459), and dimethyl-2-eicosenoic acid (m/z = 339.366).

Table 3 represents the data released from the t-test and fold-change analysis, showing
the tendency of molecules to evolve between HC and C groups.

Table 3. The m/z values and identification of molecules with the most significant differences between
the HC and C groups, based on the p values (from t-tests), fold-change, and Log2FC showing the
tendency of evolution in the HC vs. C groups. I—Increase; D—decrease.

m/z Identification p Value FC Log2FC Tendency HC vs. C

419.281 1,25-dihydroxy cholesterol 5.94 × 10−26 5.98 2.5805 I

453.165 Myristyl palmitate 1.45 × 10−24 3.35 1.7482 I

391.283 12-keto deoxycholic acid 2.36 × 10−18 2.61 1.385 I

534.286 lysoPE (22:2) 3.82 × 10−18 2.03 1.1245 I

558.291 LysoPC (21:4) 5.62 × 10−17 2.17 1.1177 I

413.265 25-hydroxy vitamin D2 6.06 × 10−19 2.48 1.3153 I

355.358 MG (18:2/0:0/0:0) 1.34 × 10−18 0.12 −3.0437 D

612.503 Ceramide (d18:0/20:0 (2OH)) 3.56 × 10−19 0.28 −1.8195 D

171.140 Decenoic acid (C10:0) 2.40 × 10−17 0.04 −4.4131 D
707.167 PG (O-16:0/16:1) 1.83 × 10−16 0.20 −2.3198 D
163.052 Hydroxy adipic acid 4.27 × 10−16 0.21 −2.22 D
709.164 PG (O-16:0/16:0) 8.98 × 10−16 0.20 −2.3214 D

513.415 PG (18:0/0:0) 1.04 × 10−15 0.44 −1.1718 D
508.459 Ceramide (d18:2/14:0) & isom 1.42 × 10−15 0.37 −1.4338 D

339.366 Dimethyl eicosanoic acid
(C20:1) 1.67 × 10−15 0.13 −2.8875 D

415.209 Ascorbyl palmitate 3.74 × 10−13 2.50 1.3232 D

702.213 PC (30:2) 1.31 × 10−14 0.17 −2.5291 D

704.210 PC (30:1) 6.58 × 10−15 0.18 −2.4645 D
596.512 Cer (d18:0/20:0) and isom 2.41 × 10−13 0.37 −1.3964 D
524.448 Ceramide (d18:1/15:0) 7.40 × 10−13 0.30 −1.6999 D

568.459 Ceramide (d18:0/18:0) 1.37 × 10−12 0.35 −1.4968 D
529.407 Linoleyl linoleate & isomers 1.72 × 10−14 0.33 −1.5771 D

496.419 Ceramide (d15:1/16:0) 1.04 × 10−12 0.41 −1.2777 D

149.024 Methionine 2.63 × 10−13 0.21 −2.2327 D

249.189 C16:4 fatty acid 2.46 × 10−15 0.18 −2.4734 D

257.204 Palmitic acid C16:0 4.62 × 10−12 0.15 −2.7155 D

383.207 16,16-dimethyl-PGE1 4.46 × 10−4 0.15 −2.6836 D

3.2.3. Random Forest Analysis, Heatmaps and Biomarker Analysis for HC vs. C Groups

Figure 2a,b represent the graphics of random forest analysis, and heatmaps showing
the illustration of differences between the samples and groups.
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Figure 2. (a) Random forest graph showing the mean decrease in accuracy for the molecules as
putative biomarkers of differentiation between the HC and C groups. (b) Heatmap showing the
clusters and molecules responsible for the differentiation between the HC and C group.

Biomarker analysis allowed the calculation of sensitivity versus specificity for each
molecule, represented by the AUC values in the ROC curves. Table 4 shows the m/z
values and molecule identifications, the AUC values higher than 0.989, the Log2FC and
p-values of each molecule considered as a potential biomarker, and their variation in the
HC vs. C groups. Simultaneously, Figure 3 illustrates the AUROC values for the six most
representative metabolites in our study.

Table 4. The m/z values and molecules with an AUC >0.989, where the most significant p-values
show the variations between the HC and C groups. The value and sign of the Log2FC score show
the decrease (D) or increase (I) of molecule variation (negative values are associated with increases
in molecules in the HC group, and positive values with decreases in the HC group). I—increase;
D—decrease.

m/z Identification p Value
(t-Tests) Log2 FC Variation (HC vs. C)

419.281 1,25 dihydroxy Cholesterol 1.5071 × 10−33 −2.138 I
453.165 Myristyl palmitate 1.4840 × 10−29 −2.041 I
558.291 LysoPC (21:4) 9.5558 × 10−24 −1.501 I
534.286 LysoPE (22:2) 7.8846 × 10−18 −1.056 I

513.415 PG (18:0/0:0) 5.1513 × 10−28 0.838 D
508.459 Ceramide (d18:2/14:0) & isom 1.2346 × 10−32 1.092 D
633.147 DG (18:3/19:0/0:0)[iso2] 5.7123 × 10−13 1.113 D
612.503 Ceramide (d18:0/20:0 (2OH)) 2.3868 × 10−28 1.481 D
709.164 PG (O-16:0/16:0) 2.9093 × 10−34 1.953 D

707.167 PG (O-16:0/16:1) 6.0675 × 10−40 1.953 D
704.21 PC (30:1) 2.3366 × 10−43 2.079 D
702.213 PC (30:2) 2.4668 × 10−36 2.142 D
339.366 Dimethyl eicosanoic acid (C20:1) 9.6275 × 10−15 2.602 D
355.358 MG (0:0/18:2/0:0) 8.10591 × 10−19 2.750 D
171.14 Decenoic acid (C10:0) 5.9068 × 10−22 4.051 D
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(m/z = 558.291), lysoPE (22:2) (m/z = 534.286), and arachidonic acid (m/z = 305.145).

3.2.4. Correlations between Lipid Metabolites, and Clinical and Biological Characteristics

The relation of different lipid metabolites and clinical and biological parameters was
assessed using Spearman correlations. For each HCC patient referred for surgery, portal
hypertension was measured by hepatic venous portal flow gradient (HVPG). Moreover,
it has been established that values above 10 mmHg, equivalent to clinically significant
portal hypertension, are associated with post hepatectomy liver failure [19]. Since HVPG
measurement is not widely available and is considered an invasive procedure, the pursuit of
finding biomarkers to identify patients at risk is paramount. Using Spearman correlations,
we have found out that, in HCC patients who underwent surgery, C16 sphingosine tends
to predict clinically significant portal hypertension (p = 0.06, R = −0.05), and sphingosine-1
phosphate correlates with HVPG.
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A total of 22 out of 37 HCC patients (59.45%) presented tumor recurrence at five year
follow-up, after the initial diagnosis and treatment. Dismally, no metabolite could defini-
tively predict tumor relapse. Since C16-sphingosine tends to correlate, and sphingosine-1
phosphate correlates, with HVPG, we can extrapolate and attest that C16-sphingosine and
sphingosine-1 phosphate are associated with recurrence and post-hepatectomy liver failure.
More mathematical models are needed which include metabolites to determine the patients
at risk.

We have pointed out that 1,25-dihydroxy cholesterol (m/z = 419.281), myristyl palmi-
tate (m/z = 453.165), 12-ketodeoxycholic acid (m/z = 391.283), lysoPC (21:4) (m/z = 558.291),
and lysoPE (22:2) (m/z = 534.286) are putative biomarkers that differentiate HCC from
cirrhosis. Along these lines, we have investigated whether these biomarkers have a role in
decompensation and prognosis. The deterioration of liver function in a patient with cirrho-
sis is characterized by jaundice, ascites, hepatic encephalopathy, hepatorenal syndrome,
or variceal bleeding. In total, among the included patients, eight developed ascites, three
developed variceal bleeding, and one hepatic encephalopathy. In a univariate analysis
among the HVPG (OR = 0.82, 95% CI: 0.8–1.24, p < 0.005) and MELD score (OR = 0.74,
95% CI: 0.54–0.93), arachidonic acid was the only metabolite to predict decompensation
(OR = 0.1, 95% CI: 0–0.16, p < 0.005). In the multivariate analysis, unfortunately, no variable
was associated with decompensation.

3.2.5. Univariate Analysis to Predict the Death (Comparison of HCd vs. HCs Groups)

To identify which patients were at risk, Cox regression analysis was applied to further
evaluate the predictive capacity of critical metabolites and assess the overall survival of
HCC patients. During a follow-up period of five years, 13 (35.13%) out of 37 patients died,
and, among them, 8 had developed a decompensation episode. The survival of patients
with all lipid parameters as single variables was examined, using the Cox proportional
hazard method for death. The highest HR for death was found for myristyl palmitate
(HR = 16.67), p = 0.005 (Table 3). Furthermore, as adjusting variables in the multivariate
Cox regression models, MELD and HVPG were added as predictors for survival. Ad-
justing for MELD score and HVPG in a multivariate analysis (Table 5) we have found
that arachidonic acid (HR = 12.08, 95% CI: 2.95–49.93, p < 0.005), 1,25-dihydroxy choles-
terol (HR = 10.61, 95% CI: 1.37–82.3, p < 0.005), myristyl palmitate (HR = 31.63, 95% CI:
1.51–661.66, p < 0.005), 12-keto deoxycholic acid (HR = 21.98, 95% CI: 1.39–121.39, p < 0.005),
lysoPC (21:4) (HR = 10.46, 95% CI: 1.41–77.54, p < 0.005), and lysoPE (22:2) (HR = 2.37, 95%
CI: 1.07–5.24, p < 0.005), are independent markers of survival.

Table 5. Unadjusted hazard ratio with Cox proportional hazard method for death in lipid HCC
metabolism and multivariate analysis of lipid components when adjusted to MELD and HVPG.

Univariate Analysis Multivariate Analysis

Parameter HR 95% CI p HR 95%CI p

Arachidonic acid 1.56 (0.52–4.69) 0.429 12.08 (2.95–49.93) 0.027
1,25 dihydroxy Cholesterol 5.29 (1.86–15.08) 0.002 10.61 (1.37–82.3) 0.024

Myristyl palmitate 16.67 (2.3–120.69) 0.005 31.63 (1.51–661.66) 0.026
12-keto deoxycholic acid 4.96 (1.45–17) 0.011 12.98 (1.39–121.39) 0.025

LysoPC (21:4) 4.86 (1.81–13.01) 0.002 10.46 (1.41–77.54) 0.022
LysoPE (22:2) 1.54 (1.16–2.03) 0.002 2.37 (1.07–5.24) 0.032

MELD = model for end-stage liver disease; HVPG = hepatic venous pressure gradient; lysoPC = lysophosphatidyl-
choline; lysoPE = lysophosphatidylethanolamine.

3.2.6. Multivariate Analysis for HCd vs. HC Groups

Figure 4 shows the PLSDA plot, which reflects the discrimination between HCd and
HCs (marked HC) groups (a), and the molecules with higher VIP scores derived from
PLSDA loadings.
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Figure 5. (a) Random forest graph showing the mean decrease in accuracy for the molecules as
putative biomarkers of differentiation between the HCd and HCs groups. (b) Heatmap showing the
clusters and molecules responsible for the differentiation between the HCd and HCs groups.

Table 6 shows the first 20 molecules with VIP scores higher than 1.5 and MDA values
higher than 0.01, and the AUC values.
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Table 6. Molecules with VIP scores > 1.5 (see Figure 3) and MDA values > 0.01 (see Figure 4).

m/z Identification AUC p-Value HCd vs. HC m/z Identification AUC p-Value HCd vs. HC

702.213 PC (30:2) 0.820 0.027 D 391.283 12-Ketodeoxycholic acid 0.714 0.064 D

704.210 PC (30:1) 0.807 0.017 D 413.265 25-hydroxy vitamin D2 0.692 0.072 D

707.167 PG (O-16:0/16:1) 0.804 0.025 D 273.174 Estradiol 0.692 0.061 D
709.164 PG (O-16:0/16:0) 0.791 0.025 D 483.121 PG (16:1/0:0) 0.684 0.064 I

509.322 PG (18:2/0:0) 0.772 0.017 D 501.375 Palmitoleyl linolenate 0.682 0.062 D

810.596 PC (36:1) 0.762 0.034 I 633.254 PA (O-16:0/16:1) 0.639 0.085 D

494.329 LysoPC (16:1) 0.761 0.017 I 591.150 DG (16:0/18:3/0:0) 0.637 0.127 I

414.289 Heptadecanoyl carnitine 0.642 0.046 I 496.342 LysoPC (16:0) 0.634 0.139 D

672.525 GlycoCeramide
(d18:1/14:0) 0.631 0.160 D 631.144 DG (18:4/19:0/0:0) 0.625 0.240 I

784.583 PC (36:3) <0.600 >0.05 I 310.308 Decatrienoyl carnitine <0.600 >0.05 D

The data obtained highlights that arachidonic acid, 1,25-dihydroxy cholesterol myristyl
palmitate, 12-ketodeoxycholic acid, lysoPC (21:4), and lysoPE (22:2) may predict HCC mor-
tality and recurrence, and constitute important biomarkers. Moreover, 12-ketodeoxycholic
acid levels seem to decrease for HCC patients at risk of death, and thus might represent an
important parameter.

4. Discussion

The early detection of hepatocellular carcinoma and the identification of prognostic
factors are key to personalized medicine to improve patient outcomes. Along these lines,
the main objective of our study was to identify new biomarkers for diagnosing early
hepatocellular carcinoma and to identify which patients are at risk of developing tumor
recurrence, or even death. Therefore, we conducted an untargeted metabolomics study
emphasizing lipid metabolites in 69 European patients—32 compensated cirrhotic patients
without HCC (controls) and 37 compensated cirrhotic patients with early HCC (cases)
that underwent curative treatment (surgery or ablation), and have followed up with these
patients for almost four years.

The AFP values did not show any differences between HCC and cirrhosis patients,
most likely due to both groups’ compensated underlying liver disease. Therefore, AFP
is an imperfect surveillance tool making it imperative for the hepatology and oncology
community to find a reasonably suitable hepatic cancer biomarker. Ultra-high-performance
liquid chromatography coupled with electrospray ionization quadrupole time-of-flight
mass spectrometry (UHPLC-ESI+-QTOF-MS) revealed important serum biomarkers that
differentiate HCC patients from cirrhotic controls. The present study has identified different
lipid molecules involved in fatty acid, glycerophospholipid, sphingolipid, and acylglycerol
metabolism as putative biomarkers for differentiating cirrhosis and HCC, with AUC values
over 0.900. Moreover, for the first time, we have identified metabolites that differentiate
the deceased HCC patient from those who survived. Hence, we report two types of
phosphocholines (PC (30:2); PC (30:1)) with AUROCs of 0.820 and 0.807, respectively, that
are increased in early HCC, with levels that drop when tumors progress. Indeed, several
studies have reported changes in gene expression and enzyme activity that led to altered PC
synthesis in cancer, which contributes to tumorigenesis, while other studies have revealed
oscillating PC expression in HCC patients [20,21]. To our knowledge, the present study
contrasts and compares the expression of PC metabolites for the first time between early
HCC patients who survived curative treatment and those who died. An emphasis on PC
metabolism in the future might bring new treatment options in oncology.

Based on the PLSDA loadings graphics and VIP scores, our study identified several
metabolites increased in the HCC group compared to the cirrhotic controls, depicted in
Figure 5. The lipid metabolites with the most increased expression were attributed to
1,25-dihydroxy cholesterol, 25-hydroxy vitamin D, myristyl palmitate, 12-ketodeoxycholic
acid, lysoPC (21:4), and lysoPE (22:2). Cholesterol plays an intricate role in liver tumorigen-
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esis and supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in
mice and humans [22]. Moreover, it seems that HMG-CoA reductase, a cornerstone enzyme
of cholesterol synthesis and the target of statins, is upregulated in human HCC samples
and retrospective studies suggest that the use of statins might be associated with a reduced
risk of HCC development [23]. Our study found out that 1,25-dihydroxy cholesterol is
upregulated by almost six times relative to cirrhotic controls.

Progressing into the lipid maze, the expression of 25-hydroxy vitamin D is a matter of
debate. Undoubtedly, low levels of vitamin D are associated with increased mortality in
chronic liver disease. In contrast, its increased expression in HCC serum in some studies
has been demonstrated to have an antitumoral role, and, in other studies, was associ-
ated with tumor progression [24–26]. Bile acids, phosphatidyl-choline, and phosphatidyl-
ethanolamine metabolites also play a dual role in cancer biology [17,20,27]. Although
our study determines minuscule pieces from the puzzle of lipid biology, 1,25-dihydroxy
cholesterol, myristyl palmitate, 12-keto deoxycholic acid, lysoPC (21:4), and lysoPE (22:2)
represent important independent markers of survival in multivariate analysis, when adjust-
ing for MELD score and portosystemic gradient. Thus, the next step for our study would
be to determine a mathematical model encompassing the metabolites mentioned above,
and to apply it to other cohorts of cirrhosis and liver cancer to determine which patients
are at risk.

Figure 6 represents the general variations in specific molecules between cirrhosis
versus early hepatocellular carcinoma.
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cirrhosis versus early hepatocellular carcinoma.

In our study, we have revealed that most ceramides are expressed at lower levels com-
pared to cirrhotic patients. This is most likely due to a depletion of ceramide content during
transformation into bioactive molecules with protumor roles. Takashima, Y. and Li, Z. have
confirmed these arguments and state that ceramide metabolism is deregulated in primary
liver cancer [28,29]. Nonetheless, we have conceded that sphingolipid family members
discriminate between HCC and cirrhosis, and might represent excellent biomarkers far
better than AFP.

Apart from being an essential player in stimulating the apoptosis of tumor cells,
chemotherapy and ionizing radiation exert their effects through ceramides, a fact demon-
strated by the increased levels of ceramides after exposure to those procedures [30]. There-
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fore, ceramides constitute crucial cancer treatment targets or adjuvant therapies to existing
chemotherapies [31]. Since we have obtained increased levels of many ceramides in cir-
rhosis and decreased levels in HCC patients, we believe that, in future, it would be a
cornerstone to determine the cut-off values of ceramides to pinpoint the high-risk moment
of developing primary liver cancer. Along these lines, large cohort studies are needed
which focus on this direction. Studies attest that S1P is increased in the serum of HCC pa-
tients [13]. There is an S1P axis, which refers to all the molecules involved in its metabolism
and its receptors or other intracellular targets. S1P is produced (inside the cell) by the
phosphorylation of sphingosine, a reaction catalyzed by two sphingosine kinases: SPHK1
and SPHK2. SPHK1 is of great importance between these two kinases, because its increased
activity stimulates cell growth and inhibits apoptosis. Once activated inside the cell, S1P
can act on intracellular targets or be secreted in the interstitial area and interact with cell
surface receptors, a process known as “inside-out” signaling. The importance of this axis
lies in the fact that its components can be therapeutic targets in cancer treatment. For exam-
ple, monoclonal antibodies directed against S1P have been synthesized (sonepcizumab),
alongside SPHK1 inhibitors, and various agonists and antagonists of the S1P receptors
(S1PRs), and are in several phases of clinical trials [14]. Although we obtained results in
contrast with those in the literature, we consider that the low level of S1P obtained in our
patients with HCC is due to the presence of compensated underlying liver disease. It is
likely that S1P increases in more advanced stages of cirrhosis or tumor progression.

There is scarce data regarding the role of lipids as prognostic markers in HCC. One
study from 2019 from a French group revealed elevated concentrations of phosphatidyl-
choline (PC) 16:0/16:1 (p = 0.0180), PC 16:0/16:0 (p = 0.0327), PC 16:0/18:1 (p = 0.0264) and
sphingomyelin (SM) 18:2/24:1 (p = 0.0379), and low concentrations of lyso-phosphatidyl-
choline 20:4 (0.0093) and plasmalogen-phosphatidyl-ethanolamine (LysoPE) 16:0/20:4
(p = 0.0463), LysoPE 18:0/20:4 (p = 0.0077), LysoPE 18:0/20:5 (p = 0.0163), and LysoPE
18:0/20:3 (p = 0.0463) as good biomarkers for HCC versus cirrhosis, as well as two ce-
ramides (ceramide d18:1/26:0 and ceramide d18:1/24:1) that were associated with the risk
of death in one and/or three years [20]. Moreover, in a Chinese cohort, it seems that changes
in polyunsaturated-eicosapentaenoic acid, docosahexaenoic acid, and linolenic acid are
associated with early tumor recurrence after hepatectomy. In addition, the researchers also
found that 85% of early recurrent HCCs can be predicted with an AUROC equal to 0.95 in
a training set with the combination of methionine, GCDCA, and cholesterol sulfate [32].
Another Chinese study identified, after univariate and multivariate Cox regression, the
combined retinol and retinal panel as an independent predictor for HCC, and showed that
the low expression of the panel was correlated with decreased survival after hepatectomy.
Retinol and retinal discriminate HCC from cirrhosis with an AUROC of 0.996 and 0.994
in tissue, and 0.812 and 0.744 in serum, respectively [33]. No metabolite identified in
our study could determine tumor relapse. Nevertheless, since C16-sphinganine tends to
correlate, and sphingosine-1 phosphate correlates, with HVPG, we can extrapolate and
attest that C16-sphinganine and sphingosine-1 phosphate are associated with recurrence
and post-hepatectomy liver failure. Arachidonic acid was the only metabolite to predict
decompensation. In the multivariate analysis, dismally, no variable was associated with
decompensation. When adjusting for MELD score and HVPG in a multivariate analysis, we
report for the first time that the increased expression of 1,25-dihydroxy cholesterol, myristyl
palmitate, 12-keto deoxycholic acid, lysoPC (21:4), and lysoPE (22:2) are independent
markers of survival.

Although most studies emphasize serum metabolites, other authors have performed
metabolomics on tissues or other biological fluids as follows. One study from China re-
ported that the retinol metabolic signature determined from liver biopsy and serum had
considerable diagnostic and prognostic value for identifying HCC patients who would bene-
fit from prompt therapy. Other authors claim that tissue metabolomics yields a more precise
biochemical information pattern when searching for tumoral energy metabolites [33].
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In the last few years, the concept of prognostic scores has been reported in oncol-
ogy. Different mathematical models comprising biochemical analyses were released to
assess tumor relapse or identify patients at risk of developing complications. Naturally,
metabolomics also gained terrain. In 2020, Wang Q et al. reported a global prognostic
index (GPI) score for operated HCC patients that combines a metabolite panel with satellite
nodes for assessing overall survival. Compared with the current clinical classification
systems, including the Barcelona clinic liver cancer (BCLC) stage, the tumor node metas-
tasis (TNM) stage, and the albumin-bilirubin (ALBI) grade, the GPI score presented a
notable performance according to the time-dependent receiver operating, and might stand
as a helpful tool to stratify the HCC prognostic risk after surgery [34]. Other scientists
used gas chromatography-mass spectrometry (GC-MS)-based metabolomics, identifying
phenylalanine and galactose and including them in two mathematical models to predict the
risk of mortality, recurrence, and metastasis with essential results. Moreover, some reports
attest to different discriminatory biomarkers between HCC and cirrhosis when performing
metabolomics protocols from urine or feces [35,36].

Our study presents several limitations. The number of patients was too small to
conduct a complete characterization of biomarkers. These results need to be confirmed in a
more significant number of patients. Additionally, more studies with European cohorts
need to be performed, as we have compared our results with Chinese patients and there
may be differences. Another limitation of our study is the inclusion of HCC patients with
different etiologies of the underlying liver disease. Although the underlying etiology in
most cases is chronic viral hepatitis C as in the control group, patients with other etiologies
have been added to include a sufficient number of patients. One final limitation of our study
is the inclusion of 18 patients at the BCLC B stage. Although these patients are classified as
at an intermediate stage, they have a preserved liver function and have undergone curative
treatments, such as surgery and percutaneous ablation.

Overall, while many metabolites appear to display excellent diagnostic performances
in HCC, reproducibility stands as a significant issue to address. In the future, it will
be paramount to include patients with decompensated cirrhosis, and intermediary and
advanced HCC to broaden the metabolite spectrum of liver disease. In addition, in the
literature, we have seen that validation cohorts have a minimal number of studies, most of
them retrospective and with no statistical adjustments for important confounding variables
such as smoking status, alcohol consumption, lifestyle habits, physical activity, body mass
index, or waist circumference. With this in mind, given the rise of HCC developed on
non-alcoholic fatty liver disease, it would be far-reaching to conduct a different study
assessing this matter. Lipid metabolism is the metabolic hub of NAFLD with bioactive
sphingolipids, as a hallmark of NAFLD and NAFLD-derived HCC [37].

5. Conclusions

Due to the high incidence of cancer, and particularly hepatocellular carcinoma, the
search for non-invasive biomarkers is crucial in modern medicine. Such markers should
be useful in the very early diagnosis of the disease, and in determining the prognosis
and monitoring of the disease course and treatment. Moreover, it would be interesting to
perform a metabolomic study on patients with hepatic cancer that underwent ablation,
trans-arterial chemoembolization, or required systemic treatment to find out which are the
best candidates for the treatment, and to monitor the patients appropriately.

In conclusion, our study reveals missing pieces of the lipid puzzle that not only differ-
entiate compensated cirrhosis and early hepatocellular carcinoma, but also identify patients
at risk. Specifically, it was determined for the first time that arachidonic acid, myristyl-
palmitate, and the family members of phosphatidyl-choline are markers of survival, and
might constitute future prognostic biomarkers in a personalized and minimally invasive
medicine practice. We believe that by navigating the old maze of lipids discovered years
ago, we could find answers to current struggles in hepatology and oncology.



J. Clin. Med. 2022, 11, 1292 19 of 20

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm11051292/s1, Table S1: Molecules separated and identified
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[M + 1] values where M- molecular mass; Table S2: Molecules separated and identified (n = 154) by
LC-MS: average peak intensities (Id, I), standard deviations (SDd, SD)s for group HCd (n = 13) vs
HCs (n = 24). The m/z values represent [M + 1] values where M- molecular mass.
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