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The adoptive transfer of T cells expressing chimeric antigen receptors (CARs) through

genetic engineering is one of the most promising new therapies for treating cancer

patients. A robust CAR T cell-mediated anti-tumor response requires the coordination

of nutrient and energy supplies with CAR T cell expansion and function. However,

the high metabolic demands of tumor cells compromise the function of CAR T cells

by competing for nutrients within the tumor microenvironment (TME). To substantially

improve clinical outcomes of CAR T immunotherapy while treating solid tumors, it

is essential to metabolically prepare CAR T cells to overcome the metabolic barriers

imposed by the TME. In this review, we discuss a potential metabolism toolbox to improve

the metabolic fitness of CAR T cells and maximize the efficacy of CAR T therapy.

Keywords: immunotherapy, metabolism, chimeric antigen receptor (CAR), tumor microenvironment (TME),

anti-tumor immune response

CANCER CELL METABOLIC PROGRAM

Since cancer cells must constantly proliferate, they must also continuously generate new biomass.
This in turn requires a substantially different metabolic program than that of non-proliferating
somatic cells. Most non-proliferating cells utilize oxidative phosphorylation (OXPHOS) to
efficiently extract ATP from pyruvate, while cancer cells reduce the majority pyruvate into lactate, a
process termed aerobic glycolysis or “the Warburg Effect” (1). In 1956, Otto Warburg observed the
tendency of cancer cells to metabolize glucose into lactate instead of carbon dioxide and concluded
that cancer was a disease of damaged respiration (2). While not all of Warburg’s conclusions have
stood the test of time, it holds true that metabolism is a critical component of oncogenesis. Even if
a cell has developed mutations to overcome the normal regulation of proliferation, it also requires
a metabolic program that will allow the cell to synthesize all the molecules required for a new cell.
Metabolism is so critical to oncogenesis that the most commonly mutated pathways, including Ras,
Phosphoinositide 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTORC1), hypoxia
inducible factor 1 (HIF-1), proto-oncogene MYC (c-MYC), and p53, are key metabolic regulators.
HIF-1 and c-MYC in particular act in concert to express glucose and lactate transport proteins
while diverting pyruvate away from OXPHOS and toward lactate production (3–5). While this
method does not maximize the amount of ATP that can be extracted from glucose, it is none
the less advantageous for proliferating cells. By keeping glucose derived carbon out of the TCA
cycle, additional carbons are made available for lipid, protein and especially nucleotide synthesis
(1, 6, 7). Sequential activation of PI3K, followed by Akt and mTORC1, are also able to aid
cancer cells in capturing glucose from the environment, as well as catabolic metabolites from the
mitochondria. Akt activates hexokinase and phophofructokinase-1, to retain glucose and commit
it to further glycolysis, as well as ATP-citrate lyase, to convert mitochondrial citrate into cytosolic
acetyl-CoA for lipid synthesis (7, 8). Finally, mTORC1 enhances mitochondrial biosynthesis to take
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oxaloacetate and α-ketoglutarate (α-KG) and convert them into
amino acids for protein synthesis (7). Alternative sources of
carbon can support growth in cell size, but glucose is required
for robust DNA synthesis and concomitant cell cycle progression
(9). The other major carbon and energy source is glutamine.
Upon being metabolized by the cell, glutamine is shuttled into
the TCA cycle to make α-KG for the production of amino
acids, or citrate for the production of lipids (1, 6). Loss of p53
additionally allows malate to leave the TCA cycle to be converted
into pyruvate, generating additional NADPH, another necessity
for nucleotide synthesis (10). Reduction of pyruvate into lactate
serves to regenerate NAD+ for further glycolysis while also
conditioning the extracellular space (11).

The disorganized structure of a solid tumor means that it is
not properly enervated by blood vessels. Cells located farther
from the blood vessels experience hypoxia, nutrient deprivation
and acidosis (3, 12). Cancer cells experiencing nutrient
deprivation must rely on alternative metabolites or methods
of nutrient acquisition. Ras expressing cancer cells may use
macropinocytosis to scavenge nutrients from the surrounding
milieu. Further, Ras driven cells utilize autophagy to degrade
unnecessary cellular components into small molecule nutrients
(12). Alternatively, hypoxia re-enforces glycolytic generation of
lactate, while also shunting glutamine toward lipid genesis (3, 12).
Finally, lactate is associated with several oncogenic processes,
such as angiogenesis, cell migration and immune suppression
(5). Not strictly a waste product, cells that experience chronic
acidosis may take up lactate for gluconeogenesis and use in
oxidative phosphorylation (11). Thus, as a tumor progresses,
cancer cells condition the microenvironment, creating unique
selection pressures and contributing to further heterogeneity and
metabolic derangement.

T CELL METABOLIC PROGRAM

T cells play a key role in mounting a robust, antigen specific
adaptive immunity against invading pathogens and tumor. Upon
stimulation of antigen receptors, naïve T (Tn) cells rapidly transit
from a quiescent to an active state that begins with a 24 h
growth phase followed by massive proliferation, differentiation,
and migration. To elicit a robust immune response, T cells
can differentiate into diverse functional subsets. Depending on
the cytokine milieu of the microenvironment, active CD4+

T cells can differentiate into immune suppressive regulatory
T (Treg) cells or inflammatory T effector cells, such as T
helper TH1, TH2, TH9, TH17 and follicular helper T (Tfh).
On the other hand, active CD8+ T cells mainly differentiate
into CD8+ effector T (Teff) cells, also referred as cytotoxic T
lymphocytes (CTL). Following pathogen clearance, the majority
of the effector cells die through apoptosis while the remaining
cells survive to form a population of long-livedmemory T (Tmem)
cells, responsible for immunity upon subsequent challenges
to the same pathogen. Tmem cells are composed of distinct
subsets including stem memory cells (Tscm), central memory
cells (Tcm), and effector memory cells (Tem). Tscm cells exhibit
a naïve like phenotype (CD44−CD62L+/CD45RA+), express

interleukin-2 receptor (IL-2R) β and the chemokine C-X-C
motif receptor 3 (CXCR3), representing the earliest and long-
lasting developmental stage of Tmem cells. Tscm cells have a
capacity to self-renew and generate the entire spectrum of more
differentiated cells. Tcm cells are CD62L+, reside in lymph nodes
and have limited or no effector function, but they proliferate
and become effector cells upon secondary stimulation. These
cells represent an intermediate population between Tscm cells
and Tem cells. Tem cells are CD62L−, are the progenitor cells
prone to differentiate into Teff cells upon secondary stimulation.
Therefore, Tem are responsible for protective memory, and
migrate into inflammatory tissues to elicit an immediate response
against antigens (13).

T cell activation and differentiation are accompanied by
dramatic shifts in cellular metabolic programs which fulfill
their bioenergetic, biosynthetic and redox demands (14–19).
Essentially, different phenotypic and functional T cell subsets
are characterized by unique metabolic demands, which are
tightly linked with immune modulatory signaling cascades.
Specifically, quiescent Tn and Tmem cells rely on fatty acid
oxidation (FAO) and OXPHOS to maintain their basic energy
level, cellular function and viability (20, 21). In addition,
heightened glycerol uptake and triglyceride synthesis also play
an important role in promoting memory CD8+ T cells (22, 23).
Overall, active T cells predominantly engage in aerobic glycolysis,
the pentose phosphate pathway (PPP) and glutaminolysis to
drive proliferation and subsequent effector functions (20, 24–
28). However, it remains unclear whether a shift in glucose
metabolism promotes activated T cells to become long-lived
Tmem cells. It has recently been suggested that persistently
heightened glycolysis in Teff cells compromises the formation of
long-lived memory cells by driving T cells toward a terminally
differentiated state, resulting in a failure to survive upon adoptive
cell transfer, whereas a moderately dampened glycolysis supports
the generation of long-lived memory CD8+ T cells and enhances
anti-tumor immune response (29, 30). CD4+ effector T cells
including TH1, TH2, TH9, TH17, and Tfh cells display heightened
glycolysis, whereas FAO activity supports the differentiation and
function of Treg cells (31–37). Conversely, heightened aerobic
glycolysis is eventually required to drive Teff cells proliferation
and differentiation into cytotoxic T cells (38).

Catabolism of glucose and glutamine generates energy,
provides reducing power, and donates carbon and nitrogen to
biosynthetic building blocks. During the sequential reactions
of aerobic glycolysis, the breakdown of glucose into lactate
generates ATP and intermediate metabolites, many of which
are channeled into the biosynthesis of amino acids, lipids
and nucleotide. Branching from glycolysis, the PPP starts
from glucose-6-phosphate, an immediate metabolic product of
glucose, and produces NADPH in the oxidative phase as well as
five-carbon sugars in non-oxidative phase, the latter of which can
feed back into glycolysis or provide precursors for nucleotides.
Meanwhile, NADPH is required for modulating redox balance
and cholesterol biosynthesis (17, 20, 39). During glutaminolysis,
glutamine is converted to glutamate and subsequently to α-KG,
which serves as an important anaplerotic substrate of the TCA
cycle and fuels mitochondrial ATP production. As a major source
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of carbon and nitrogen, the catabolic products of glutamine are
funneled to support the biosynthesis of amino acids, hexosamine,
polyamine, lipids and nucleotides during T cell proliferation and
differentiation (40–43). Similar to glucose catabolism, glutamine
catabolism is composed of multiple metabolic routes branched
from glutaminolysis. Glutamate is the key branch point in
glutaminolysis and can be committed toward the biosynthesis of
glutathione (GSH) or towardmitochondrial oxidation to produce
biosynthetic precursors and ATP. Glutamate is derived from
glutamine in parallel through glutaminase, in mitochondria,
as well as through glutamine utilizing enzymes, including
amidotransferase, largely in cytosol (44–47). As such, the
subcellular compartmentalization of glutamate may represent an
important mechanism that enables a fine-tuned coordination
between branched metabolic routes to fulfill bioenergetics,
biosynthetic and redox demand in T cells (36, 48, 49).

T cell metabolic reprogramming during activation is strictly
regulated by numerous kinase signaling cascades, including
mitogen-activated protein kinase (MAPK)/extra-cellular signal-
regulated kinase (ERK), mTOR kinase, AMP-activated protein
kinase (AMPK), and PI3K/Akt (20, 24, 50–55). T cell activation
requires co stimulation of CD28 and IL-2 signaling, which
activates PI3K/AKT and mTOR to promote the uptake of
glucose and amino acids to support CD4T cell proliferation
and differentiation (31, 56). AMPK and mTOR coordinate
metabolic status with signaling transduction in regulating
T cell differentiation. TH1, TH2, and TH17 subsets, which
predominantly rely on glycolysis, maintain high mTOR activity.
Conversely, Treg cells, which require FAO, maintain high AMPK
activity. In addition, inhibition of mTOR complex 1 (mTORC1)
by rapamycin or Wnt-β-catenin signaling in T cells drives the
differentiation of Tscm cells by switching T cell metabolism
toward FAO and increasing the long term survival (57, 58).

Beyond these key kinase-signaling cascades, (HIF-1) and
the (c-Myc), are the key transcription factors that regulate
the expression of metabolic enzymes in glucose and glutamine
catabolism (20, 32, 59, 60). In addition, activating enhancer
binding protein 4 (AP4), Activating transcription factor 4
(ATF4), interferon regulatory factor 4 (IRF4), Bcl-6 are involved
in regulating the expression of various metabolic genes to
promote glycolysis and glutaminolysis as well as Teff function
(61–63). On the other hand, de novo cholesterol biosynthesis
is regulated by the dynamic regulation of nuclear receptor-
liver X Receptor (LXR) Foxo1 protein (Foxo1) and the orphan
steroid receptor, Estrogen-related receptor alpha (ERRα)
(31, 33, 40, 64, 65).

METABOLIC ANTAGONISM IN THE TME

Emerging evidence suggests that various metabolites from
various cellular compartments within the TME may serve as a
complex form of intercellular communication which modulates
tumor cell growth and response to therapy (66–72). T cell
metabolic pathways are tightly and ubiquitously linked with
T cell activation, proliferation, differentiation, and immune
functions (24, 25, 27, 31, 39, 39, 51, 56, 73). Thus, the immune
cells, particularly effector T cells, are intimately controlled by the
metabolic communications in the TME.

Nutrients Depletion
In addition to lineage-specific metabolic requirements, which are
associated with the metabolic network in the tissue-of-origin,
cancer cells display a heightened ability to capture carbon and
nitrogen sources from the TME and process these raw materials
to meet the cell’s fundamental requirements for energy, reducing
power and starting materials for biosynthesis. These general
metabolic features of cancer cells are required to support the
needs imposed by proliferation and other neoplastic features, but
at the same time often deplete the TME of nutrients (74, 75). In
addition to the consumption of key carbon and nitrogen sources,
glucose and glutamine, rapidly proliferating cancer cells and T
effector cells have a strong demand for amino acids, some of
which are not only required for protein synthesis, but are also
coupled to other anabolic routes and therefore integrated into
central carbon metabolism. However, both cancer and T effector
cells are often dependent on the uptake of extracellular substrates
from the TME, as opposed to de novo biosynthetic pathways,
which are either defective or insufficient to fulfill the demands.
It is well-documented that high expression of indoleamine-2,3-
dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) by
macrophages and cancer cells contributes to immune tolerance
by mediating the conversion of tryptophan to kynurenine
(76–79). Tryptophan depletion and kynurenine accumulation
cooperatively suppress anti-tumor immunity by reciprocally
impairing the growth and survival of T effector cells and
enhancing the development and function of Tregs and myeloid-
derived suppressor cells (MDSC) (80–85). Extracellular cysteine
and arginine are also important nutritional resources, which
both T and cancer cells compete over. Cysteine, alone with
glycine and glutamate, are the substrates for the de novo synthesis
of GSH, which is the most abundant cellular antioxidant, to
ensure physiological levels of intracellular reactive oxygen species
(ROS) (20, 36, 48, 49, 51, 73, 86, 87), While glucose and
glutamine catabolism provide glycine, glutamate and reducing
power though NADPH, proliferating cells largely obtain cysteine
from the local microenvironment (20, 86, 88–101). Lack of
cystathionase, the enzyme that converts methionine to cysteine,
may render T cells particularly vulnerable to cysteine starvation
compared to cancer cells (102). Supplementing T cells with
arginine has been shown to promote the production of pro-
inflammatory cytokines as well as a central memory phenotype
in vitro, while also enhancing the T cell-mediated antitumor
response in vivo (103–107). Conversely, the production of the
arginine-degrading enzyme, arginase, in the TME has been
known to causes arginine depletion and T cell anergy (104).
Further, nitric oxide (NO), which is produced from arginine
by nitric oxide synthases (NOS), may have cytotoxic effects
on proliferating cells in the TME. However, mutated p53 may
confer the cancer cells with enhanced resistance to NO-mediated
cytotoxicity when compared to T effector cells (108–111).

Accumulation of Immune Suppressive
Metabolic End-Products and By-Products
A fierce competition for limited carbon and nitrogen sources
between tumor and T effector cells leads to the depletion of
nutrients and accumulation of metabolic end-products and by-
products, the latter of which also has a profound impact on T
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effector cells. Accumulation of lactic acid and CO2 results in the
acidification of the TME, which suppresses T cell proliferation
and impairs cytokine production and cytotoxic activity of T
cells, while causing tumor radio resistance and promoting tumor
cell migration and invasion (112–118). The acidification of the
TME also profoundly impacts the cross-membrane transport of
sodium ions and amino acids, as well as the pro inflammatory
function of T effector cells (117–121). Additionally, tumor-
derived potassium has been shown to potentially suppress T
cell function (122). Stressed or damaged cells release ATP/ADP
and their catabolic product adenosine into the TME, the latter
of which elicits immune suppressive effects, partially through
engaging cell-surface P2 purinergic receptors-mediated signaling
in T cells (123–128). CD39 and CD73 are two ectonucleotidases
that are widely expressed in the plasma membrane of cancer cells
and cancer stromal cells and are responsible for the conversion
of ADP/ATP to AMP and AMP to adenosine. As such, CD39 and
CD73 play critical roles in determining the outcome of antitumor
immunity through shifting ATP-driven pro-inflammatory effects
to an anti-inflammatory milieu mediated by adenosine (129–
131). Adenosine deaminase (ADA) converts adenosine to
inosine, terminating adenosine-mediated immune suppressive
effects (132). Consistent with this finding, the genetic loss of
ADA results in an accumulation of adenosine, and leads to severe
combined immunodeficiency (SCID) (133, 134).

The genetic context also plays a critical role in determining
the composition of immunomodulatory metabolites in the
TME, which differs dramatically in tumors with or without
mutations in specific metabolic enzymes (135–137). R-2-
hydroxyglutarate (2HG), which is enriched in tumors with gain-
of-function isocitrate dehydrogenase 1/2 mutations, suppresses
T cell activation and differentiation. Intriguingly, S-2HG (the
other enantiomer of 2HG) supplement greatly enhances the
anti-tumor capacity of adoptively transferred T cells (138).
Tumors with succinate dehydrogenase (SDH) or fumarase
mutations display elevated levels of succinate and fumarate,
respectively. While the accumulation of intracellular 2HG,
succinate and fumarate (often referred as onco-metabolites) may
drive transformation in a tumor intrinsic manner, all these
metabolites may indirectly contribute to tumorigenesis through
their immunomodulatory effects (139, 140). A cell permeable
form of fumarate, dimethyl fumarate (DMF), is the active
ingredient of BG-12/TECFIDERA and FUMADERM, which
have been widely used for treating autoimmune disorders (141–
143). The anti-inflammatory activity of DMF has been partially
attributed to its effect on suppressing T effector functions (36,
144, 145).

Depending on the nature of the metabolic stress imposed
by the TME, cancer cells readily engage an array of signaling
responses that are largely orchestrated by AMPK, mTOR or
transcriptional factors, such as HIF1α, nuclear factor-like 2
(Nrf2), and general control non-derepressible 2 (GCN2). These
stress responses are not only adaptive, but also cytoprotective
and oncogenic, thus rendering cancer cells resistant to apoptosis
and favoring the development of more aggressive, invasive and
malignant phenotypes (146–150). Similarly, metabolic stresses
favor the development of immune suppressive regulatory T (Treg)

cells and tumor associated macrophages (TAM) (31, 32, 151–
154). However, metabolic stresses are less tolerated in quickly
proliferating T effector cells, leading to more cell death as well
as less proliferation and cytokine production (14, 18, 39, 155–
158). To survive, expand and exert robust anti-tumor activities
in the TME, Teff cells must efficiently overcome the metabolic
stress caused by the depletion of nutrients and accumulation of
immune suppressive metabolites (Figure 1B). Recent research
suggests that, the transfer of less differentiated Tmem subsets
results in greater expansion, persistence and anti-tumor efficacy
than terminally differentiated Teff cells. In particular, Tscm has a
robust capacity for self-renewal and functional plasticity, though
further differentiation into Tcm, Tem, and Teff subsets, thus
providing a persistent anti-tumor immunity. Therefore, these
cells could effectively compete with cancer stem cells over time to
eradicate the tumor mass (159–161). Overall, less differentiated
Tmem cells require increased mitochondrial FAO and spare
respiratory capacity (SRC) for their long term survival and
persistence (25, 162, 163). Clearly, the metabolic fitness of T cells
is essential for successful adoptive immunotherapy.

METABOLIC OPTIMIZATION OF THE
CLINICAL MANUFACTURE AND
APPLICATION OF CAR T CELLS

The recent breakthroughs of CD19 CAR T cell therapies to
cure hematologic malignancies provide an exciting promise of
extending this approach to solid tumors (164, 165). However,
a critical barrier to using CAR T therapy for treating solid
tumors that express appropriate antigens is the tumor’s
hostile microenvironment. A plethora of immunosuppressive
mechanisms imposed by tumor cells suppress T cell proliferation,
survival and effector function (155–169). In addition to
the cytokine-mediated and cell-surface receptor-mediated
signals that are essential for suppressing T cell functions
and responses, the TME represents a dramatic example of
metabolic derangement. Insufficient tumor vascularization
due to disorganized blood vessel networks leads to hypoxia,
lack of nutrients, acidosis, and the accumulation of metabolic
waste and free radicals (170, 171). In addition, the increased
nutrient and oxygen demands of tumor cells imposed by
heightened oncogenic signaling further aggravates the
metabolic stresses that suppress effector T cells function
(6, 7, 46, 74, 75, 155, 169, 172, 173). As such, a rational and
effective CAR T immunotherapy for solid tumors needs to
integrate novel strategies which improve T cell metabolic fitness
to overcome metabolic stresses imposed by the TME.

The standard manufacturing process of CAR T cells starts
by obtaining the patient’s peripheral blood mononuclear cells
(PBMC) through leukapheresis, followed by T cell enrichment,
activation and genemodification with viral or non-viral methods.
These genetically modified T cells are then expanded to the
required cell numbers for therapy, and then formulated and/or
cryopreserved before infusion into the patient (Figure 2). The
production of CAR T cells requires quality control testing
throughout the entire process and is subjected to Good
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FIGURE 1 | (A) CART design and structure. (B) Metabolic antagonism between tumor and CAR T cells in the tumor microenvironment (TME). Tumor cells may

suppress CAR T cells proliferation and function by competing for key nutrients with CAR T cells and excreting immune-suppressive metabolites into the TME.

Manufacturing Practices (GMP) guidelines (174–177). We
envision using the following metabolic strategies to optimize the
manufacturing process and maximize the therapeutic efficacy of
CAR T cells.

Tumor Tissue Specimen Collection Before
Leukapheresis
The personalized nature of CAR T therapy requires a
patient-tailored strategy to ensure the robustness and
reproducibility of personalized cell products. Whenever
biopsy or surgery is applicable, a step-wise system of metabolic
and analytic assessment is needed to determine the in situ
immunomodulatory metabolic landscape in human tumor tissue
specimens. Recently, Stable Isotope Resolved Metabolomics
(SIRM) has been applied to assess the metabolic activities
of thin tumor tissue slices, an adaptation of the original
method of Otto Warburg’s tissue slice technique (178–180).
Along with conventional untargeted metabolomics, SIRM
will provide complementary information, untargeted high-
resolution mapping of the metabolic fate of carbon and nitrogen
atoms from labeled precursors as well as quantification of
nutrients and immune modulatory metabolites. In addition,
the expression profile and immune modulatory impacts can
be further assessed by combining RNAseq and Metabolomics-
edited Transcriptomic Analysis (META) (181, 182); Using
patient-derived tissue slides in studies preserves the fidelity of
the original native cellular architecture and metabolic profiling
on an individual patient basis. Integration of the above proposed
approaches is poised to comprehensively profile the landscape

of immunomodulatory metabolism in the TME, which may
facilitate complementary metabolic improvements in the
following steps of the manufacturing process of CAR T cells.

T Cell Activation, Genetic Modification, and
Expansion
CARs are generated by combining the antigen-binding region
of a monoclonal antibody with key stone intracellular-signaling
domains. It consists of an extracellular targeting domain that
recognizes a tumor specific antigen, which is derived from
a single-chain variable fragment (scFv) of the variable heavy
and variable light chains from a specific monoclonal antibody.
When it is expressed on the surface of a T cell, the targeting
domain allows CAR T cells to recognize and bind to the
antigen that is presented by cancer cells. The intracellular
signaling domain usually originates from the signal transduction
subunit of co-stimulatory receptors, such as 4-1BB and CD28,
which transduce extracellular ligand binding signal into CAR
T cells to initiate the activation of downstream signaling
cascades. CAR structure has been improved from first-generation
CARs, which only had the CD3ζ signaling domain, to next
generation CARs, which link the signaling endo domains of
CD28, 4-1BB, and/or OX40 to provide co-stimulation signal
(signal 2), which is required for optimal T cell activation
(Figure 1A) (183–185). Optimal activation, gene transfer and
culture conditions are essential to ensure the required cell
number and quality are achieved for CAR T cell therapy. Due
to the personalized nature of CAR T therapies, the degree
of cell amplification, differentiation and functional activation
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FIGURE 2 | Metabolic tool box of the CAR T cell manufacturing process and therapy. A variety of metabolic strategies are proposed to be integrated into standard

work flow to optimize the manufacturing process and maximize the therapeutic efficacy of CAR T cells.

can differ significantly from patient to patient. A patient
tailored nutritional formulation for cell culture media may
improve the robustness and reproducibility of cell expansion.
In addition, emerging evidence suggests that the formula for
commercial media does not truly reflect nutrient composition
in a physiological context, which is required to ensure the
metabolic fitness of cells in vivo (186–188). CAR T cells with
co-stimulatory domain 4-1BB display higher mitochondrial
metabolic activity than cells with a CD28 co-stimulatory
domain (30). Consistent with this finding, mitochondrial
characteristics including biogenesis and membrane potential
have been suggested as key indicators for metabolic fitness and
effector function in T cells (163, 189). Enhancing mitochondrial
biogenesis through pharmacological or genetic approaches, or by
enriching for cells with low mitochondrial membrane potential
through cell sorting significantly improves T cell-mediated anti-
tumor activities in vivo (163, 189–192). Conceivably, nutritional
formulations that are tailored to meet the metabolic preferences
of cells with different co-stimulatory domains may further
enhance the metabolic robustness of CAR T cells.

Immune effector cells have evolved to respond to fluctuations
in environmental nutrient levels and thus are able to adapt
to environments with either sufficient or insufficient nutrient
supply (156). We reason that the pre-adaption of CAR T cells
in a conditional media that reproduces the in vivo metabolic
environment of tumors may improve anti-tumor response
in vivo. Given that blood flow and oxygen concentration fluctuate

in solid tumors, the metabolic stress imposed on CAR T cells
may also fluctuate in the TME (193, 194). As such, a fine-
tuned adjustment of the severity, duration and frequency of
metabolic stress may better recapitulate the metabolic conditions
in the TME. Interestingly, transient glutamine restriction in
vitro via either short-term nutrient starvation or metabolic
inhibitor treatment enables a robust antitumor activity of
adoptively transferred T effector cells in mouse models of
immunotherapy (47, 195–197).

The immune cells response to the changes in the tumor’s
metabolic microenvironment represents a mechanism of
“metabolic checkpoint” that coordinates metabolic status with
cellular signaling, and in turn, determines immune function
(14). Signaling kinases and transcription factors, such as AMPK
and HIF1α can mediate adaptive responses that rewire T cell
metabolism to determine immune function. HIF1α-dependent
glycolytic pathway is preferentially enhanced in TH17 cells than
Treg cells. Ablation of HIF1α or pharmacological inhibition
of glycolysis reciprocally reduces TH17 cells and induce Treg

cells differentiation. However, AMPK enhances Treg cells
differentiation through negatively regulating OXPHOS (32, 198–
205). Intrinsically edited signaling and transcriptional programs
may ensure the engagement of fine-tuned metabolic programs to
support T cell proliferation (associated with effector functions)
or dormancy (associated with memory phenotypes) in response
to the changing microenvironment (206). We reason that the
engineering of the CAR by integrating a stress response signaling
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module may ensure a fine-tuned metabolic adaptation of T cells
in the TME.

The immunosuppressive TME is one of the critical barriers
for successful CAR T treatment in the solid tumor. The solid
tumor is composed of lymphatic vessels, fibroblasts, infiltrated
immune cells, stroma cells, and extracellularmatrix (ECM)which
constitute the complex TME. During tumor progression and
as a result of the heightened glycolytic metabolism of cancer
cells, solid tumors are subject to depleted nutrients, acidosis,
and hypoxic conditions due to aberrant vascularization. Since
hypoxia is a crucial aspect of the TME, targeting hypoxia could
be an important strategy for promoting CAR T cell therapy in
the solid tumor. Hypoxia induces the stabilization of the HIF-
1α transcription factor, which regulates T cell metabolism and
function. A recent study designed a novel CAR scaffold that
includes the oxygen sensitive domain of HIF1α and provided a
proof of concept for engineering microenvironment responsive
CAR T cells. T cells which express this engineered HIF1-CAR are
cable of responding to a hypoxic environment to display robust
cytolytic activity in vitro (Figure 3) (207). In addition, CAR T
cells that express distinct CAR co-stimulatory domains display
different metabolic characters, which in turn impact memory
phenotypes. 4-1BBζ CAR T cells exhibit enhanced mitochondrial
SRC and mitochondrial biogenesis, which is associated with
enhanced central memory phenotypes. Inclusion of CD28ζ in
the CAR structure promotes effector memory differentiation
and results in increased aerobic glycolysis in CAR T cells (30).
In addition to the approach of engineering CAR structure,
cytokine formulation can be optimized to modulate metabolic
programs and promote the Tscm and Tcm phenotype that is
associated with enhanced CAR T cell persistence and anti-tumor
immunity in vivo (208). T cells, activated with anti-CD3/CD28
antibody, followed by expansion in the presence of IL-15 and
IL-7, not only mimic a more Tscm like phenotype, but and also
exhibit increased production of IFNγ, TNFα, and IL-2 as well as
cytolytic activity against target cells expressing the CAR specific
antigen (209, 210). It has been suggested that IL-15 promotes
SRC and FAO by upregulating carnitine palmitoyl transferase, a
rate-limiting metabolic enzyme that controls FAO. Since Tmem

cells preferentially engage OXPHOS rather than glycolysis, IL-15
may promote Tmem cell differentiation and bioenergetic stability
partially by regulating mitochondrial metabolism (162).

CAR T Cell Preservation
The nutritional optimization of preservative solutions is an
important factor for ensuring successful reperfusion and CAR
T therapy. As such, a detailed understanding of the metabolic
impact on cells during short-/long-term storage or during the
reperfusion period is required. The nutritional formulation
requires the capability to regenerate ATP, buffer ions and
scavenge free radicals in CAR T cells during the period of
preservation (211–215). Finally, any inconsistency between the
nutrient formulations that are utilized for preservation and those
used for ex vivo cell manipulation and expansion may potentially
render the cells more susceptible to preservation damage.

CAR T Cell Infusion and Homing to Tumor
Trafficking of T cells into the site of the tumor is required for
achieving an optimal CAR T therapeutic response (216, 217).
Novel synthetic biology approaches are needed to engineer T
cells to logically respond to metabolites that are enriched in
the TME, ensuring a fine-tuned tumor recognition and homing
response (218, 219). For instance, adenosine is enriched in the
TME and suppresses the T cell response partially by engaging
cell-surface purinergic receptors-mediated signaling in T cells
(220, 221). One theoretical strategy is to engineer an adenosine-
responding CAR by fusing the extracellular domain of adenosine
receptor to intracellular costimulatory domains, thus artificially
switching a normally suppressive signal to an activating signal.
We envision that a dual CAR system, with one for a tumor
antigen and one for a tumor-associated metabolite, may further
enhance the specificity and responsiveness of CAR T cells that
may be deployed against tumors in a wide range of sites.

Tumor Killing in situ and Safety Control
The capacity for cell proliferation and persistence in the TME
is the best predictor of clinical efficacy in CAR T therapy.
Nutritional supplements may overcome the metabolically
suppressive microenvironment and may enable CAR T cells
to persist and expand, ensuring the optimal “effector vs.
target” ratio for the clearance of the tumor in vivo. L-
arginine is considered a conditionally essential amino acid
and supplementation with L-arginine enhances the antitumor
response of adoptively transferred T cells in animal models
(107). Clearly, arginine is also a metabolic vulnerability of
cancer cells in the TME, since circulating arginine is essential
for supporting tumor growth (222, 223). Therefore, we need
to understand the impact of supplemental nutrients on both
T cells and tumor cells to better stratify this approach
in the future.

The genetic and enzymatic approaches that enable the
conversion of immune suppressive metabolites to either inert
compounds or pro-inflammatory compounds are promising
strategies to reprogram metabolic TME. The concentration
of lactate in vertebrate plasma ranges from 1 to 30mM
under physiological and pathological conditions (224). While
lactate accumulated in the TME is generally considered as
metabolic “waste,” muscle cells, neurons and certain tumor
cells are known to be able to take up and oxidize lactate
(225–227). Consistent with these findings, emerging evidence
suggests that lactate is a key carbon source in vivo and
can be oxidized in the mitochondria to generate energy and
feed into cataplerotic routes of the TCA cycle (228–236).
Enforced expression of phosphoenolpyruvate carboxykinase 1
(PCK1), which presumably increases gluconeogenesis from
lactate and thus alleviates the stress from glucose restriction
in the TME, has been shown to enhance anti-tumor T
cell responses in animal models (167). Also, we envision
a rewired lactate flux, by enforcing LDHB expression, may
render T cells capable of utilizing tumor-derived lactate, and
thus may strengthen the metabolic fitness of CAR T cells
in the TME.
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FIGURE 3 | Important strategy for promoting CAR T cell therapy in immune suppressive TME. Manipulations during CAR T manufacturing HIF-CAR, TAN-CAR, and

iCAR will promote CAR T function in immune suppressive TME. HIF-CAR T cells are activated by low oxygen concentrations. Inhibitory CAR (iCAR) limits T cell

activation in the presence of off-target cells. Tandem CARs (Tan CAR) requires bispecific activation which reduces off target effects. A2AR−/− CAR T cells are

resistant to adenosine mediated INF-γ suppression.

One recent study has demonstrated that the systemic delivery
of an enzyme that efficiently depletes kynurenine in the TME
can enhance the T cell-mediated antitumor immunity (237).
Similarly, polyethylene glycol–conjugated adenosine deaminase
(PEG-ADA) and ADA gene therapies have been successfully
employed to treat ADA-SCID patients (238, 239). Since
only immature and transformed T cells display high ADA
activity (240–242), systemic ADA treatment through PEG-ADA
supplementation may be a new, complementary strategy to
optimize the potency and durability of CAR T therapy. It is
also conceivable that an engineered oncolytic virus or CAR
T cells which express ADA may offer additional strategies to
locally deliver ADA into the TME. Nucleoside transporters
can rapidly remove adenosine from the extracellular nucleoside
pool and direct adenosine into nucleoside salvage to support
RNA/DNA synthesis. Thus, expression of high affinity nucleoside
transporters may divert adenosine from eliciting an immune-
suppressive purinergic signaling response into promoting T
cell proliferation (243, 244). Similarly, genetic strategies which
enforce the expression and affinity of transports of the key
carbon and nitrogen donors (i.e., glucose and glutamine) may
confer a selective advantage on T cells over tumor cells in
the TME.

Another promising therapeutic strategy for remodeling the
microenvironment is tomodulate ion and pH balances. Reducing
the potassium level through enforced expression of potassium
channels in T cells can enhance their antitumor activity (122).
A lactate-binding compound has been recently developed as a
potent pharmaceutical approach for engineering metabolic flux
of lactate and normalizing the pH in vivo (245).

The naturally occurring T cell mediated response is largely
controlled through cell autonomousmechanisms. However, CAR
T therapies often lead to a series of adverse effects that may be
reduced through the fine-tuned regulation of the timing, location
and amplitude of T cell activity. The principal of the recently
developed “ON-switch” CARs can be theoretically extended by
employing “metabolic switches” to control T cell activities in
real-time (246, 247). In addition, the engineering of metabolic
enzymes to activate prodrugs has been exploited as a suicide gene
system (248–250). A similar strategy can be exploited as a “safety
switch” to enable the selective ablation of CAR T cells at will
by providing prodrugs and therefore limiting the on-target, but
off-tumor toxicities of CAR T cells (251–253).

FUTURE DIRECTIONS

Cancer cachexia, which is responsible for the death of more
than 20% of cancer patients, is characterized by dramatic body
weight loss and disproportionate wasting of skeletal muscle (254–
256). Supportive care including dietary treatment and physical
exercise that can maintain energy balance, as well as increase
insulin sensitivity, protein synthesis rate, and anti-oxidative
enzyme activity, which is beneficial for relieving symptoms of
cachexia (257–260). Similar strategies may be applied as systemic
approaches to enhance anti-tumor immunity by fostering an
optimized metabolic environment for immune cells.

The fast moving CAR T therapy field has generated
tremendous excitement and will likely change the paradigm
of therapeutic interventions for solid tumors. Manipulation of
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metabolism has been demonstrated as a potential approach
to the regulation of immune responses in various preclinical
settings. Beyond CAR T therapy, the above potential metabolic
modulations can also be considered as adjunctive therapy
together with other immunotherapies, including checkpoint
blockade and cancer vaccines (261–265). TME consists of an
intricate, highly complex and dynamic network of immune
cell subsets. Other immune cell subsets, such as natural
killer (NK) cells, TAM and MDSC are universally found in
the TME and are key players in anti-tumor immunity (266,
267). We will need to continue to decipher the essential
metabolic pathways by analyzing metabolic flux and assessing
the consequences of metabolic intervention on these pathways
in all key cellular components of the TME. Understanding
how control of (or by) metabolic pathways impacts anti-
tumor immune responses in these cell types is required to

selectively strengthen the metabolic fitness in effector T cells

and potentiate the metabolic vulnerabilities of tumor cells and
immune-suppressive cells. Finally, Strategies to improve immune
cell metabolic fitness may be applicable across a broad panel
of cancer immunotherapies including checkpoint blockade and
cancer vaccines (261–265).
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