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Abstract
Efficient information coding (EIC) is a universal biological
framework rooted in the fundamental principle that system
responses should match their natural stimulus statistics for
maximizing environmental information. Quantitatively
assessed through information theory, such adaptation to the
environment occurs at all biological levels and timescales. The
context dependence of environmental stimuli and the need for
stable adaptations make EIC a daunting task. We argue that
biological complexity is the principal architect that subserves
deft execution of stable EIC. Complexity in a system is char-
acterized by several functionally segregated subsystems that
show a high degree of functional integration when they interact
with each other. Complex biological systems manifest hetero-
geneities and degeneracy, wherein structurally different sub-
systems could interact to yield the same functional outcome.
We argue that complex systems offer several choices that
effectively implement EIC and homeostasis for each of the
different contexts encountered by the system.
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Introduction
The incredible similarity between pearl white and cotton
white and the consequent inability to choose one can be
discomforting. Nonetheless, an experienced painter who
has been regularly exposed to the palette of colors can
distinguish them unmistakably well. Such adaptation in

responses dependent on the statistical prevalence of
specific stimuli can be explained by a fundamental
www.sciencedirect.com
principle called efficient information coding (EIC) (see
Box 1 for definitions of important terms). Across a range of
neural scales and systems, EIC is accomplished by adap-
tively matching the response properties of the system to
the natural statistics of the stimuli [1e5]. Information-
theoretic analyses [6] provide a strong substrate for
formalizing and assessing EIC from the perspective of
maximizing stimulus information in system responses.

There are several reasons why EIC is a daunting task.
First, the response properties of the system must
continually match context-dependent and time-varying
stimulus prevalence. Second, multiple timescales asso-
ciated with various stimulus attributes underscore a need
to distinguish temporary environmental fluctuations from
persistent changes. Third, adaptations should maintain
system stability by recruiting concomitant homeostatic
processes that do not hamper EIC. Finally, it is critical to
recognize that the rules governing the emergence of EIC

could be distinct across scales. Despite these, there is a
growing body of evidence that the nervous system
robustly accomplishes EIC across all scales.

In this review, we present a unified synthesis with illus-
trative examples from several species and multiple scales
of the nervous system to first demonstrate the ubiquity of
EIC. We also build a systematic case that the complexity
of the brain is pivotal in its ability to meet the formidable
challenges faced in achievingmultiscale EIC. Complexity
in a system is characterized by several functionally

segregated subsystems that manifest a high degree of
functional integration when they interact with each other
[17]. A characteristic feature of such complex systems is
their ability to show degeneracy, whereby structurally
different subsystems could interact to yield the same
functional outcome [17]. Here, we postulate that de-
generacy offers a substrate for simultaneously achieving
EIC and homeostasis (Box 1). Our postulate follows from
the several degrees of freedom available to a complex
system, in terms of the disparate interactions among
different subsystems that yield the same functional goal

of stable EIC.
EIC spans multiple scales
Biological signals can be assessed at multiple hierarchical
scales, ranging from molecular-to systems-level readouts.
While the activity in a receptor population conveys a
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Box 1: Definitions of important terms.

Efficient information coding: An overarching principle that states that systems can efficiently process their inputs by matching their response
properties to their natural stimulus statistics, together maximizing information transfer [1–16]. Although certain definitions of efficient coding also
encompass energy efficiency, our focus here is exclusively on information transfer efficiency.

Complex system: A system in which smaller parts are functionally segregated or differentiated across a diversity of functions but shows
increasing degrees of functional integration when more and more of its parts interact [17].

Degeneracy: The ability of elements that are structurally different to perform the same function or yield the same output [17]. Degeneracy has
been shown to be prevalent across all scales of neural systems [18–24].

Homeostasis: Homeostasis is a self-regulating process by which biological systems tend to maintain stability while adjusting to conditions that
are optimal for survival.

Structural redundancy: Structural redundancy in systems refers to structurally identical elements performing the same functions to ensure fail
safe operation wherein an identical substitute executes the function in an identical manner when the original component is unable to. Structural
redundancy is fundamentally different from degeneracy, where structurally distinct elements are involved in executing the same function. While
redundancy can exist even in simple systems, degeneracy is defined to be emergent in complex systems as a consequence of functional
integration of functionally segregated structures/subsystems. Structural redundancy does not offer several advantages of degeneracy, including
evolvability and robustness to component-specific perturbations [17,20,22].

Information redundancy: Information redundancy in encoding refers to information being redundantly represented by different neurons or
networks of neurons [1,2,5]. Information redundancy hampers efficiency, thus making redundancy reduction as an important aspect of
achieving EIC.

2 Systems Neuroscience
subcellular response to external stimuli involving its ag-
onists, population activity of neurons constitutes a
systems-level code of sensory stimuli. Physiology across

scales could be characterized by a well-defined pair of
natural stimulus and response, thereby extending the
concept of natural stimulus statistics to all biological
scales. Such extensions have facilitated the evaluation of
EIC as a match between natural stimulus statistics and
system responses across all scales, while also accounting
for naturally observed dynamics of stimulus attributes
[6e9,16,25e27] (Figure 1).

Exploration of EIC at the systems scale traces its origin to
the path-breaking frameworks proposed by Attneave [1]

and Barlow [2]. The elegant observation that the
response of a neuron in the blowfly visual system
matched the cumulative distribution of natural stimuli
(luminance contrasts) [3e5] constituted an important
step for the EIC framework. Ever since, EIC achieved
through thematch between neuronal response properties
and natural stimulus statistics has been demonstrated
across visual [7,9,11,15,28e32], auditory (Figure 1a)
[12,13,33], olfactory [10,34,35], and electrosensory
[36,37] modalities. Importantly, although the EIC
framework was proposed from a sensory neuroscience

perspective, several studies provide lines of evidence for
its manifestation in brain regions implicated in cognitive
functions such as spatial navigation [14,38,39], value
estimation and decision making [40e42]. More generally,
EIC could explain states of other parts of the nervous
Current Opinion in Neurobiology 2022, 76:102620
system involved in learning complex task paradigms,
perception, and motor command execution [43e47].

Information from the external world is typically
represented by action-potential firing properties of
individual neurons, through changes in firing fre-
quencies and/or the timing of action potentials. The
parameters intrinsic to individual neurons (morphology,
ion-channel, and synaptic distributions) critically
govern their ability to generate specific patterns or
rates of action potentials. Alterations to single neuron
properties result in massive changes to information
transfer across individual neurons, even if the afferent
information impinging on their synapses remain un-

changed [14,38,48,49]. For instance, changes limited to
ion-channel distributions critically alter the efficiency
of spatial information transfer through the rate [38] or
phase [14] codes in place cells. Therefore, studies
analyzing the efficiency of information transfer in
neural responses to external stimuli must account for
the physiology of individual neurons as a critical cog in
the transformation of natural stimulus statistics to a
useable dynamic range of responses [14,38,50,51].

At the neuronal scale, EIC implies a match between

single-neuron response properties and the statistics of
different attributes of the impinging network activity
[50,52e56]. In achieving EIC, single neurons adaptively
tune their intrinsic properties (including ion-channel
conductances) to match their response properties to
www.sciencedirect.com
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Figure 1

Efficient information coding across different scales of analysis. (a) Systems scale efficient coding. Left, audio waveforms depicting human vocali-
zation of the phrases ‘efficient coding’, ‘degeneracy’, and ‘natural statistics’ as representative examples of natural stimuli processed by the auditory system.
Center, each of the different curves represent the response properties of different neurons in the auditory system. Plotted is the minimal intensity of auditory
pure tones at different frequencies required to elicit a neuronal response. The threshold is minimum at the respective characteristic frequency for each
neuron, with increases observed on either side. Different neurons respond maximally to different characteristic frequencies, together spanning the range of
natural auditory stimuli. Right, dynamical filters that were derived from natural sound statistics matched with the response properties of auditory neurons
[12,13]. (b) Cellular scale efficient coding. Left, illustration of extracellular (top) and intracellular (bottom) waveforms, depicting naturally occurring inputs to
rodent hippocampal neurons as the animal traversed a linear arena [14,48], manifesting pronounced theta-frequency oscillations. Center, the response
properties of neurons in the hippocampal region resemble a band-pass filter, with peak response in the theta-frequency range [53]. Right, dynamical filters
derived as the spike-triggered average manifest theta-band characteristic frequency [58]. Inset shows the magnitude spectrum of the spike-triggered average
. (c) Molecular scale efficient coding. Left, a synaptic structure showing vesicular release and postsynaptic receptors. The histogram depicts the distribution
of the neurotransmitter concentration in the cleft, with the cyan rectangle covering a majority of the naturally observed concentration ranges. Center, the
occupancy characteristics of the postsynaptic receptors are aligned with the natural statistics of transmitter concentrations (cyan rectangle), thus allowing for
the efficient transfer of information. Right, receptors manifest desensitization, which can be interpreted as a slowly decaying negative feedback loop. In the
case of multiple neurotransmitter releases, both the frequency of the releases and the neurotransmitter concentration for each release play important roles in
determining the efficacy of dynamical information transfer (inset). The impact of desensitization on the responses is larger when either the frequency or the
concentration is high. The natural frequency of neurotransmitter release should be aligned with the neurotransmitter concentration, the receptor occupancy
statistics, and the desensitization kinetics for efficient information transfer [100,101].
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the natural statistics of dendritic inputs [50e52,55,56].
Neurons in the hippocampus receive theta-modulated
inputs, which translate to strong theta-frequency oscil-

lations in their extracellular and intracellular potentials
[57] (Figure 1b). The matched response properties,
www.sciencedirect.com
involving theta-frequency band-pass filtering in the
impedance profile [53] and in the spike-triggered
average [54,58] along the somatoedendritic axis of

hippocampal pyramidal neurons, constitute an example
of neuronal-scale EIC (Figure 1b).
Current Opinion in Neurobiology 2022, 76:102620
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4 Systems Neuroscience
Extensive studies involving the EIC framework at the
molecular scale [6,25e27,59e68] are driven by the
recognition that information about an endogenous ligand
could be efficiently transmitted by matching the re-
ceptor’s response properties to natural statistics of the
ligand (Figure 1c). The stimulus is defined by the abun-
dance and the dynamics of the ligand, and the response is
either the output of the receptor or of a downstream

signaling cascade involving receptor activation. A recur-
ring theme across EIC studies at the molecular scale in-
vokes signalingmotifs [69], specifically negative feedback
loops, that maximize information transfer and alleviate
the problem of molecular noise [25,59,60,64,66,70].

Degeneracy supports EIC
Degeneracy is a ubiquitous biological phenomenon
involving the interactions between structurally distinct

components yielding similar function [17]. The mani-
festation of degeneracy across all neural scales and the
roles of degeneracy in achieving biological robustness
are well established [17e23]. Despite this, the powerful
role of degeneracy as a substrate for learning, neural
coding, and concomitant homeostasis is only beginning
to be explored [14,20,21,24,38,48,49,71,72].

Degeneracy in EIC could manifest as system-to-system
variability or as an individual system employing distinct
context-dependent routes at different instances. A

simple illustration of efficient information transfer
occurring with these different manifestations is visu-
alized with human communication involving written
and verbal forms of different languages, dynamical
gestures, and different contexts [17]. The availability
of several routes to encode, adapt, match, and respond
to persistent changes in natural stimulus statistics
offers unique advantages to the system in maintaining
robust EIC. Specifically, consider a scenario where a
certain component or route fails to perform, owing to
the dynamical state of the system or the component’s

engagement in a different function. Degeneracy then
provides a substrate for EIC through recruitment of
different components/routes to execute the same task.

Degeneracy as a substrate for simultaneously achieving
both EIC and homeostasis is particularly appealing
because biological systems continually adapt to noisy
dynamical stimuli exhibiting context-dependent natural
statistics. Specifically, as the external stimuli is continu-
ally changing, there is a need to simultaneously maintain
several variables within physiologically plausible levels.

The availability of disparate routes ensures that the
system has several degrees of freedom to simultaneously
achieve these outcomes without cross-interferences.
Degeneracy also favors evolvability of efficient coding
by virtue of disparate structural components adapting
differently to environmental changes, together offering a
substrate for adaptive innovations in achieving EIC in a
perpetually changing environment [17,22].
Current Opinion in Neurobiology 2022, 76:102620
Degeneracy forms a reliable substrate to achieve similar
information transfer efficiency through several non-
unique routes. At the behavioral scale, animals are
required to dynamically rely on and effectively use in-
formation from various sensory modalities to achieve
functional goals such as mate attraction [73] and finding
prey [74]. An outstanding example for degeneracy in
systems-scale EIC involves information transfer about

the identity, abundance, and dynamics of odorants by
the olfactory system (Figure 2b). Through degeneracy, a
parametric space spanning activity dynamics of dispa-
rate neuronal populations, random synaptic connectiv-
ity, and differential olfactory receptor abundance
(Figure 2b) contributes to stereotypic functional out-
comes in the olfactory system [34,35,75e78]. With
reference to network-scale degeneracy in EIC, response
decorrelation (reducing information redundancy is a
fundamental principle governing the EIC framework;
see Box 1) could be achieved through disparate forms of

neural-circuit heterogeneities either individually or
synergistically [71,72].

The transformation of synaptic inputs to single-neuron
responses is a critical step in the cascade of trans-
formations required for EIC of sensory stimuli by neural
responses. Therefore, sensory information transfer is
governed by cellularescale parameters that mediate the
inputeoutput characteristics of individual neurons.
However, efficient coding studies exploring degeneracy
with reference to the impact of cellularescale parameters

on neural responses to external stimuli have been far and
few. There is evidence for degeneracy in the expression
of efficient spatial information transfer through rate or
phase codes in hippocampal neurons (Figure 2c). These
studies demonstrate that disparate combinations of
cellularescale parameters (morphology, synaptic distri-
butions, and ion-channel expression) result in a similar
efficiency in spatial information transfer [14,38].

In the molecular-scale parametric space involving re-
ceptor identity, downstream signaling motifs, post-
translational modifications on receptor subunits,

information typically relates to the abundance and dy-
namics of agonist molecules [25,26,60,79] (Figure 2d).
Although the scope for the expression of degeneracy in
EIC is higher at the molecular scale, given the broad
parametric space, exploration has been limited. How-
ever, there are clear lines of evidence for degeneracy in
signaling dynamics involving disparate signaling mole-
cules and pathways [65].

Heterogeneities and EIC
Heterogeneity is an inescapable reality in biological
systems. Heterogeneities in the brain span molecular
diversity, cell-to-cell, circuit-to-circuit, and animal-to-
animal variability in characteristic properties. There
are also pronounced functional distinctions in encoding
and decoding strategies as well as behavioral and
www.sciencedirect.com
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Figure 2

Degeneracy in the emergence of efficient information coding across scales. (a) Definition of degeneracy in the emergence of efficient information
coding. In examples below, disparate combinations of parameters yield a similar efficiency in information transfer involving one or more stimulus attri-
butes. (b) Degeneracy in efficient information coding involving systems scale parameters. Left, schematic representation of olfactory circuitry in
Drosophila melanogaster. PN: projection neuron. KC: Kenyon cells. MBON: mushroom body output neuron. The PN-KC connectivity is different in the two
diagrams [75,76]. The abundance of olfactory receptors is also dependent on the odor concentrations, pointing to efficient encoding that accounts for
natural stimulus statistics [34,35]. Center, the parametric space includes the abundance of specific olfactory receptors across different animals, neural
activity dynamics during odor presentation, the synaptic connectivity across different brain regions. Right, the information space accounts for odor identity
(top), odor concentration (middle), and the spatiotemporal dynamics of odor (bottom). There are lines of evidence that disparate connectivity patterns
between PN and KC result in stereotypic responses downstream [75,76]. Similar observations about random connectivity and stereotypic function have
been made in the mammalian olfactory system as well [77,78]. (c) Degeneracy in efficient information coding involving cellular scale parameters.
Left, schematic representation of the rodent hippocampus. CA1: Cornu Ammonis 1. CA3: Cornu Ammonis 3. DG: Dentate gyrus. Place cells in the CA1
manifest place-specific firing. Center, the parametric space includes the morphology of neurons, their biophysical properties (e.g. passive properties, ion-
channel expression and distribution), and the distribution of synapses across the dendritic arbor [48,49]. Right, spatial information is transmitted through
rate and phase codes. There are lines of evidence for the expression of ion-channel degeneracy in efficient spatial information transfer through rate [38] or
phase [14] codes. (d) Degeneracy in efficient information coding involving molecular scale parameters. Left, illustration of a receptor on a cell
surface responding to its endogenous agonist at natural concentrations through the activation of downstream signaling cascades. Shown is a scenario
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where receptor activation recruits a feedback motif, eventually resulting in transcriptional changes. Center, the parametric space includes the different
subunits that the receptor is composed of, the phosphorylation status of different residues on these subunits, the properties and abundance of down-
stream signaling molecules, and the signaling motifs recruited by individual receptors. Shown are two different scenarios with disparate subunit
composition, phosphorylation status, and signaling motifs (positive vs. negative feedback). Right, the information space involves agonist concentration
(top) and dynamics (bottom) and recruits the activation and dynamics of signaling molecules [26,60,79]. The bottom panel shows two graphs with phasic
versus tonic dynamics of agonist encountered by the receptors [25]. There are lines of evidence for degeneracy in signaling dynamics involving disparate
signaling molecules and pathways [65].

Figure 3

Heterogeneities and efficient information coding. (a) Illustration of a scenario where heterogeneity in response properties contributes to efficient
coding. Left, schematic showing the flow of information from stimulus to neurons to muscle fibers, eventually resulting in muscle contraction. Center, the
top panel shows heterogeneities in neural responses, with different neurons showing different threshold values (qi). The bottom panel illustrates het-
erogeneities in muscle output in response to neural inputs. Right, cell-to-cell variability across muscle fibers results in efficient information coding by
enhancing representation for a larger stimulus range [44,82]. (b) Illustration of a scenario where the implementation of efficient coding can explain the
emergence of heterogeneity in response to properties of different cells within the same system. Left, schematic of weakly electric fish (Apteronotus
leptorhynchus) showing the section (yellow line) of the brain (gray) expanded below. Shown in the expanded version are three segments — centromedial
(CMS), centrolateral (CLS), and lateral (LS) — of the electrosensory lateral line lobe in the brain. Representative E (blue) and I (red) cells, two distinct
classes of pyramidal cells in the electrosensory lateral line lobe, are shown in the further zoomed version below. Derived from Hoffman and Chacron [36].
Right: Top, the E versus I heterogeneity within the pyramidal neuron population has been implicated in sparse neural coding, whereby E− and I-cells
selectively respond to conductors versus non-conductors in the fish’s natural environment, respectively. Middle, big (red) and small (blue) chirp signals
consequent to natural interactions associated with courtship and aggressive encounters with other fishes, respectively. Shown are the amplitude
modulation (AM) envelope and the electric organ discharge (EOD) for both signals. The second order envelope is also shown for the big chirp signal
(dashed black line). Bottom, I cells prefer big chirps and respond with increased firing rates (left), whereas E cells preferentially respond to small chirps
with spike bursts (right). Here, the emergence of heterogeneity in the pyramidal cell population is an effect of different sub-populations matching different
aspects of the stimulus statistics toward eliciting preferential responses to different signals.

6 Systems Neuroscience
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Figure 4

Plasticity and homeostasis in efficient information coding. (a) Illustrative of a scenario where a change in natural statistics triggers the change in
response properties, maintaining efficient information coding. Left: natural visual stimulus is endowed with all orientations. The cortical area is allocated
uniformly across all orientations (purple). Right: an artificial intervention, involving rearing of animals in a striped environment, enhances the prevalence of
inputs oriented at 135�. The cortical area allocated for 135� is higher (green) than other orientations [89]. Observational approaches to efficient coding
assess the relationship between natural stimulus statistics and response characteristics to unveil a match. Interventional approaches, such as the
example provided here, add further evidence for efficient coding by demonstrating that targeted manipulations to stimulus statistics introduce matching
changes in response properties. (b) Illustration of a scenario where efficient information coding is hampered when response properties change, but
natural statistics remain unaltered. Left: a synaptic structure showing vesicular release and the postsynaptic response depicted as an electrical deflection.
The histogram depicts the distribution of the neurotransmitter concentration in the cleft, with the cyan rectangle covering a majority of the naturally
observed concentration ranges. Center: the occupancy characteristics of the postsynaptic receptors (purple line) are aligned with the natural statistics of
transmitter concentrations (cyan rectangle). The postsynaptic response (amplitude of electrical deflection; red circles) spans the entire dynamic range
(purple rectangle) thus allowing for the efficient transfer of information conveyed by the naturally occurring transmitter concentrations. Right: a leftward
shift in the occupancy characteristics of the postsynaptic receptors (from purple to green) results in misalignment of the transmitter concentration

Efficient information coding and degeneracy Seenivasan and Narayanan 7
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8 Systems Neuroscience
perceptual differences. The relationship between EIC
and heterogeneities has been explored from three per-
spectives across scales. The simplest perspective con-
siders heterogeneities in the parametric space as a
natural consequence of the manifestation of degeneracy
in the functional space of EIC. Specifically, if different
individuals within a population achieve EIC through
disparate parametric combinations, pronounced inter-

individual heterogeneity in underlying parameters are
naturally expected. The manifestation of degeneracy
and heterogeneities implies that a mechanism that en-
hances information transfer in one individual might be
detrimental in another owing to distinctions in mecha-
nisms that yielded EIC.

A second perspective, through the lens of reducing in-
formation redundancy [31,50,71,80,81], provides evi-
dence that heterogeneities favor the emergence of EIC
by forming a substrate for individual units to encode

distinct information about afferent stimuli (Box 1). Such
active recruitment of heterogeneities allows decorre-
lated responses across units, yielding efficient and non-
redundant distribution of information. A recent study
reported that intercellular heterogeneities within skel-
etal muscle fibers enhance information transmission
(Figure 3a) owing to such response diversity [82]. Bio-
physical heterogeneities across cells in the cochlear
nucleus [83] and inferior colliculus [84] have been
shown to improve population coding of auditory stimuli.
Different forms of neural-circuit heterogeneities have

been shown to enhance decorrelation or network infor-
mation transmission through either temporal or rate
coding strategies [71,72,85,86].

A third perspective explains response heterogeneities to
be consequent to EIC, whereby different sub-
populations match their response properties to respec-
tive natural stimulus statistics. As a broad example, the
response profiles of auditory and visual neurons are
critically dependent on the natural stimulus statistics
they encode [87]. The functional heterogeneity
involving two kinds of pyramidal neurons (E vs. I cells)
in the electrosensory lobe of electric fishes (Figure 3b)
are related to their preferential responses to different
distribution (cyan rectangle) and the occupancy profile (green). Consequently, t
concentration starts at high values, yielding saturating responses for a large
rectangle) is limited under such misalignment. The bottom plots of the center a
profiles (purple and green lines, respectively) from the top plots. A linear relatio
here but that relationship could change in response to changes in neuronal m
hampered because of misalignment in this relationship as well. There are exa
misalignment in receptor characteristics and downstream signaling characteris
inhibitory (I) inputs. Right: illustration of voltage responses, depicted as deflecti
the proportion of E versus I inputs to the neuron. Top, High E–Low I: Vth = RM
Vavg = RMP. Bottom, Low E–High I, action potential threshold, Vth = RMP+20 m
each panel depict spike times based on the voltage response crossing the res
configurations was the same (NAP = 11) because of concomitant changes in
intrinsic excitability (E– I–IE) is critical for the emergence of homeostasis and
response voltage (Vavg) derived from the three cases depicted in panel c, ea
depiction of the plot from the top panel showing intrinsic excitability versus syn
plot illustrates the requirement of E– I– IE balance in maintaining concomitant
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afferent stimuli associated with aggressive and courtship
communication signals [80]. More subtly, heterogeneity
across I-cells has been shown to govern efficient
encoding of the quality of the courtship signals [80]. In
mice, the dorsal and ventral retinal circuits manifest
differential color-opponency, by virtue of distinct spec-
tral characteristics of the cones that form their respec-
tive natural stimulus statistics [30].
Adaptation and stability
Correlational lines of evidence for EIC are typically based
on a match between information-maximizing filters that
are derived from natural stimulus statistics and experi-

mentally observed response characteristics [9,11,
12,29,33e35]. On the other hand, studies that causally
test the efficient coding hypothesis recruit interventional
methods that perturb the natural stimulus statistics to
assess if responses adapt to match the altered stimulus
statistics. Such systematic manipulations to natural
stimulus statistics have been performed across sensory
modalities andhaveprovided evidence supportingEIC. In
the visual system, monocular deprivation or altered dis-
tributions of stimulus orientations (Figure 4a) were
employed to demonstrate adaptations matching altered

statistics [88,89]. Monaural deprivations or exposure to
specific tone frequencies resulted in matching alterations
in the organization of auditory cortex [90e93]. Nostril
closure or altered odorant exposures resulted in changes in
the abundance and properties of the olfactory neurons
[34,35,94]. Importantly, specific plasticity and neuro-
modulatory mechanisms have been identified to mediate
adaptive strategies that lead to efficient codes [91,95,96].
Such adaptation has also been addressed from a dynamical
perspective with the continual matching of response
properties to time-varying inputs [15,16].

In contrast to these examples where system responses
showed adaptive plasticity to altered natural stimulus
statistics, there could be changes in system responses
that are not triggered by changes in environmental
stimulus distributions. For instance, efficient coding of
natural ligand abundance is achieved through negative
feedback mechanisms that match receptor occupancy
he postsynaptic response (red dots) to naturally occurring neurotransmitter
range of natural concentrations. The dynamic range of responses (green
nd the right panels also depict zoomed versions of the receptor occupancy
nship between postsynaptic response and receptor occupancy is assumed
orphology or intrinsic properties. Efficient information transfer could be
mples of hampered efficient coding of agonist concentration with
tics [59]. (c) Left: illustration of a neuron (cyan) receiving excitatory (E) and
ons from resting membrane potential (RMP), for three distinct scenarios for
P+40 mV, Vavg = RMP+10 mV. Middle, Balanced E– I: Vth = RMP+30 mV,
V, average response voltage, Vavg = RMP–10 mV. The purple ticks above
pective Vth. Note that the number of spikes elicited in each of these three
the E– I ratio and Vth. (d) The balance between excitation-inhibition and
efficient coding. Top: plot of the threshold voltage (Vth) versus the average
ch eliciting the same number of action potentials. Bottom: a generalized
aptic drive. As a higher Vth translates to lower excitability, this generalized
homeostasis and efficient coding [14].

www.sciencedirect.com

www.sciencedirect.com/science/journal/09594388


Efficient information coding and degeneracy Seenivasan and Narayanan 9
and a downstream response [59]. Perturbations to the
signaling cascades without change in ligand distributions
introduce misalignment of the doseeresponse relation-
ship, resulting in response saturation and noise amplifi-
cation [59,79]. Similarly, perturbations to postsynaptic
receptor identity or inputeoutput characteristics,
without changes in transmitter statistics, would yield
misalignment between the natural stimulus statistics of

transmitter abundance and receptor occupancy. Such
misalignments of the useful response range result in the
saturation of postsynaptic responses and a loss of infor-
mation about transmitter abundance (Figure 4b).
Together, it is essential to assess perturbations (induced
by activity, neuromodulation, or pathology) to response
properties that hamper EIC by misalignment of response
characteristics with natural stimulus distributions.

Continual adaptations to natural stimulus statistics

need to sustain concomitant stability to avoid patho-
logical adaptations and maintain homeostasis.
Different measures for homeostasis have been pro-
posed across scales, including excitation-inhibition
(EeI) balance at the network scale, firing rate and
voltage levels at the cellular scale, and calcium levels at
the molecular scale [97e99]. A unified metric that
accounts for EeI balance and intrinsic excitability (IE,
which governs firing rates and voltage levels for a spe-
cific synaptic drive) is the EeIeIE balance [14]. Ho-
meostasis of firing rate can be achieved if the EeI ratio
is counterbalanced by changes in action potential
threshold that governs IE (Figure 4c). Importantly, it
has been shown that EIC is achieved when there is a
counterbalancing relationship between the overall
synaptic drive (EeI) and neuronal gain (IE) [14].
Finally, strong lines of evidence for degeneracy in ho-
meostatic maintenance [21,24,97], together with de-
generacy in EIC explored earlier, suggest degeneracy as
a efficacious substrate for achieving efficient encoding
and concurrent homeostasis [14,38,71].
Conclusions
Our synthesis spanning several species and multiple
scales demonstrates EIC as a generalized biological
principle. We argued that biological complexity and
ensuing degeneracy are central cogs in the concurrent
emergence of EIC and homeostasis. We emphasized the
critical roles for parametric heterogeneities as well as
dynamics (associated with the stimulus and the
response spaces) in improving information transfer. We
postulate the interplay between EIC and homeostasis as
a universal repeating motif whose balance governs bio-

logical systems across scales. The recognition of the
ubiquitous nature of these governing principles and
explorations focused on degeneracy as a substrate for
their concurrent emergence would pave the way for
deducing the beneficiary roles of complexity across all
biological systems [17].
www.sciencedirect.com
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