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O-GlcNAc transferase (OGT) is an X-linked gene product that is
essential for normal development of the vertebrate embryo.
It catalyses the O-GlcNAc posttranslational modification of
nucleocytoplasmic proteins and proteolytic maturation of the tran-
scriptional coregulator Host cell factor 1 (HCF1). Recent studies have
suggested that conservative missense mutations distal to the OGT
catalytic domain lead to X-linked intellectual disability in boys, but
it is not clear if this is through changes in the O-GlcNAc proteome,
loss of protein–protein interactions, or misprocessing of HCF1.
Here, we report an OGT catalytic domain missense mutation in
monozygotic female twins (c. X:70779215 T > A, p. N567K) with
intellectual disability that allows dissection of these effects. The
patients show limited IQ with developmental delay and skewed
X-inactivation. Molecular analyses revealed decreased OGT stability
and disruption of the substrate binding site, resulting in loss of
catalytic activity. Editing this mutation into the Drosophila genome
results in global changes in the O-GlcNAc proteome, while in mouse
embryonic stem cells it leads to loss of O-GlcNAcase and delayed
differentiation down the neuronal lineage. These data imply that
catalytic deficiency of OGT could contribute to X-linked intellectual
disability.
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The O-linked β-N-acetyl-D-glucosamine (O-GlcNAc) transferase
(OGT) and the hydrolase O-GlcNAcase (OGA) together or-

chestrate protein O-GlcNAcylation, a dynamic co/posttranslational
modification cycling on thousands of nucleocytoplasmic proteins (1,
2). OGT catalyses the covalent attachment of the monosaccharide
O-GlcNAc to serine or threonine. This modification has been
suggested to affect transcription (3–6), translation (1), protein sta-
bility (7, 8), and subcellular localization (9, 10). O-GlcNAcylation
plays a key role in regulating stress response (11–13), differentiation
(14, 15), nutrient sensing (16, 17), and autophagy (18).
Genetic studies have highlighted the importance of OGT and

protein O-GlcNAcylation in development. OGT is essential for
embryonic stem cell viability (19, 20) and mouse embryonic devel-
opment (21). Zebrafish lacking OGT function exhibit shortened
body axis and smaller brains (22). TheDrosophila melanogasterOGT
encoded by the Polycomb group gene super sex combs (sxc) plays a
critical role in establishing Drosophila segment identity (23, 24).
The O-GlcNAc modification is particularly abundant in the

brain (25, 26), where it controls memory formation (27–29), circadian
rhythm (30, 31), and appetite (32, 33). Numerous neuron-specific
proteins are O-GlcNAcylated, such as the Microtubule-associated
proteins tau (34) and CRMP2 (35), synaptic vesicle proteins (36),
the transcriptional factor cyclic-AMP response element binding
protein (CREB) (28), and the AMPA receptor GluA2 subunit (27).
Growing evidence suggests that O-GlcNAcylation is essential for
normal development and function of the mammalian nervous system
(21, 33, 37–39).
Although O-GlcNAcylation has been long implicated in

chronic metabolic diseases, such as type II diabetes mellitus,

neurodegeneration, and cancer, its role in neurodevelopmental
disorders has only recently become apparent. In the past year, a
small number of missense mutations within the human OGT
gene have been discovered in patients with X-linked intellectual
disability (XLID) (40–43). Intellectual disability (ID) refers to a
broad range of developmental disorders characterized by limited
intellectual capacity, IQ below 70, and poor adaptive behavior
with onset before the age of 18, affecting 1 to 3% of the pop-
ulation worldwide (44). Genetic factors are the major cause of
this developmental condition involving over 700 ID genes (45).
These genes encode for proteins that are required for neuronal
development and activity, contributing to neuronal structure and
function through several signaling pathways (46). Mutations in
genes located on the X-chromosome account for ∼5 to 10% of
all ID causative genes affecting predominantly male individuals
(44, 47).
To date, XLID-associated mutations in the OGT gene have

only been reported for male patients, causing developmental delay
and severe cognitive disability. Accompanying clinical phenotypes
were dysmorphic features, such as clinodactyly, eye abnormalities,
and microcephaly. A common molecular trait of the missense
XLID OGT variants is that they appear to retain substantial OGT
catalytic activity. This is in agreement with these mutations all
being localized to the C-terminal noncatalytic tetratricopeptide
repeat (TPR) domain of OGT that is responsible for substrate
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specificity and scaffolding (40–43). In cultured cells, global
O-GlcNAc levels on proteins were unaltered (41–43), and a de-
crease in OGA protein expression to compensate for the (pre-
sumed) moderate loss of OGT activity was only apparent in
patient-derived fibroblast cells (43). In addition to its glycosyl-
transferase activity, mammalian OGT is involved in the unusual
proteolytic maturation of Host cell factor 1 (HCF1) (48–50), a
transcriptional cofactor implicated in cell cycle control (51), also

identified as an ID gene (52–54). HCF1 is O-GlcNAc–modified
and subsequently cleaved by OGT using the same active site for
both enzymatic activities (49). Among XLID variant OGT models,
a moderate effect on HCF1 processing was only detected for one
of the mutations (41, 43).
From the currently available OGT XLID mutations, it remains

unclear if the patient phenotypes observed are linked to changes
in the O-GlcNAc proteome, loss of protein–protein interactions,

A319T
R284P

L254F

TPRs TLR
1

N-Cat Int-D C-Cat
478 545 748 839 1046

N567K
A259T

E339G

.G Y V S S D F G N H P T S
G Y L S S D F G N H P T S

G Y V S S D F G N H P T S

G Y V S S D F G N H P T S

G Y V S S D F G N H P T S
G Y V S S D F G N H P T S

G Y I S S D F G N H P T S

560 570

A

B

C

Fig. 1. Clinical images from patients with the N567K mutation in the catalytic domain of OGT. (A) Picture of twin 1 showing dysmorphic features at age 4 y
(Left) and 10 y (Right). (B) Picture of twin 2 showing dysmorphic features at age 4 y (Left) and 10 y (Right). (C) Schematic diagram of OGT highlighting the
TPRs, TPR-like repeat, N-Cat, and C-Cat, and the site of N567K, as well as the previously identified XLID-associated mutations in OGT. The Inset shows the
sequence alignment of the region encompassing the N567K mutation across the commonly used model organisms. N-Cat and C-Cat: N- and C-terminal lobes
of OGT catalytic domain; TPR: tetratricopeptide repeat domain; TLR: tetratricopeptide repeat-like domain.
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or misprocessing of HCF1. Here, we characterize an OGT mis-
sense mutation in the catalytic domain as observed in female
twins with ID and developmental delay. In vitro biochemical
analysis of recombinant N567K OGT missense variant protein
revealed that this mutation abrogates OGT and HCF1 pro-
teolytic processing activity. Protein crystallography data explain
the molecular basis of the observed loss of substrate binding.
Introduction of this mutation into D. melanogaster by genome
editing reveals global effects on the O-GlcNAc proteome. In mouse
embryonic stem cells (mESCs) carrying this mutation, loss of OGA
protein expression was observed, as well as defective HCF1 pro-
cessing. The mutation caused defects in neurite outgrowth during
neuronal differentiation. Taken together, our data provide evidence
that loss of OGT activity could contribute to the XLID phenotype
observed in the patients.

Results and Discussion
Monozygotic Twins with ID and Developmental Delay Possess a De
Novo OGT Mutation. Twin girls (twin 1 and twin 2) were born at
33-wk gestation by semielective caesarean section for maternal
preeclampsia. Conception was unassisted. Twin 1 weighed
1,670 g at birth and required continuous positive airway pressure
(CPAP) to aid breathing for 3 wk and supplemental oxygen for
58 d. Twin 2 weighed 2,150 g and needed CPAP for 2 d and
supplemental oxygen for 20 d. Both babies were tube-fed initially
but bottle feeding was established from 3 to 4 wk of age. The
twins showed delay in reaching developmental milestones, es-
pecially in areas of speech and language development. By 4 y of
age, twin 1 only used 3 to 4 single words; at 10 y she was able to
put 2 to 3 words together. Language development of twin 2 was
more advanced than her sister; at 4 y she was using short phrases
and at 10 y she was speaking in sentences and able to recognize
letters of the alphabet. Their movement and physical develop-
ment were also affected: twin 1 by age 4 y and twin 2 by the age
of 2 y were able to walk independently. However, twin 2 had
significant gross motor difficulties and clumsiness at the age of
8 y. Both twins were diagnosed with cerebral visual impairment,
twin 1 more severe than twin 2. They have attended an additional
needs nursery and school.
The twins (Fig. 1 A and B) appeared to be affected by a similar

developmental syndrome, including small nose, high arched
palate, and fifth finger clinodactyly. Twin 1 has ataxic gait with
knees bent, walking on toes with inverted feet. An MRI brain scan
showed prominence of the lateral ventricles and an enlarged cis-
tern magna in twin 1 at age 2 y, suggesting possible hypoplasia of
the inferior cerebellar vermis. Although both siblings have kept
generally good health, hypotonia was apparent in infancy and they
required iron supplementation intermittently. Twin 1 had an
adenoidectomy and treatment for gastro-esophageal reflux and
constipation.
Sanger sequencing was performed as part of the Deciphering

Developmental Disorders initiative, which currently lists geno-
mic and clinical data from over 14,000 child patients with severe
undiagnosed developmental disorders (55). This revealed a sin-
gle pathogenic missense mutation in the OGT gene (X:70779215
T > A, N567K). The mutation was found absent in control
population of 141,456 samples, comprising 125,748 exome se-
quences and 15,708 whole-genome sequences from unrelated
individuals reported in the genome aggregation database,
gnomAD (56). The mutation affected both monozygotic twins,
whereas both of their parents were noncarriers. A 98:2 skew in
X-inactivation was detected in both children using polymorphic
markers that are differentially methylated on the active and in-
active chromosome (SI Appendix, Fig. S1). However, being a de
novo mutation, which 1 of the 2 chromosomes is predominantly
inactivated remains unclear. Taking these data together, we have
identified monozygotic twins with ID and developmental delay
that possess a de novo OGT mutation.

The N567K Mutation Abrogates OGT Activity In Vitro. To understand
the potential effects of the OGT N567K (OGTN567K) mutation,
we next investigated changes in catalytic activity compared with
full-length wild-type OGT (OGTWT) protein. Steady-state kinetics
of OGT glycosyltransferase activity was measured against 2 accep-
tor peptide substrates, P1 (KKVPVSRA) and P2 (KKVAVSRA),
that only varied at the −2 position adjacent to the O-GlcNAcylation
site (57). OGTN567K activity was 12-fold reduced against P1 (Fig. 2A
and Table 1) and not detectable against P2 (Fig. 2A). Next, OGT
activity was measured against an intact protein substrate, TAK-1
binding protein (TAB1), where the reaction was followed with a
TAB1 O-GlcNAc site-specific antibody (58). OGTN567K showed
negligible glycosyltransferase activity (Fig. 2B).
OGT possesses a second catalytic activity in the form of pro-

moting autocatalytic cleavage and activation of HCF1, which
itself is an ID-associated gene (52). We next investigated the
effects of the N567K mutation on OGT-mediated HCF1 process-
ing. OGT proteolytic activity was measured using a GST-fusion
construct of a minimal HCF1 fragment (HCF1-rep1) containing
one of the PRO repeats that are known to be the targets of OGT-
mediated proteolysis (49). Wild-type OGT not only promotes
HCF1 proteolysis but was also able to hyperglycosylate this protein
fragment (Fig. 2C). HCF1E1019Q, which lacks the key glutamate
required for proteolytic processing, was not cleaved by wild-type
OGT. Strikingly, even after 8 h of reaction time, OGTN567K was
able to neither glycosylate nor cleave HCF1-rep1 (Fig. 2C). Taken
together, the data show that the N567K mutation abrogates OGT
activity.

The N567K Mutation Disrupts the OGT Acceptor Binding Site. To
understand the molecular basis of the observed loss of OGT
catalytic activity, we next initiated structural characterization of
OGTN567K. Inspection of the wild-type OGT structure reveals
that Asn567 maps to a loop in the N-terminal lobe of the cata-
lytic domain that is completely conserved through evolution from
Caenorhabditis elegans to man (Fig. 1C). The Asn567 side chain
borders the −2 subsite as part of the OGT acceptor substrate
binding cleft (Fig. 2D). Therefore, we hypothesized that the
N567K mutation would affect OGT acceptor substrate binding,
without affecting the overall OGT fold. Recombinant OGTN567K
was obtained from Escherichia coli using construct boundaries
previously employed to crystallize OGTWT-substrate complexes
(57). OGTN567K was then cocrystallized with a donor analog,
UDP-5S-GlcNAc, and 2 OGT acceptor peptide substrates, P1
(KKVPVSRA) and P2 (KKVAVSRA), previously used for ac-
tivity measurements (Fig. 2A). Only the condition containing P2,
which contains an alanine at the −2 subsite, yielded crystals that
diffracted to 2.3 Å and allowed structure solution by molecular
replacement and refinement (Table 2). The OGTN567K structure
superposed onto that of OGTWT with an rmsd of 0.4 Å across
675 Cα atoms, suggesting the mutation does not induce large
conformational changes in the catalytic domain. Initial unbiased
difference electron density maps revealed partial density corre-
sponding to the acceptor peptide (Fig. 2D). Surprisingly, this
only covered the P2 backbone in the +2 through to −2 subsites,
suggesting that the N567K mutation may induce increased flex-
ibility at the N-terminal tail of the acceptor peptide (Fig. 2D and
SI Appendix, Fig. S2). In agreement with this, a comparative B-factor
analysis suggested that the acceptor peptide bound to OGTN567K
is substantially more flexible than that bound to OGTWT (SI Ap-
pendix, Fig. S2). Close inspection of the OGTN567K acceptor
substrate binding cleft revealed that the protrusion caused by the
N567K mutation partially occupies the position of the −2 proline
frequently observed in OGT acceptor peptides (57, 59, 60). In
summary, the N567K mutation appears to disrupt the OGT ac-
ceptor binding site.
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Fig. 2. The N567K mutation abrogates OGT activity due to disrupted acceptor binding site. (A) Michaelis–Menten kinetics of OGT glycosyltransferase activity
against P1 and P2 peptides. (B) Immunoblots showing OGT glycosyltransferase activity against TAB1. (C) Immunoblots showing OGT glycosyltransferase and
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a mesh.
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The sxcN595K Mutation Leads to a Reduction of Protein O-GlcNAcylation
in D. melanogaster. Lack of functional OGT causes lethality and
developmental arrest in most metazoan model organisms, in-
cluding mice, frogs, zebrafish, and fruit flies (19, 22, 24, 61). To
probe if the N567K mutation directly affects OGT catalytic
activity in vivo, we exploited the genetically tractable system
D. melanogaster, where phenotypes arisen due to null and
hypomorphic alleles of sxc (the fly ogt ortholog) have been de-
scribed (62, 63). Drosophila sxc null mutants (sxc1 and sxc6) die at
the pharate adult stage with homeotic transformation defects (62).
A hypomorph allele, sxcH537A, having substantially reduced OGT
catalytic activity (64), shows significantly decreased protein
O-GlcNAcylation levels (63) yet produce fertile offspring. Crucially,
the fruit fly provides a platform to dissect the different effects of
the OGT N567K mutation. In the fly, feedback between proteome
O-GlcNAcylation levels and OGA/OGT protein/mRNA levels has
not been observed. Furthermore, although Drosophila Hcf1 is
heavily O-GlcNAc modified, proteolytic processing is catalyzed
by the Taspase I protease instead of OGT (65).
We introduced the OGT N567K equivalent mutation (N595K)

into D. melanogaster using a CRISPR/Cas9 gene-editing toolkit.
Vasa::Cas9 embryos were injected in-house with a mixture of
plasmids coding for the guide RNA and repair template DNA. In
total, 100 potential candidate flies were screened exploiting re-
striction fragment-length polymorphism arising from the loss of a
restriction digestion site introduced in parallel with the N595K
mutation (SI Appendix, Fig. S3). We recovered 2 independent
knockin lines (10.3 and 19.1) carrying the mutation, sxcN595K.
Presence of the mutation was confirmed by sequencing the re-
gion ∼250 base pairs upstream and downstream from the
mutation. Additionally, the lines were further validated by se-
quencing the full-length sxc mRNA. Both lines developed to
adulthood without apparent homeotic defects. Transheterozygous
sxc1/sxcH537A, sxc1/sxcN595K-19.1, and sxc1/sxcN595K-10.3 flies with
presumably further reduced OGT activity were viable (SI Appen-
dix, Fig. S4).
To probe the effect of the N595K mutation on OGT enzy-

matic activity and stability in vivo, we subjected adult fly head
and embryo lysates to Western blotting with an O-GlcNAc an-
tibody, RL2 (Fig. 3A and SI Appendix, Fig. S5). O-GlcNAc levels
were reduced to levels comparable to those in the hypomorph
sxcH537A flies (Fig. 3A and SI Appendix, Fig. S5). OGT protein
levels are expressed at wild-type level (Fig. 3A and SI Appendix,
Fig. S5). Taken together, phenotypic and molecular character-
ization of sxcN595K Drosophila lines revealed that the mutation
leads to reduction of protein O-GlcNAcylation.

The N567K Mutation Leads to a mESC Neuronal Differentiation
Phenotype. The twins carrying the N567K OGT mutation, and
the previously published male patients carrying OGT mutations
in the TPR domain, all suffered from neurodevelopmental delay.
We next explored the early events of neuronal development by
studying effects on pluripotency and differentiation in mESCs, a
cellular system amenable to genetic modification. We generated
male mESC lines expressing C-terminal triple hemagglutinin (3HA) -
tagged version of wild-type OGT (3HA-OGTWT) and carrying the
N567K mutation (3HA-OGTN567K) using 2 rounds of CRISPR/
Cas9-mediated gene editing at the endogenous locus (SI Appen-

dix, Figs. S6 and S7). At each step, at least 2 clones with the correct
genotype were isolated and selected for further analysis.
Next, we examined whether neuronal differentiation was altered

in 3HA-OGTN567K cells. Expression of pluripotency markers Sox2
and Oct4 was unaffected during the first 6 d of differentiation
(Fig. 3 C and D). Neurite outgrowth was assessed after 8 d.
Neurite length was significantly reduced in 3HA-OGTN567K cells
compared with 3HA-OGTWT control cells immune-labeled against
the neuron-specific β-tubulin III protein (Fig. 3 E and F). Thus,
the N567K mutation leads to an mESC neuronal differentiation
phenotype.

The N567K Mutation Leads to Misprocessing of HCF1. We next
attempted to uncover the molecular mechanisms underpinning
the observed differentiation phenotypes. We tested the levels
of protein O-GlcNAcylation using Western blotting (Fig. 4A).
Surprisingly, levels of protein O-GlcNAcylation in pluripotent
mESCs appeared comparable in 3HA-OGTN567K and 3HA-
OGTWT cells. Previous studies have shown that (an as yet to be
discovered) feedback mechanism regulates OGA and OGT ex-
pression levels in response to protein O-GlcNAcylation levels (42,
43, 66, 67). Indeed, while OGT levels appeared to be unaltered,
OGA levels were abrogated in 3HA-OGTN567K pluripotent
mESCs (Fig. 4 A and B), presumably to compensate for reduced
OGT activity, but appeared normal during differentiation (Fig. 3
C and D).
Next, we investigated the effects of the N567K mutation on

the posttranslational maturation and cellular localization of HCF1
in pluripotent mESCs. Western blot analysis on cytoplasmic and
nuclear fractions revealed an elevated ratio of full-length versus
total HCF1 in the nuclear fractions of 3HA-OGTN567K compared
with 3HA-OGTWT mESCs, while the levels of HCF1 proteolytic
products were reduced (Fig. 4 C and D). This is in agreement with

Table 1. Michaelis–Menten kinetics of OGT activity against
P1 peptide substrate

Enzyme KM (nM·s−1) kcat (s
−1) kcat/KM

OGTWT 99 ± 19 119 ± 11 1.2 ± 0.3
OGTN567K 144 ± 63 20 ± 4 0.1 ± 0.2

Table 2. X-ray diffraction data processing and refinement
statistics of the OGTN567K ternary complex

OGTN567K

Data collection
Space group F222
Cell dimensions

α, β, γ (°) 137.7, 150.6, 200.0
A, B, C (Å) 90.0, 90.0, 90.0

Resolution (Å) 45.31–2.17 (2.17–2.23)
Rsym or Rmerge 0.07 (0.91)
I/σI 11.3 (1.3)
Completeness (%) 100 (99)
Redundancy 5.2 (5.3)

Refinement
Resolution (Å) 45.31–2.17 (2.17–2.23)
No. reflections 286,887 (23,302)
Rwork/Rfree 0.20/0.25

No. atoms
Protein 5,530
Nucleotide sugar 39
Peptide 35
Water 328

B-factors
Protein 53.2
Nucleotide sugar 46.6
Peptide 91.9
Water 51.3

Rmsd
Bond lengths (Å) 0.02
Bond angles (°) 1.8

Numbers in brackets show the highest resolution bin.
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the impaired OGT-mediated proteolytic cleavage of HCF1 ob-
served in vitro (Fig. 2C). HCF1 contributes to the regulation of
transcriptional programs associated with controlling cell cycle and
pluripotency (68, 69). Interestingly, the expression of some of the
HCF1 interactors are also regulated by HCF1 itself (51, 66, 69).
As an initial attempt to uncover possible candidate genes af-
fected by HCF1 misprocessing, we investigated the expression
levels of known HCF1 partners by qRT-PCR (Fig. 4E). The Ets
transcription factor GA-binding protein subunit α (GABPA), a
component of the nuclear respiratory factor-2 (NRF2) com-
plex, showed a 2.3-fold increase in mRNA level in 3HA-
OGTN567K cells compared with 3HA-OGTWT control samples
(P = 0.002). GABPA/NRF2 regulates mitochondrial biogenesis
and cell cycle progression (70, 71). Taking these data together,
the OGT N567K mutation leads to misprocessing of HCF1
in mESCs.

Concluding Remarks
Previous studies have established a link between missense mu-
tations in OGT and XLID in young males. These patients are
hemizygous for the mutant OGT allele, with this genetic defect
being present in all cells from early development to later life (41–
43). However, residing exclusively in the OGT TPR domain, it
was not clear whether these mutations led to the observed
phenotypes through loss of glycosyltransferase activity, HCF1
misprocessing, or disruption of the OGT interactome (41–43).
Here, we have presented female twins with XLID who are het-
erozygous for an N567K mutation in the OGT catalytic domain.
Despite a wild-type ogt allele being present in all cells of these
patients, its expression is arbitrarily silenced due to X chromo-
some inactivation at the late blastocyst stage of embryogenesis to
compensate for gene dosage (72). Thus, these females represent
an example of mosaic expression of an OGT XLID variant
causing developmental abnormalities. Previous examples of fe-
male carriers of X-linked genetic disorders showed correlation
between the X inactivation pattern and the severity of the con-
dition (73–75). Hence, it is possible that the different etiology of
ID in twins is the consequence of distinct spatial patterns and
skew of X-inactivation.
The N567K variant of OGT retains negligible levels of cata-

lytic activity. Thus, a possible mechanism underpinning the XLID
phenotype is reduced protein O-GlcNAcylation on a subset of
OGT target proteins at specific time points of development or
differentiation. Previous genetic studies in mice have highlighted
the vital role of OGT in both neuronal development and adult life
(21, 33, 37–39). OGT is capable of transferring GlcNAc onto over
4,000 different substrate proteins; it possesses an acceptor-peptide
specificity with a preference to a degenerated sequon motif (57,
76, 77). Our structural analysis has uncovered that the N567K
mutation changes the surface of the substrate binding pocket,
thereby altering substrate binding ability of the N567K OGT.
Previously reported XLID associated mutations lie in the TPR
domain of OGT (40–43, 78), so potentially influencing its scaf-
folding function or reducing O-GlcNAcylation on an as yet un-
known, subset of substrates. The N567K mutation may affect the
O-GlcNAc proteome globally yet leads to a similar clinical
phenotype, suggesting it is the catalytic activity/dosage of OGT
that is important.
We have identified one of the OGT substrates, HCF1, as a

potential candidate that could at least partially explain some of the
OGTN567K patient phenotypes. We showed that O-GlcNAcylation
and proteolytic activation of HCF1 is significantly decreased, in-
cluding in mESC nuclei. The HCF1 protein plays an important
role in cell growth and cell cycle control through interacting with
transcriptional complexes and epigenetic regulators (79–83). The
HCF1 gene itself has been identified as an intellectual disability
gene causing cobalamin type X deficiency, craniofacial abnor-
malities, and prenatal onset of microcephaly in the most extreme

cases (52, 53, 84). Less-severe HCF1 mutations have been asso-
ciated with ID and autism spectrum disorder without cobalamin
deficiency (54). Patients with N567K OGT variant did not suffer
from cobalamin deficiency and expressed a much milder form of
congenital anomalies than the severe HCF1 group, suggesting that
a degree of HCF1 activity is retained. Interestingly, we observed
an increase in full-length HCF1 protein level and decreased level
of the mature proteolytic fragment in nuclei, showing that HCF1
processing is affected in cellulo, albeit with retention of some ac-
tivity. Surprisingly, the expression of the transcriptional factor
GABPA downstream of HCF1 was increased indicating that the
N567K mutation in OGT could translate into moderate molecular
changes downstream of HCF1. The opposite effect, decreased
expression of GABPA, was detected upon overexpression of the
HCF1 N-terminal fragment (HCFN) (68). GABPA belongs to the
E-26 family of DNA binding factors and regulates expression of
several proteins required for mitochondrial DNA transcription
and replication (85). Moreover, GABPA modulates the expres-
sion of genes involved in cell cycle control, apoptosis, differenti-
ation, and hormonal regulation. Its importance in early embryonic
development was demonstrated in knockout mouse studies (86).
However, there is no established link between GABPA and neu-
rodevelopment. Furthermore, expression of several other tran-
scriptional factors targeted by HCF1—such as Creb1, E2F4, Krox-2,
Sin3a, Thap2, and Zfp143—were found unaltered, suggesting that
partial abrogation of HCF1 cleavage may affect just a small subset
of targets, whose expression is influenced by the altered ratio of
proteolytically cleaved and uncleaved HCF1.
While OGT is critical for mESC maintenance of pluripotency

and differentiation, we have detected no difference at the level
of pluripotency markers, Sox2 and Oct4, between 3HA-OGTWT

and 3HA-OGTN567K mESCs. The pluripotency factor Sox-2 is
O-GlcNAc modified at Ser248 (87) and this posttranslational
modification is indispensable for sustaining pluripotency. How-
ever, its O-GlcNAc modification is not required for differentiation,
with cells expressing an O-GlcNAc–deficient mutant version of
Sox2 exhibited enhanced reprogramming ability (87). Furthermore,
mESCs expressing O-GlcNAc–deficient Sox2 displayed changes in
their transcriptional network, specifically increasing the expression
of genes vital to maintain pluripotency (87). It is feasible that a
similar mechanism is responsible to compensate for pluripotency
defects induced by the N567K OGT mutation.
A Drosophila model of the N567K OGT mutation showed

reduced protein O-GlcNAcylation. However, the abundance of
O-GlcNAc–modified proteins was similar in 3HA-OGTWT and
3HA-OGTN567K mESCs. Interestingly, we observed decreased
OGA protein levels as a compensatory regulatory mechanism
responsible for maintaining protein O-GlcNAc levels in undif-
ferentiated mESCs. Our finding is in line with previous data
reported on patient-derived cell lines carrying XLID mutations
in the TPR domain of OGT (42, 43). Although there is no evi-
dence for a link between OGA and XLID, given the role of
OGA in regulating transcription (88–91), it cannot be excluded
that changes in OGA levels directly contribute to the XLID
phenotype.
In agreement with previous studies implying a requirement for

OGT function in normal neuron differentiation, morphology,
and health (27, 37, 92–94), abnormal OGT activity in 3HA-
OGTN567K cells resulted in reduced neurite outgrowth. These
data suggest a possible mechanistic link between the mutation and
the microcephaly and neurodevelopmental cognitive impairments
observed in the patients.
In summary, we have shown that impaired catalytic activity of

OGT leads to neurodevelopmental defects in humans, through
combined downstream effects of impaired OGT activity and
reduced HCF1 proteolytic processing. Further studies are re-
quired to define the mechanisms downstream of impaired OGT
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Fig. 4. N567K mutation leads to defects in HCF1 processing and downstream gene expression in 3HA-OGTN567K pluripotent mESCs. (A) Immunoblots showing
OGT, OGA, and protein O-GlcNAcylation (RL2) levels in 3HA-OGTWT and 3HA-OGTN567K undifferentiated mESCs. (B) Quantification of immunoblots of global
protein O-GlcNAcylation, OGA, and OGT protein level in undifferentiated mESCs normalized to tubulin signal. n = 3, mean ± SD. Unpaired t test. **P = 0.0049.
(C) 3HA-OGTN567K mESCs show impaired HCF1 proteolytic cleavage. Western blot analysis for HCF1, tubulin (cytoplasmic marker), and Laminin B1 (nuclear
marker) indicates decreased level of proteolytic fragments of HCF1 in 3HA-OGTN567K compared with 3HA-OGTWT mESCs. (D) Quantification of immunoblots
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catalytic activity that affect neurodevelopment resulting in intellectual
disability.

Materials and Methods
The study was approved by the University of Dundee Institutional Risk As-
sessment committee, and 1 of each participants’ parents provided written,
informed consent. The DDD study has UK Research Ethics Committee (REC)
approval (10/H0305/83, granted by the Cambridge South Research Ethic
Committee, and GEN/284/12 granted by the Republic of Ireland REC).

X-Inactivation Analysis. To determine if X chromosome inactivation occurred
randomly or nonrandomly, the ratio of methylated and unmethylated ma-
ternal and paternal X chromosomes was determined. (SI Appendix, Fig. S1).
Sites are methylated on the inactive X chromosome and unmethylated on
the active X chromosome. The method utilizes the androgen receptor se-
quence that is encoded on the X chromosome (Xq11.2-q12) and contains a
highly polymorphic polyglutamine (CAG) trinucleotide repeat in exon 1.
There are 20 alleles of androgen receptor, with 11 to 31 repeats reported in
the general population and 85 to 90% of patients are heterozygous for this
locus, thus suitable for X-inactivation analysis. For experimental procedure,
see SI Appendix, SI Materials and Methods.

Structure Solution. Crystallization of truncated OGTWT/N567K (residues 323–
1044) was performed as described previously (57) (for protein expression,
purification, and crystallization, see SI Appendix, SI Materials and Methods).
The structure was solved by molecular replacement using the structure for
OGTWT [PDB ID code 5C1D (57)] as the search model. The resulting model
was manually refined using Coot (95) and REFMAC (96), respectively. The
editing and refinement of the model was iterated until it was in complete
agreement with the data. Scaling and model building statistics can be seen
in Table 2.

Enzyme Activity Assays. Michaelis–Menten kinetics of OGT were measured
using a fluorometric assay, as described previously (97), with the exception
of reduced reaction volume of 25 μL and usage of 384-well plate. As ac-
ceptor substrate, P1 (KKVPVSRA) and P2 (KKVAVSRA) were used. Additional
O-GlcNAcylation assays were performed on TAB1 protein (residues 7–420).
Proteolytic assays were performed as described previously (43), except a
noncleavable HCF1-rep1 fragment was used instead of OGA treatment as
the negative control. For further details, see SI Appendix, SI Materials
and Methods.

mESC Culture. mESC AW2 line was acquired from the MRC Centre for Re-
generativeMedicine, Institute for StemCell Research, University of Edinburgh
(98). mESCs were cultured in an undifferentiated state in 0.1% gelatin
(wt/vol)-coated plates in GMEM BHK-21 supplemented with 10% FBS (vol/vol),
0.1 mM MEM nonessential amino acids, 1 mM sodium pyruvate, 0.1 mM
2-mercaptoethanol, and 100 units/mL LIF at 37 °C in 5% CO2. For differenti-
ation assays, cells were cultured following a previously published protocol
(99). Briefly, cells were cultured in DMEM and F12 media mixed at 1:1 ratio
(vol/vol), supplemented with modified N2 (25 mg/mL insulin, 100 μg/mL apo-
transferrin, 6 ng/mL progesterone, 16 μg/mL putrescine, 30 nM sodium sel-
enite, and 50 μg/mL BSA fraction) and neurobasal supplement B27. Medium
was renewed every 2 d. For generation of CRISPR/Cas9 lines, Immunocyto-
chemistry, Western blotting, and qPCR analyses details are provided in SI
Appendix, SI Materials and Methods.

Drosophila Husbandry, Microinjection, and Genetics. Fly stocks were main-
tained on Nutri-Fly Bloomington Formulation fly food at 25 °C. Vasa::Cas9
(#51323), sxc1,bw1,sp1/SM5 (#3058) and Df(2R)BSC630/CyO (#25705) stocks
were obtained from the Bloomington Drosophila Stock Centre. The sxc hypo-
morphic allele, sxcH537A, was described in ref. 63. The sxcN595K Drosophila lines
were generated by CRISPR/Cas9 mutagenesis, as described in SI Appendix, SI
Materials and Methods.

Western Blotting from Drosophila Samples. Sample preparation of embryos
and fly heads and Western blotting were performed as described in SI Ap-
pendix, SI Materials and Methods.
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