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Abstract
The synthesis of the triple-calix[6]arene derivative 6 in which three calix[6]arene macrocycles are linked to a central 1,3,5-
trimethylbenzene moiety is reported. Derivative 6 is able to give multiple-threading processes in the presence of dialkylammonium
axles. The formation of pseudo[2]rotaxane, pseudo[3]rotaxane, and pseudo[4]rotaxane by threading one, two, and three, respective-
ly, calix-wheels of 6 has been studied by 1D and 2D NMR, DOSY, and ESI-FT-ICR MS/MS experiments. The use of a directional
alkylbenzylammonium axle led to the stereoselective formation of endo-alkyl pseudo[n]rotaxane stereoisomers.
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Introduction
The self-assembly [1] of smaller components to larger aggre-
gates represents one of the most spectacular phenomena in
supramolecular chemistry [2-4]. Among the self-assembly pro-
cesses, those that lead to the formation of interlocked and/or
interpenetrated supramolecular structures have inspired many
scientists [5-8]. The synthesis of interlocked molecules such as
rotaxanes, catenanes, and high-order architectures (e.g., poly-
rotaxanes, suitanes, daisy-chain pseudorotaxanes, olympiadane,
Janus rotaxanes [5]) is generally obtained through a template-
approach [9] exploiting the threading process between linear
(axle) and macrocyclic (wheel) components. In order to synthe-
size high-order interpenetrated architectures, much attention has

been directed towards the study of multiple-threading pro-
cesses of host systems bearing multiple-wheels (multivalent
hosts). On this basis, interesting handcuff-like interpenetrated
systems (Figure 1) have been reported to date in literature [10-
16], which represent non-trivial architectures.

Historically, the most common components were dialkylammo-
nium ions, as axles, and crown ethers, cyclodextrins, or cucurbi-
turils, as wheels [1]. With respect to the possible types of
wheels, more recently, we have introduced the through-the-
annulus threading of simple calix[6]arene hosts with dialkylam-
monium axles [17-26] by exploiting the inducing effect of the
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Figure 1: Sketch of the currently known prototypical examples of handcuff-derived architectures.

superweak tetrakis[3,5-bis(trifluoromethyl)phenyl]borate
(TFPB) anion that gives free ‘naked’ dialkylammonium cations.
In addition, we have reported interesting examples of endo-
cavity complexation of alkylammonium cations, as TFPB−

salts, inside the aromatic cavity of calixarene [20] and diho-
mooxacalixarene hosts [21,22]. Thus, through this ‘superweak
anion’ approach, we have synthesized interesting examples of
calixarene/ammonium-based interlocked structures such as
calix-rotaxanes [23,24] and calix-catenanes [25]. On the basis
of these results, we were also able to assemble high-order archi-
tectures by double-threading of bis-calix[6]arene hosts with am-
monium axles [27]. In particular, handcuff (pseudo)rotaxane
architectures (e.g., 32+ in Figure 2) [27] were obtained by
double-threading of bis-calix[6]arene derivative 1 with bisam-
monium axles (e.g., 22+). In addition, we have also shown that
the bis-calix[6]arene 1 was able to form pseudo[3]rotaxane
architectures (e.g., 52+ in Figure 2) by double-threading with
dialkylammonium axles [28].

With the aim to increase the complexity of our system we have
designed the triple-calix[6]arene host 6 (Figure 2) bearing three
calix[6]arene wheels symmetrically-linked to a central benzene
unit. Now the question arises as to whether the triple-
calix[6]arene system 6 is also capable to form pseudo[n]rotax-
anes by multiple-threading with dialkylammonium axles.

Results and Discussion
The synthesis of triple-calix[6]arene derivative 6 is outlined in
Scheme 1.

The known pentamethoxycalix[6]arene-mono-ol derivative 9
[29,30] was reacted with 1,3,5-tris(bromomethyl)benzene in the
presence of NaH as base, in a mixture of dry THF/DMF (7/3
v/v) for 12 h at reflux. An HR-ESI-FT-ICR mass spectrum
confirms the formation of 6 thanks to the presence of a molecu-
lar ion peak at 3283.1748 m/z  (calcd 3283.1319 for
C222H288KO18

+). 1H and 13C NMR spectra of 6 were consis-

tent with the C3-symmetry of the molecule. In details, three
singlets were present in the 1H NMR spectrum of 6 in CDCl3 at
298 K at 0.95 (27H), 1.05 (54H), and 1.22 ppm (81H =
54H + 27H; accidentally isochronous) attributable to tert-butyl
groups, and three singlets at 2.56, 2.80, and 3.12 ppm in a 2:1:2
ratio, attributable to OMe groups were also found. The methy-
lene benzylic resonance of 6 was revealed at 5.03 ppm. Finally,
three AX systems were detected at 4.47/3.55 (J = 14.7 Hz),
4.14/3.65 (J = 14.5 Hz), and 4.01/3.80 (J = 14.2 Hz) ppm,
attributable to the ArCH2Ar groups of the equivalent
calix[6]arene wheels. The formation of pseudo[n]rotaxanes
(Scheme 2) by threading of 6 with dibenzylammonium axle 7+

was studied by HR-ESI-FT-ICR mass spectrometry and 1D/2D
NMR (Figure 3). A 1:1 mixture of 6 and 7+·TFPB− in CHCl3
was stirred at 298 K for 15 min, until the solution was clarified,
and then used for mass spectrometry analysis. An ESI-FT-ICR
mass spectrum of this solution (Figure 3, bottom) revealed the
presence of a molecular ion peak at 3442.2979 m/z (calcd
3442.2965 for C236H308NO18

+) attributable to the single-
threaded 7+ 6 pseudo[2]rotaxane.

The 1H NMR spectrum (Figure 3, top) of the 1:1 mixture of 6
and 7+·TFPB− in CDCl3 at 298 K, clearly evidenced the forma-
tion of the 7+ 6 pseudo[2]rotaxane. In fact, a set of shielded
benzyl resonances was observed in the 4.5–6.5 ppm region at
5.99 (t, 1H), 5.34 (dd, 2H), and 4.77 ppm (d, 2H), correspond-
ing to its endo-cavity disposition and consequently indicative of
the formation of the 7+ 6 pseudo[2]rotaxane. Two diagnostic
broad singlets were present at 5.13 ppm and 4.96 ppm (1:2)
attributable to the benzylic methylene groups of the central
benzene core of 6 in 7+ 6 pseudo[2]rotaxane. A DOSY experi-
ment (Figure 3, top) evidenced that the resonances in the
1H NMR spectrum of the 1:1 mixture of 6 and 7+·TFPB− in
CDCl3 at 298 K all show the same diffusion coefficient of
7.06 × 10−11 m2/s attributable to the 7+ 6 pseudo[2]rotaxane
as TFPB− salt and significantly lower than that measured for the
free triple-calix[6]arene host 6 of 3.02 × 10–10 m2/s.
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Figure 2: Chemical drawing of the known bis-calix[6]arene 1 and its handcuff pseudorotaxane architectures 32+ and 52+ previously reported. Struc-
ture of the triple-calix[6]arene host 6 studied in the present work.

Through an 1H NMR quantitative analysis of a 1:1 mixture of
7+·TFPB– and 6 in CDCl3, using 1,1,2,2-tetrachloroethane as
internal standard, an apparent association constant of
1.01 ± 0.03 × 104 M−1 was calculated for the 7+ 6
pseudo[2]rotaxane. When 1 equiv of 7+·TFPB− salt was added
to the 1:1 mixture of 6 and 7+·TFPB− in CDCl3 (Figure 4c),
then, in addition to the benzylic resonances of the 7+ 6
pseudo[2]rotaxane at 5.13 ppm and 4.96 ppm, two new broad
singlets in a 1:2 ratio emerged at 5.08 and 5.06 ppm attribut-
able to the benzylic methylene groups of the central benzene
core of 6 in the double-threaded (7+)2 6 pseudo[3]rotaxane
(Scheme 2).

These data suggested that in a 1:2 mixture of 6 and 7+·TFPB− in
CDCl3 (Figure 3c), were present both the 7+ 6 and (7+)2 6
pseudorotaxanes, as confirmed by the ESI-FT-ICR mass spec-
trum in Figure 5, which revealed the presence of two ion peaks
at 3442.2979 (calcd 3442.2965 for C236H308NO18

+) indicative
of the formation of the single-charged 7+ 6 and double-
charged (7+)2 6 pseudo[3]rotaxanes, respectively. At this
point, we performed the ESI-CID MS/MS experiment in
Figure 5, in order to confirm the formation of (7+)2 6
pseudo[3]rotaxane. The CID mass spectrum of (7+)2 6
(Figure 5) revealed the de-threading of one dibenzylammonium
axle and the formation of the single-threaded 7+ 6
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Scheme 1: Synthesis of triple-calix[6]arene host 6.

Scheme 2: Formation of the 7+ 6, (7+)2 6, (7+)3 6 pseudorotaxane architectures by multiple-threading of 6 with 7+ as TFPB− salt.
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Figure 3: (Bottom) Portion of the ESI-FT-ICR mass spectrum of 7+ 6. (Top a–c) Significant portions of: (a) 1H NMR spectrum of 6 (CDCl3, 298 K,
600 MHz); (b) 1H NMR spectrum of a 1:1 mixture of 6 and 7+·TFPB− (CDCl3, 298 K, 600 MHz); (c) DOSY spectra of 6 (black line) and a 1:1 mixture of
6 and 7+·TFPB− (red line). Inset: structures of the triple-calix[6]arene 6 and 7+ 6 pseudo[2]rotaxane obtained by molecular mechanics calculations.

pseudo[2]rotaxane ion with 3442.2979 m/z (calcd. 3442.2965
for C236H308NO18

+).

When a 6/7+·TFPB− ratio of 1:3 was used (Figure 4d), then the
double-threaded (7+)2 6 pseudo[3]rotaxane was the species
most abundant as evidenced by the presence of two singlet in
1:2 ratio at 5.08 and 5.06 ppm attributable to the benzylic meth-

ylene groups of the central benzene core of 6 in (7+)2 6
pseudo[3]rotaxane (Scheme 2), which showed a 1J correlation
in the HSQC spectrum with carbon resonances at 74.0 and
76.0 ppm. In addition, the 1H NMR spectrum in CDCl3, evi-
denced the presence of the shielded signals of the benzylic unit
of the axles inside the calix-cavities at 6.02 (t, 1H), 5.36 (br t,
2H), and 4.65 ppm (d, 2H). A close inspection of the region be-
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Figure 5: ESI-FT-ICR-MS and HR-ESI-FT-ICR-CID mass spectrum of (7+)2 6.

Figure 4: 1H NMR titration of 6 with 7+·TFPB– (CDCl3 , 298 K,
600 MHz). Significant portions of the 1H NMR spectra of: (a) 6; (b) 1:1,
(c) 1:2, (d) 1:3, (e) 1:4, (f) 1:5 and (g) 1:6 mixture of 6 and 7+·TFPB−.
Marked: red diamond = 7+ 6; purple circle = (7+)2 6;
green triangle = (7+)3 6.

tween 3.0 and 5.0 ppm of the COSY spectrum (Supporting
Information File 1) of the 1:3 mixture of a 6 and 7+·TFPB− evi-
denced the presence of 6 main AX systems attributable to the
ArCH2Ar groups of 6 in (7+)2 6 pseudo[3]rotaxane. An HSQC

experiment revealed that these AX systems were 1J correlated
with carbon resonances in the region 28–30 ppm, in details:
3 .43/4 .31→27.9  ppm; 3 .38/4 .19→28.0  ppm; 3 .55/
4.65→29.2 ppm; 3.48/4.53→30.4 ppm; 3.41/4.18→30.0 ppm;
3.62/4.68→29.2 ppm. Thus, these data clearly indicated that the
calix[6]arene threaded by dibenzylammonium axles adopted a
cone-conformation. A close inspection of the region between
4.8 and 5.2 ppm in the 1D and 2D NMR spectra, revealed the
presence of the triple-threaded (7+)3 6 pseudo[4]rotaxane as a
less abundant species. Therefore, these data indicate that in a
1:3 mixture of 6 and 7+·TFPB− in CDCl3 (Figure 4c), both
(7+)2 6 and (7+)3 6 pseudorotaxanes are present. When the
7+/6 ratio was increased from 3:1 to 6:1 (Figure 4e–g) then the
benzylic resonance at 5.10 ppm attributable to the triple-
threaded pseudo[4]rotaxane (7+)3 6 increased in intensity. In
details, the shielded benzylic resonances attributable to the
portion of the dibenzylammonium inside the calix-cavity were
presents at 6.03, 5.36, and 4.53 ppm and were 1J-correlated in
the HSQC spectrum with carbon resonances at 128.2, 127.3,
and 128.6 ppm, respectively. The HSQC experiment also corre-
lated the benzylic resonance at 5.10 ppm, attributable to the
1,3,5-trisubstitued benzene-core of 6 in (7+)3 6 pseudoro-
taxane, with a carbon resonance at 76.0 ppm. In accord, COSY
and HSQC experiments revealed the presence of three principal
AX systems at 3.44/4.32, 3.39/4.22, and 3.58/4.66 ppm which
were 1J correlated with carbon resonances at 27.7, 27.9, and
29.1 ppm, respectively, attributable to ArCH2Ar groups of
calix[6]-wheels between syn oriented aromatic rings. Conse-
quently, the three calix[6]-wheels in (7+)3 6 adopt a cone con-
formation. This result was also confirmed by the minimum-
energy structure of (7+)3 6 obtained by molecular mechanics
calculations (Figure 6), which evidenced the typical stabilizing
H-bonding interactions between the ammonium groups and the
oxygen atoms of the calix[6]-wheels.

Analogous results were obtained when 6 was titrated with
dipentylammonium axle 4+, as TFPB– salt (Scheme 3). An
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Figure 6: Different views of the minimized structures of (7+)3 6 obtained by molecular mechanics calculations.

Scheme 3: Formation of the 4+ 6, (4+)2 6, (4+)3 6 pseudorotaxane architectures by multiple-threading of 6 with 4+ as TFPB− salt.
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Figure 7: (a–d) 1H NMR titration of 6 with 4+·TFPB− (CDCl3, 298 K, 600 MHz). Significant portions of the 1H NMR spectra of: (a) 6; (b) 1:1, (c) 1:2,
(d) 1:3, mixture of 6 and 4+·TFPB–. (e) HR-ESI-FT-ICR mass spectrum of 4+ 6. (f) HR-ESI-FT-ICR-CID mass spectrum of (4+)2 6.

HR-ESI-FT–ICR mass spectrum (Figure 7e) of the 1:1 mixture
of 6 and 4+·TFPB− clearly evidenced the presence of a molecu-
lar ion peak at 3402.3809 m/z  (calcd 3402.3591 for
C232H312NO18

+) indicative of the formation of the single-
charged 4+ 6 pseudo[2]rotaxane. The 1H NMR spectrum in
CDCl3 of the 1:1 mixture of 6 and 4+·TFPB− was also indica-
t ive of the formation of the single-threaded 4+ 6
pseudo[2]rotaxane (Figure 7b).

In fact, shielded signals at negative values of chemical shift
were detected at −0.99 (Δδ = δfree − δcomplexed = 2.69), −0.88
(Δδ = 2.58), −0.57 (Δδ = 1.94), −0.40 (Δδ = 1.32), and
0.64 ppm (Δδ = 2.37) ppm attributable, respectively, to the β, γ,
δ, ε, and α H-atoms of the pentyl chain of axle 4+ inside the
calix-cavity of 6 (Figure 7). An apparent association constant of
1.20 ± 0.02 × 104 M–1 was calculated for the 4+ 6
pseudo[2]rotaxane, by 1H qNMR analysis, a value comparable
to that calculated for the dibenzylammonium-based 7+ 6
pseudo[2]rotaxane.

When the 1:2 mixture of 6/4+·TFPB− was studied, the ESI-FT-
ICR mass spectrum (Figure 8f) clearly evidenced the presence
of both single- 4+ 6 and double-charged (4+)2 6 pseudorotax-
anes. At this point, we performed an ESI-CID MS/MS experi-
ment (Figure 7f) in which the (4+)2 6 pseudo[3]rotaxane was

collisionally dissociated to give 4+ 6, by de-threading of one
dipentylammonium axle. When an excess of 4+·TFPB− salt was
added to the CDCl3 solution of 6 then evidences for the forma-
tion of the (4+)3 6 pseudo[4]rotaxanes was obtained by a
1H NMR study (Figure 8d). A careful analysis of the ArCH2Ar
region of these spectra evidenced again a syn orientation of the
aromatic rings of calix[6]-wheels corresponding to a cone con-
formation, which was also confirmed by the minimum-energy
structure of (4+)3 6 obtained by molecular mechanics calcula-
tions (Figure 8).

As it is known [17,18], the threading of directional (or constitu-
tionally asymmetric) alkylbenzylammonium axles with direc-
tional calixarene-wheels, could generate two diastereoisomeric
pseudo[2]rotaxanes (Figure 9) [31-37]. Our group previously
reported [17,18] some examples of directional threading of
calix[6]-wheels [38] in which the endo-alkyl stereoisomer in
Figure 9 is preferentially formed over the endo-benzyl one
[17,18]. On the basis of these empirical observations, we have
introduced the so-called “endo-alkyl rule” [39]: “threading of a
directional alkylbenzylammonium axle through a hexaalkoxy-
calix[6]arene occurs with an endo-alkyl preference”. Interest-
ingly, the threading of the butylbenzylammonium axle 8+ with
derivative 6 could generate two distinct stereoisomeric
pseudorotaxanes (endo-alkyl or endo-benzyl) for each
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Figure 8: Different views of the minimized structures of (4+)3 6 obtained by molecular mechanics calculations.

Figure 9: (Top) Possible endo-benzyl and endo-alkyl stereoisomers obtainable by directional threading of calix[6]arene-wheel with alkylbenzylammo-
nium axles. (Bottom) Sketch of the possible pseudo[4]rotaxane stereoisomers obtainable by triple-threading of 6 with 8+.

calix[6]arene-wheel of 6, leading to a total of 4 possible stereo-
isomers, which are sketched in Figure 9.

When 1 equiv of butylbenzylammonium cation 8+, as TFPB−

salt, was added to a CDCl3 solution of 6, then the (endo-alkyl)-
8+ 6 pseudo[2]rotaxane was formed as indicated by the pres-

ence in the 1H NMR spectrum of shielded alkyl resonances at
negative value of chemical shift between −0.73 to −0.82 ppm.
No evidence of the (endo-benzyl)-8+ 6 pseudo[2]rotaxane
stereoisomer was detected in the 1H NMR spectrum of the
1:1 mixture of 8+ and 6. An ESI-FT-ICR mass spectrum
(Figure 10) of this mixture confirmed the formation of the
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Figure 10: (Left) HR-ESI-FT-ICR mass spectrum of 8+ 6. (Right) HR-ESI-FT-ICR-CID mass spectrum of (8+)2 6.

8+ 6 pseudo[2]rotaxane by the presence of a molecular ion
peak at 3408.3230 m/z (calcd 3408.3122 for C233H306NO18

+).
F i n a l l y ,  a n  a p p a r e n t  a s s o c i a t i o n  c o n s t a n t  o f
5.70 ± 0.03 × 102 M−1 was calculated by 1H qNMR analysis for
the single-threaded 8+ 6 pseudo[2]rotaxane, a value lower
than that found for the dibenzylammonium- and dipentylammo-
nium-based 7+ 6 and 4+ 6 pseudo[2]rotaxane.

Also in this case, an ESI-FT-ICR mass spectrum of the 1:2 mix-
ture of 6/8+·TFPB− evidenced the presence of both single-
8+ 6 and double-charged (8+)2 6 pseudorotaxanes. An ESI-
CID MS/MS experiment revealed that the (8+)2 6
pseudo[3]rotaxanes was collisionally dissociated to 8+ 6
pseudo[2]rotaxane by de-threading of one ammonium axle.
Finally, 1H NMR and COSY spectra of the 1:3 mixture of
8+·TFPB− and 6, once again evidenced the absence of
shielded benzylic resonances in the 4–6 ppm region, and this
can be considered a clear-cut proof that endo-butyl
pseudo[3]rotaxane and pseudo[4]rotaxane were selectively
formed (Figure 11).

Conclusion
In this study we described the synthesis of a triple-calix[6]arene
host (6) in which three pentamethoxy-mono-hydroxy units are
linked to a central 1,3,5-trimethylbenzene moiety. We have
shown that 6 is able to give multiple-threading processes in the
presence of dipentylammonium or dibenzylammonium axles.
The formation of pseudo[2]rotaxanes, pseudo[3]rotaxanes, and
pseudo[4]rotaxanes in CDCl3 solution was ascertained by 1D
and 2D NMR, DOSY, and ESI-FT-ICR MS/MS experiments. In
addition, in the presence of a directional butylbenzylammo-
nium axle, the stereoselective formation of endo-alkyl
pseudorotaxane stereoisomers was observed.

Experimental
HR mass spectra were acquired on a FT-ICR mass spectrome-
ter equipped with a 7T magnet. The mass spectra were calibrat-
ed externally, and a linear calibration was applied. All chemi-
cals were reagent grade and were used without further purifica-
tion. Tetrahydrofuran was dried by heating under reflux over
sodium wire in the presence of benzophenone as indicator while
dimethylformamide was dried by activated 3 Å molecular
sieves. When necessary the compounds were dried in vacuum
over CaCl2. Reactions were monitored by TLC silica gel plates
(0.25 mm) and visualized by 254 nm UV light, or by spraying
with H2SO4–Ce(SO4)2. The derivative 9 has been synthesized
according to literature procedures [27]. NMR spectra were re-
corded on a 600 [600 (1H) and 150 MHz (13C)] spectrometer.
Chemical shifts are reported relative to the residual solvent
peak. COSY spectra were taken using a relaxation delay of 2 s
with 30 scans and 170 increments of 2048 points each. HSQC
spectra were performed with gradient selection, sensitivity en-
hancement, and phasesensitive mode using the Echo/Antiecho-
TPPI procedure.

Synthesis of derivative 6. In a dry round flask, under N2, de-
rivative 8 (3.11 g, 2.98 mmol) was dissolved in dry THF/DMF
(180 mL, 7:3 v/v). Subsequently, NaH (1.05 g, 43.86 mmol)
was added at 0 °C. After 15 minutes, 1,3,5-tris(bromo-
methyl)benzene (0.36 g, 1.00 mmol) was added to the reaction
mixture at room temperature. The reaction was stirred at reflux
for 12 h under a nitrogen atmosphere. Afterwards the reaction
was stopped by addition of 1 M HCl and the solution was
extracted with chloroform. The organic phase was dried over
anhydrous Na2SO4, filtered and evaporated of the solvent. The
raw was purified through chromatography column on silica gel
and using solvent mixture dichloromethane/diethyl ether 96:4 as
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Figure 11: (a–d) 1H NMR titration of 6 with 8+·TFPB− (CDCl3 , 298 K, 600 MHz). Significant portions of the 1H NMR spectra of: (a) 6; (b) 1:1, (c) 1:2,
(d) 1:3, mixture of 6 and 8+·TFPB−. (Top) Formation of the 8+ 6, (8+)2 6, (8+)3 6 pseudorotaxane architectures (sketch) by multiple-threading of 6
with 8+ as TFPB− salt.
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eluents. Derivative 6 was isolated with 68% yield (2.20 g,
0.67 mmol). 1H NMR (600 MHz, CDCl3, 298 K) δ 7.76 (s,
ArH, 3H), 7.23–7.22 (overlapped, ArHcalix, 6H), 7.08–7.04
(overlapped, ArHcalix, 12H), 6.91–6.84 (overlapped, ArHcalix,
18H), 5.03 (s, OCH2Ar, 6H), 4.47 and 3.55 (AX system,
ArCH2Ar, J = 14.7 Hz, 12H), 4.14 and 3.65 (AX system,
ArCH2Ar, J = 14.5 Hz, 12H), 4.01 and 3.80 (AX system,
ArCH2Ar, J = 14.2 Hz, 12H), 3.12 (s, OCH3, 18H), 2.80 (s,
OCH3, 9H), 2.56 (s, OCH3, 18H), 1.22–1.21 (overlapped,
C(CH3)3, 81H), 1.05 (s, C(CH3)3, 54H), 0.95 (s, C(CH3)3,
27H); 13C NMR (75 MHz, CDCl3, 298 K) δ 154.5, 154.4,
153.9, 152.4, 145.9, 145.7, 138.7, 134.1, 133.8, 133.7, 133.6,
133.4, 127.5, 126.7, 125.8, 125.5, 125.2, 124.6, 74.7, 60.1, 60.0,
34.3, 34.2, 31.7, 31.6, 31.5, 31.4, 30.8, 30.5, 29.0, 19.6; HRMS
(m/z): calcd for C222H288KO18

+, 3283.1319; found, 3283.1748.

Preparation of pseudo[n]rotaxane. Derivative 6 (5.00 mg,
1.5 × 10−3 mmol) and dialkylammonium axle 4+ , 7+ or 8+

[n × (1.5 × 10−3 mmol), n = 1–6] were dissolved in 0.5 mL of
CDCl3. Then, the solution was sonicated for 5 min and trans-
ferred in a NMR tube for 1D and 2D NMR spectra acquisition.

Determination of Kapp values by quantitative 1H NMR anal-
ysis .  The samples  were prepared by dissolving 6
(1.5 × 10−3 mmol) and the appropriate alkylammonium guest
4+, 7+ or 8+ as TFPB− salt (1.5 × 10−3 mmol) in CDCl3
(0.5 mL) containing 1 μL of 1,1,2,2-tetrachloroethane
(d = 1.586 g/mL, 0.019 M) as internal standard (IS). The com-
plex concentration [complex] was evaluated by integration of
the 1H NMR signals of 1,1,2,2-tetrachloroethane vs the shielded
signals of the guest molecules. The following equation was
used to obtain the moles of the complex:

(1)

Where: Ga = grams of IS; Gb = grams of complex, Fa and Fb =
areas of the signals of 1,1,2,2-tetrachloroethane and signal of
the guest, Na and Nb = numbers of nuclei which cause the
signals (Na for IS = 2; Nb for guest) and Ma and Mb = molecu-
lar masses of IS (a) and complex (b)

Supporting Information
Supporting Information File 1
1H and 13C NMR spectra, 1H qNMR spectra, 2D COSY
and HSQC spectra of pseudorotaxanes.
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