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Abstract

Background: The lack of nonparametric statistical tests for confounding bias significantly hampers the development of robust, valid,
and generalizable predictive models in many fields of research. Here I propose the partial confounder test, which, for a given confounder
variable, probes the null hypotheses of the model being unconfounded.

Results: The test provides a strict control for type I errors and high statistical power, even for nonnormally and nonlinearly dependent
predictions, often seen in machine learning. Applying the proposed test on models trained on large-scale functional brain connectivity
data (N = 1,865) (i) reveals previously unreported confounders and (ii) shows that state-of-the-art confound mitigation approaches
may fail preventing confounder bias in several cases.

Conclusions: The proposed test (implemented in the package mlconfound; https://mlconfound.readthedocs.io) can aid the assessment
and improvement of the generalizability and validity of predictive models and, thereby, fosters the development of clinically useful
machine learning biomarkers.

Keywords: machine learning, predictive modeling, confounding bias, confounder test, conditional independence, conditional permu-
tation

� The lack of statistical tests for confounding bias
hampers the development of machine learning–based
biomarker candidates.

� The partial confounder test provides a model-agnostic
approach for quantifying confounding bias.

� It provides strict control for type I errors and high statis-
tical power with minimal assumptions.

� Deploying the test on functional brain connectivity data
reveals that confounding bias can be problematic even
if confound mitigation approaches are used.

� The test provides objective criteria to assess the
specificity, generalizability, and biomedical validity of
biomarker candidates.

Background
Predictive modelling uses multivariate statistical learning to ag-
gregate information from a set of features with the aim of pre-
dicting an unknown outcome. This approach has recently become
increasingly important in biomedical research and holds promise
for delivering biomarkers that substantially impact clinical prac-
tice and public health [1–4]. When evaluating the usefulness and
applicability of such markers, predictive performance is far from
being the only important consideration. Biomedical validity and
generalizability across contexts and populations are also funda-
mental requirements for candidate biomarkers [5–7].

Spurious, out-of-interest associations between the predictor
variables (features) and the prediction target can be detrimen-
tal to the model’s biomedical validity and generalizability. This
phenomenon is often called confounding bias [8]. Confounding
bias can be driven by various sources. For instance, measurement
artifacts (e.g., motion artifacts in magnetic resonance imaging–
based predictive models) are well known as a potential con-
founder that can bias the predictive model’s output in, among
others, Alzheimer’s disease [9], attention-deficit/hyperactivity dis-
order [10, 11], or autism spectrum disorder (ASD) [12–14]). Con-
founding bias is, however, not restricted to measurement arti-
facts. Depending on the research question, several demographic
and psychometric variables or the time of day of the data acquisi-
tion [15] can emerge as confounders. As a characteristic example,
models trained to predict intelligence [16, 17] might provide a sta-
tistically significant predictive performance by picking up solely
on age-related variance [18, 19]. Moreover, various types of sys-
tematic sampling bias, as well as stochastic group differences in
the training sample, can result in confounded models (e.g., racially
biased machine learning models [6, 20, 21]).

Confounding bias is especially problematic in population neu-
roscience studies. While large-scale multisite studies are of key
importance for developing robust machine learning markers [22],
most of the confounding effects are much more likely to occur in
such big, longer-term studies [23], and batch and center effects
may arise as additional sources of confounding bias [24, 25].

While various data-cleaning methods and dedicated prediction
algorithms may help in mitigating confounding bias [9, 13, 26–29],
effects of confounders can potentially bleed through into predic-
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tions even if they are being attempted to control for in the pre-
diction algorithm (see Supplementary Analysis 1 for an exam-
ple), and it is often unclear which variables should be consid-
ered as confounders. In a number of cases, removing or control-
ling for a confounder can remove variance of interest and com-
plicate model interpretations [24, 29, 30], rendering the choice of
confound mitigation strategy as one of the most difficult compro-
mises in predictive model development.

Powerful and robust statistical tests for quantifying confound-
ing bias in predictive models could substantially foster both the
identification of confounders to correct for and the assessment of
the effectiveness of various confound mitigation approaches. It is
tempting to think about confounding bias as the conditional depen-
dence of the model output on the observed confounder, given the
target variable. However, the proper evaluation of conditional in-
dependence among these variables is challenging. Namely, even
in the presence of a slight nonnormality and/or nonlinearity of
the involved conditional distributions, the “conditional” analogs
of the most popular bivariate nonparametric tests (like the partial
Spearman correlation; see Fig. 3) are not valid measures of con-
ditional independence. Although warnings about this issue were
given from early on [31] and received a fair amount of attention
recently [32–36], the magnitude of the problem may not be fully
appreciated in case of predictive model diagnostics, where non-
normality and nonlinearity of the model output can be frequently
seen (see Supplementary Figs. S10–S11), as a consequence of, for
example, feature-set characteristics and model regularization [37,
38].

Recently, 2 different approaches were proposed for quantifying
confounding bias [39, 40]. However, these methods either fail to
control type I error (as known in the case of balanced permuta-
tions [41, 42], used in Neto et al. [39]) or do not provide P values at
all [40]. Moreover, without some modifications, they are only ap-
plicable for categorical variables and involve refitting the model,
which may not be feasible for models with high computational
cost (e.g., when trained with nested cross-validation).

This work aims to construct a statistical test for confound-
ing bias that (i) guarantees valid type I error control for arbitrary
models, even if nonnormal and/or nonlinear dependencies are in-
volved; (ii) does not require refitting the model; and (iii) is applica-
ble for classification as well as for prediction problems and both
with numerical and categorical confounders.

Methods
Notation and background
In a predictive modeling setting, let y denote the target variable, X
denote the feature variables, ŷ denote model output (i.e., the pre-
dictions for y), and c denote a variable that is considered a con-
founder. Note that y and c must be observed during the experi-
ment, whereas ŷ is provided by the predictive model. Confound-
ing bias typically emerges in situations where X ← c → y (arrows
denoting dependence of X and y on c), although c → y is not a pre-
requisite. After fitting the predictive model, we aim to construct
predictions based on features unseen during the model training
procedure: X → ŷ so that y → ŷ. Obviously, a strong association
between ŷ and c may indicate that the model is biased; its predic-
tions are driven by the confounder rather than information about
the target variable. Assessing the simple bivariate (unconditioned)
dependence (H0 : ŷ⊥⊥c) between ŷ and c (or any of the y, ŷ, c vari-
ables) is, however, insufficient for the proper characterization of
confounding bias in predictive modeling. For instance, even if ŷ⊥⊥c
is false, ŷ might be only marginally dependent on c, due to the

dependence of both on y. In other words, if the target variable y
displays a true association to the confounder variable c, a model
that is completely blind to c (i.e., not confounded at all) might still
provide outputs ŷ that are significantly associated with c.

Conditional independence for testing confounding bias

Instead of focusing on the “unconditioned” independence be-
tween the confounder and the predictions, we shall consider the
conditional independence between ŷ and c given y (written as ŷ⊥⊥c|y),
which, by definition [43], means that P(ŷ, c|y) = P(ŷ|y)P(c|y). Test-
ing whether c is independent from ŷ, conditional on y, is essen-
tially checking whether the path c → X → ŷ has been blocked in
the prediction algorithm. The statistical test with the null hypoth-
esis H0 : ŷ⊥⊥c|y will be referred to as the partial confounder test. Of
note, although typically less useful in a predictive modeling con-
text, one might also be interested in testing ŷ⊥⊥y|c. We refer to the
corresponding test as the full confounder test.

Conditional independence—in its general form—is a funda-
mental concept in statistics with numerous biomedical applica-
tions [33, 34, 44, 45]. Recently, Shah and Peters [35] have raised
important concerns regarding conditional independence testing.
Their “no free lunch” theorem implies that, without placing some
assumptions on the joint distribution of (y, ŷ, c), conditional inde-
pendence testing is effectively impossible. In other words, neither
the full nor the partial confounder tests can be constructed so
that—for all distributions—they provide a valid type I error con-
trol and, at the same time, a nontrivial statistical power.

This result stands in strong contrast to unconditional indepen-
dence testing—where permutation tests [46, 47] provide a gen-
eral, distribution-free solution—and it has important implications
for confounder testing in predictive modeling where the distribu-
tion of the model outputs (conditioned on the target variable)—
depending on the applied machine learning model—is unknown
and often nonnormal and nonlinear. One of the trivial candidates
for the task, partial correlation, for instance assumes that all in-
volved variables are multivariate Gaussian and—as to be shown
below in a simulated example—even its Spearman-based variant
is unable to tolerate relatively small deviations from normality
and linearity.

Recently, Candès et al. [33] and, based on their work, Berrett
et al. [36] have demonstrated that valid and powerful conditional
independence tests can be constructed with inputting distribu-
tional information about only 2 (out of the 3) variables. Specifi-
cally, the conditional permutation test (CPT) of Berrett and col-
leagues [36] samples from a nonuniform distribution over the set
of possible permutations π of one of the variables, based on its
conditional distribution of the other variable. Thereby, it incorpo-
rates the information available about the conditional distribution
of interest into the permutation-based inference in a statistically
valid manner.

Like many related papers, the work of Berrett et al. [36] was for-
malized as a (semi)supervised learning approach, where X is a set
of predictors (features), y is the target variable, and c is a poten-
tial confounder (Fig. 1A). In this setting, testing the null hypoth-
esis X⊥⊥y|c aims to determine whether the features X still affect
y, when controlling for c. For instance, in genome-wide associa-
tion studies, CPT can be used to determine whether a particular
genetic variant X affects a response y such as disease status or
some other phenotype, even after controlling for the rest of the
genome, encoded in c.

In this article, a different setting is considered, where the su-
pervised learning model is already fitted (Fig. 1B) and we are fo-
cusing on model diagnostics by testing the triplet (y, ŷ, c), with the
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Figure 1: Conditional permutation testing as a tool for predictive model diagnostics. (A) Conditional permutation testing (CPT) was originally proposed
to be used on the feature variable X, target variable Y, and confounders Z, to perform statistical inference. (B) The proposed use of CPT in predictive
modeling requires the model to be fitted first, to obtain the model’s prediction ŷ on y. CPT is then utilized on the triplet (y, ŷ, c), to test hypotheses
ŷ⊥⊥c|y or y⊥⊥ŷ|c. Using CPT this way allows lifting assumptions on the prediction target. However, as shown in Fig. 3, the original can still provide
inflated P values in case of nonlinearity in the conditional distributions. False positives can be successfully eliminated by the proposed nonlinear
techniques for conditional distribution modeling (Fig. 2).

Table 1. Possibilities when testing conditional independence in
potentially biased predictive models. The table lists the 3 possible
null hypotheses (H0) and the variables where assumption about
the joint/conditional distributions is required/not required (y: pre-
diction target, ŷ: predictions, c: confounder variable).

H0
Assumption
needed for

No
assumptions

about the
distribution of

1. ŷ⊥⊥y|c Full confounder test:
model exclusively
driven by the
confounder

Q(y|c) (ŷ, y), (ŷ, c)

2. y⊥⊥c|ŷ Model captures all
variance in the
confounder (not of
interest)

Q(c|ŷ) (y, c), (y, ŷ)

3. ŷ⊥⊥c|y Partial confounder test:
model not directly
driven by the
confounder

Q(c|y) (ŷ, c), (ŷ, y)

requirement of minimal assumptions on the conditional distribu-
tion of ŷ on y and c (Fig. 1C).

Within this setting, conditional independence testing and,
specifically, the framework of conditional permutation testing al-
lows investigating 3 different null hypotheses corresponding to
the (y, ŷ, c) triplet. As listed in Table 1, testing the null hypothe-
sis y⊥⊥ŷ|c (option 1, full confounder testing) investigates whether
the predictions are likely explainable solely with the confounder
(i.e., whether the model is exclusively confounder driven). Test-
ing y⊥⊥c|ŷ (option 2) addresses whether the model captures all the
variance in c when predicting y. Testing the null hypothesis ŷ⊥⊥c|y
(option 3, partial confounder testing) examines whether the de-
pendence of the model output on the confounder can likely be
explained by the confounder’s dependence on the target variable
(i.e., whether there is any confounding bias in the model).

Option 3 (i.e., partial confounder testing) is typically of interest
when testing confounding bias of predictive models. Option 1 (i.e.,

full confounder testing) may be less useful in practice, although it
might provide valuable insights in the exploratory phase of model
construction. Option 2 does not seem appealing for model diag-
nostics, and importantly, in this case, the proposed variety of the
CPT framework does not allow constructing a test that is nonpara-
metric on ŷ. We will therefore focus on option 3 (i.e., the partial
confounder test).

In the following section, CPT is adapted for partial confounder
testing and extended with the general additive model [48] (GAM)
and multinomial logistic regression [49, 50] based conditional dis-
tribution estimations, in order to make it handle categorical data
and nonlinear dependencies between the confounder and the tar-
get variable. (For an overview of the method, see Fig. 2.)

The partial confounder test
The inner workings of the partial confounder test are summarized
in Fig. 2. In short, the test models the conditional distribution be-
tween the confounder and the target variable with a GAM—or
with an mnlogit regression, in case of a categorical confounder—
and then uses a so-called parallel-pairwise Markov chain Monte
Carlo sampler of Berrett et al. [36] that draws permutations of the
original confounder, so that the permuted variables still comply
with the estimated conditional distribution. As a result, the per-
muted “copies” of the confounder variable retain its correlation
with the target variable but eliminate any “additional” relation-
ship with the model output. The test statistic (coefficient of deter-
mination, R2) is then computed between the model output and the
original, as well as the permuted confounder variables. The orig-
inal and the permuted test statistics construct the P value as the
ratio of permuted test statistics more extreme than the original.

In detail, the partial confounder test generates a null distribu-
tion for an arbitrary predefined test statistic T(y, ŷ, c) by sampling
permutation based “copies” of the original c,

c( j)
i ∼ Q(·|yi ) (1)

where, Q(.|y) denotes the conditional distribution of c given y = yi

and j = 1, …, m indexes the “copy” of c so that

c( j) = (c( j)
1 , . . . , c( j)

n ) = (c
π

( j)
1

, . . . , c
π

( j)
n

) = cπ( j)
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Figure 2: Graphical representation of the proposed partial confounder test. The partial confounder test models the conditional distribution of the
confounder, given the target variable, with a generalized additive model (GAM). The parallel-pairwise Markov chain Monte Carlo (MCMC) sampler
draws permutations of the original confounder variable that comply with the GAM-based conditional distribution (permutation 1, 2,..., m). The test
statistic (coefficient of determination, R2) is then computed between the model output and the original, as well as the permuted confounder variables.
The original and the permuted test statistics construct the P value as the ratio of permuted test statistics more extreme than the original.
Figure source code available as jupyter notebook: https://github.com/pni-lab/mlconfound-manuscript/blob/main/simulated/overview-fig.ipynb.

is a permutation of the original vector c = (c1, . . . , cn ), with its el-
ements reordered according to the permutation π ∈ Sn, where Sn

denote the set of all permutations on the indices {1, …, n}.
As shown by Berrett et al. [36], to ensure that Equation 1 holds,

the cπ( j) copies must be drawn so that

P(π( j) = π|y, ŷ, c) = qn(cπ|y)∑
π′∈Sn

qn(cπ′ |y)
(2)

that is, according to the qn(·|y) := q(·|y1) . . . q(·|yn ) product density
corresponding to the conditional distribution Q(·|y). Note that
Equation 2 does not necessarily assume a continuous distribution.

This mechanism creates copies c(1), . . . , c(m) so that under the
null hypothesis (ŷ⊥⊥c|y), the triples

(y, ŷ, c), (y, ŷ, c(1) ), . . . , (y, ŷ, c(m) )

are all identically distributed and so are the

T(y, ŷ, c), T(y, ŷ, c(1) ), . . . , T(y, ŷ, c(m) )

test statistics, as well.
As long as the numerator of Equation 2 is nonzero for all cπ ∈

C and y ∈ Y, the conditional permutations constitute an algebraic

group; thus, as shown by Hemerik and Goeman [42], an unbiased
estimate of the P value under the null can be obtained as

p =
∑m

j=1 1{T(y, ŷ, c( j) ) ≥ T(y, ŷ, c)}
m

While the group property of the conditioned permutations pro-
vides a straightforward proof for the validity of the approach, for
an alternative verification, see the proof of Theorem 1 in Berrett
et al. [36].

The required permutations could be theoretically sampled with
a simple Metropolis–Hastings algorithm that draws uniformly
from Sn at random. However, this way, the acceptance ratio would
be extremely low, even for moderate n (except there is very low
dependence of c on y), resulting in slow mixing times. The par-
tial confounder test can be, however, efficiently implemented with
the parallelized pairwise Markov chain Monte Carlo sampler of
Berrett et al. [36] (Algorithm 1), which draws disjoint pairs in paral-
lel and decides whether or not to swap them randomly, according
to the odds ratio calculated from the conditional densities belong-
ing to the original and swapped data. The acceptance odds ratio
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of swapping indices i and j is

ln
q(c j|yi )q(ci|yj )

q(ci|yi )q(c j|yj )
= �(c j|yi ) + �(ci|yj ) − �(ci|yi ) − �(c j|yj ) (3)

where � denotes the log-likelihood.
In their Theorem 2, Berrett et al. [36] verify that the resulting

Markov chain yields the desired stationary distribution, even if the
number of steps is small.

Conditional log-likelihood

Obtaining a relatively accurate, independent estimate of Q(·|y) (of
any shape) for CPT inference is important. Berrett and colleagues
[36] recommend using a large independent sample to obtain the
log-likelihood matrix that represents the conditional distribution
Q( · |Z) or, alternatively, to reuse the data by fitting a least squares
linear regression:

c = α + βy + e (4)

As the linear regression-based method, obviously, does not handle
nonlinear relationships, I propose to apply a modeling approach
that accounts for nonlinearity. Although several nonparametric
techniques might be suitable for this purpose, many of these tend
to be greedy for large sample sizes, may lack stability, or perform
poorly with many potential predictors. Certain methods, such as
kernel methods and smoothing splines, are also very difficult to
interpret [51]—an important consideration when analyzing the
source of a confounder effect.

Here, I propose to use the GAM of Hastie and Tibshirani [48]:

c = α + β f (y) + e (5)

where the feature function f is built using penalized B-splines,
which allow us to automatically model nonlinear relationships
without having to manually try out many different transforma-
tions on each variable. The principal advantages of GAM are that
(i) the complexity of the model can be effectively regularized
trough its hyperparameters, (ii) it is able to model highly com-
plex nonlinear relationships with a potentially large number of
both numeric and categorical predictors, and (iii) it has computa-
tionally effective solver algorithms. The potential disadvantages
of GAMs are not relevant for the problem at hand or can be easily
overcome. Specifically, the possibly poor out-of-distribution gener-
alization of GAM is not problematic, as in our approach, the model
is not used for constructing out-of-distribution predictions. More-
over, as several other models, GAMs can easily overfit the data.
However, in the proposed approach, the smoothness of the GAM
model is optimized with a grid search by picking the model with
the lowest generalized cross-validation score from the models de-
fined by the default parameters as implemented in PyGAM [52]
(v0.8.0).

If we write μ = α + β f (y) and σ denotes the standard deviation
of the residual e, then the conditional distribution of interest can
be assumed to be normal with the parameters

(c|y = yi ) ∼ N {μi, σ
2}

and the log-likelihood, which is to be used in Equation 3, can be
computed simply as the log of the corresponding probability den-
sity function:

�(ci|yj ) = − 1
2

( ci − μ j

σ

)2
− ln(2πσ )

In the case of categorical c, a multinomial logistic regression (mn-
logit) model can be used to obtain D(·|y), with the extra assumption
of complete separation if y is also categorical (in order to ensure an
invertible Hessian, see, e.g., [49, 50]).

Importantly, both the GAM- and the mnlogit-based approaches
guarantee that the numerator of Equation 2 is always greater than
zero and the group property for the permutations holds.

Note that from the 3 options for conditional independence-
based null hypotheses enumerated in Table 1, the proposed ap-
proach cannot provide a test for option 2 that is assumption free
about ŷ, as the variable, on which the independence is conditional,
must be always the predictor variable in Equation 5. However, as
discussed above, this option is of low practical relevance anyway.
Pleasingly, the proposed Gaussian regression-based conditional
likelihood estimation ensures that no assumptions on ŷ have to
be made for the practically relevant options 1 and 3 (i.e., for the
full and partial confounder tests).

In theory, any predefined test statistic T can be used with the
proposed approach. The Python package mlconfound, implement-
ing the proposed full and partial confounder tests, utilizes the
coefficient of determination (R2 or pseudo-R2 in case of categor-
ical confounder or classification [53]) as a test statistic: T(y, ŷ, c) =
R2(ŷ, c) and T(y, ŷ, c( j) ) = R2(ŷ, c( j) ), which allows interpretable, 2-
tailed inference.

Validation on simulated data
Using CPT to test confounding bias in predictive modeling allows
relaxing assumptions on ŷ but—in line with the “no free lunch”
theorem, requires knowing—or putting assumptions on—the joint
distribution of the other 2 variables (y and c). Berrett et al. [36] give
a detailed analysis of the robustness of their CPT approach when
estimating the conditional distribution with reusing the tested
data via linear regression and, also, against misspecifying the con-
ditional distribution of interest to introduce nonlinearity.

Here I extend these results by performing simulations that
evaluate the GAM- and mnlogit-based approaches, in a form that is
accessible for power calculations in predictive modeling (consid-
ering various weights of the target signal in c and the confounder
and the target signals in ŷ). Moreover, I investigate the robustness
of the tests against the violation of normality and linearity of the
conditional distributions D(c|y) and D(ŷ|y).

Simulations are performed separately for the 2 proposed tests.

Simulation approach

As a first step, the target variable y is drawn randomly from a nor-
mal distribution:

y ∼ N (0, 1)

Next, the confounder signal is simulated as

c|yi ∼ fδ,ε (N (0, 1)) + wyc g(yi )

where f is a function to introduce nonnormality, namely, the sinh-
arcsinh transformation of Jones and Pewsey [54], defined as

fδ,ε (x) = sinh(δsinh−1(x) − ε )

where the parameters δ and ε control the kurtosis and skewness
of the resulting sinh-arcsinh distribution, with δ = 1 and ε = 0 pro-
ducing the identity function (i.e., no nonnormality introduced).

Moreover, nonlinearity can be introduced with the function g,
which can be simply the identity function (no nonlinearity is in-
troduced in this case) or, for instance, a sigmoid-shaped function,
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in our case:

g(x) = tanh(x)

The simulated predicted values are constructed in a similar fash-
ion but may depend on c as well:

ŷ|yi, ci ∼ fδ,ε (N (0, 1)) + wyŷ g(yi ) + wcŷ ci

Note that simulations with wcŷ = 0 produce data under the null
hypothesis of no confounding bias.

To test the implementation for categorical variables, simulated
y, ŷ, and c variables are binarized by thresholding at 0.

Simulations for comparison with partial Spearman corre-
lation and linear CPT

To demonstrate the need for the proposed GAM-based CPT ap-
proach for partial confounder testing (Fig. 3), its validity was con-
trasted to partial Spearman correlation and the linear variety
of CPT (based on Equation 4, as described by Berrett et al. [36])
with the following simulation parameters: sample size n = 1,000,
wcŷ = 0 (i.e., H0 simulations only), taking all combinations of wyc ∈
{0.5, 1, 2, 3} and wyŷ ∈ {0.5, 1, 2, 3}. Furthermore, simulations cases
with nonnormality (fδ = 0.1, ε = 2) and nonlinearity (sigmoid g) have
also been investigated for all simulation cases.

For each parameter combination, 1,000 repetitions were per-
formed and false-positive rates were calculated as the ratio of P
values smaller than α = 0.05.

The simulation cases are exemplified (with wyc = wyŷ = 2) on
the left of Fig. 3.

Simulations for evaluating power

One hundred repetitions were performed of all combinations
of the following parameter values: wyc ∈ {0.5, 1, 2, 3}, wyŷ ∈
{0.5, 1, 2, 3}, wcŷ ∈ {0, 0.2, 0.4, 0.6}, n ∈ {50, 100, 500, 1,000}. All simu-
lations were performed with both linear and sigmoid dependence
as well as with normal and nonnormal conditional distributions:
(δ, ε) = {(0.1, 2), (1, 0), (1.05, −3), (1.5, −5), (5, −10)}.

The partial confounder tests, as implemented in version 0.20.0
of the package “mlconfound,” were run with default parameters
(1,000 permutations and 50 Markov chain Monte Carlo steps to
generate the conditioned permutations) and by implying categor-
ical variables, where needed.

All code used for the simulations is available on GitHub
(https://github.com/pni-lab/mlconfound-manuscript/tree/main
/simulated).

Application on functional brain connectivity data
The usefulness of the proposed confounder tests is demonstrated
by applying them for predictive classification and regression mod-
els based on functional brain connectivity data, processed with
different confound mitigation approaches.

Partial confounder testing was performed with 10,000 permu-
tations and 50 Markov chain Monte Carlo steps, as implemented
in version 0.20.0 of the package “mlconfound.” Unconditional de-
pendence across the involved variables was investigated with con-
ventional permutation tests on the R2 values, with 1,000 permu-
tations.

All empirical analyses are available as jupyter notebooks on
GitHub (https://github.com/pni-lab/mlconfound-manuscript/tre
e/main/empirical).

HCP: testing age and acquisition batch bias in fluid intelli-
gence prediction

The Human Connectome Project dataset contains imaging and
behavioral data of approximately 1,200 healthy subjects [55]. Pre-
processed resting state functional magnetic resonance imaging
(fMRI) connectivity data (partial correlation matrices) [56] as pub-
lished with the HCP1200 release (N = 999 participants with func-
tional connectivity data) were used to build models that predict
individual fluid intelligence scores (Gf), measured with Penn Pro-
gressive Matrices [57].

To ensure normality of the target variable for the partial
correlation-based analyses, Gf was nonlinearly transformed to
normal distribution with the quantile transformation [58] as im-
plemented in scikit-learn [59] (see Supplementary Fig. S8 for de-
tails).

Features (functional connectivities across 100 group-
independent component analysis–based regions) were either
(i) considered in their raw form or were subject to confound mit-
igation approaches by (ii) feature regression [9] or (iii) COMBAT
[28, 60]. The feature mitigation strategies were separately applied
for acquisition batch and age group as confounder variable.

Each of the 5 types of features (raw, regressing out acquisition
batch, regressing out age group, COMBAT with acquisition batch,
COMBAT with age group) was independently incorporated into a
scikit-learn–based [59] machine learning procedure aiming to pre-
dict the individual fluid intelligence scores with a ridge regres-
sion [61]. The α parameter of the ridge model was considered a
hyperparameter (α ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100,
1000, 10000, 100000}) and optimized in a nested cross-validation
with 10 folds in both the inner and the outer loops and with mean
squared error as an optimization metric. Confound mitigation was
performed inside of the outer cross-validation loop, to avoid leak-
age.

ABIDE: testing motion and center bias in predictive models
of ASD diagnosis

The proposed tests were applied to provide evidence of center
and motion bias in diagnostic predictive models of ASD, trained
on the Autism Brain Imaging Data Exchange (ABIDE) dataset [62]
involving 866 participants (ASD: 402, neurotypical control: 464).
Preprocessed regional time-series data were obtained as shared
(https://osf.io/hc4md) by Dadi et al. [63], which were based on pre-
processed image data provided by the Preprocessed Connectome
Project [64].

Tangent correlation across the time series of the n = 122 regions
of the BASC (Multi-level bootstrap analysis of stable clusters) [65]
brain parcellation was computed with nilearn (http://nilearn.gith
ub.io/) [66, 67].

The resulting functional connectivity estimates were consid-
ered features either (i) in their raw form or after applying (ii) fea-
ture regression [9] or (iii) COMBAT [28, 60]. The investigated con-
founder variables were “imaging center” and “in-scanner motion,”
as measured by the mean framewise displacement (FD), as de-
fined by Power et al. [68]. Mean FD was nonlinearly transformed
to normal distribution with the quantile transformation [58] as
implemented in scikit-learn [59] (see Supplementary Fig. S9 for de-
tails).

As COMBAT is not able to handle continuous variables (since it
was primarily designed to remove categorical “batch effects”), mo-
tion was binned into 10 groups, based on equidistant data quan-
tiles ranging from 0 to 1.

https://github.com/pni-lab/mlconfound-manuscript/tree/main/simulated
https://github.com/pni-lab/mlconfound-manuscript/tree/main/empirical
https://osf.io/hc4md
http://nilearn.github.io/
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Figure 3: Type I error control of partial Spearman correlation, linear and GAM-based conditional permutation test. Type I error control was
investigated in 3 example cases: normal conditional distribution with linear dependency (first row), slightly nonnormal conditional distribution with
linear dependency (second row), and normal conditional distribution with nonnormal (sigmoid) dependency (third row). Nonnormal conditional
distribution on the second plot is illustrated with blue density diagrams (kurtosis: –0.8, skewness: –0.1). False-positive rates for confounder
contributions (wyc, ranging from 0.5 to 3.0) and predictive performances (wyŷ, ranging from 0.5 to 3.0) are shown in heatmaps. The upper limit for the
binomial confidence interval corresponding to alpha = 0.05 is 0.065. Values below this threshold (colored white) indicate a valid type I error control.

A total of 5 types (raw, feature regression of site, feature re-
gression of motion, COMBAT with site, COMBAT with motion) of
features were independently incorporated into a scikit-learn–based
[59] machine learning procedure aiming to predict the diagnosis
(DX: ASD vs. neurotypical controls) with an L2-regularized logis-
tic regression, as previously recommended [63]. The C parameter
of the model was considered a hyperparameter (C ∈ {0.1, 1, 10})
and optimized in a nested cross-validation with 10 folds both in
the inner and the outer cross-validation loop and with area under
the receiver operator curve (AUC under ROC) as the optimization
metric. Confound mitigation was performed inside of the outer
cross-validation loop, to avoid leakage. Confounder testing was
performed on the predicted class probabilities.

Results
Partial confounder tests
The proposed partial confounder tests have been implemented in
the Python package mlconfound (https://mlconfound.readthedocs
.io) (biotools:mlconfound, RRID:SCR_022545).

Simulations
Type I error

As suggested by theory (see Methods for details) and shown by
the simulations with a wide range of settings, both of the proposed
tests provide a valid type I error control (Fig. 4 and Supplementary
Figs. S1–S3), even in case of nonlinearity and nonnormality (Figs. 3,
5 and Supplementary Figs. S4–S7), except when nonnormality is
extreme (purple distribution on Fig. 5, kurtosis: 42, skewness: –6).

Power

Estimates of statistical power for the partial confounder test (with
normal and linear simulations, for a wide range of parameters)
were found to be virtually identical to those of Pearson’s partial
correlation (see Fig. 4 and Supplementary Fig. S12). Notably, with
sample sizes as large as 1,000, a confounder contributing only ∼
4% to the variance of the predictions (wcŷ = 0.2) can already be
robustly detected with a power of 94–100%. With a sample size
of 500, the same confounding bias is still detected with a power
greater than 84–100% in all of the simulation cases. A sample size

https://mlconfound.readthedocs.io
https://scicrunch.org/resolver/RRID:SCR_022545
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Figure 4 The partial confounder test provides a strict control for type I errors and a high statistical power in simulated data. Heatmaps depict positive
rates (ratio of P values lower than 0.05, color coded as shown by the palette on the right) in various simulation settings (100 simulations per tile) with
different simulation weights wyŷ (predictive performance; horizontal axis on each heatmap), wyc (confounder–target association; vertical axis on each
heatmap), wcŷ (degree of confounder bias; rows), and for different sample sizes (N, columns). Weights 0.2, 0.33, 0.4, 0.6, 0.66, and 1.0 can be assigned to
the following approximate explained variance values: 4%, 10%, 12%, 25%, 30%, and 50%, respectively. First row contains simulations under the null
hypothesis (H0, no confounding bias), and rows 2–4 represent simulations from the alternative hypothesis (H1, confounding bias). Positive rates for the
simulations under the null and the alternative hypotheses can be interpreted as type I error rate and statistical power, respectively. The higher 95%
confidence limit for a positive rate of alpha = 0.05 is 0.11 for each tile.

of 100 requires a somewhat stronger bias with approximately 12%
of explained variance (wcŷ = 0.4) to achieve a reasonable level of
power (75–98%). Finally, even with a relatively low sample size of
50, the same amount of confounder variance is detected with a
power of at least 50%. If the confounder explains more than 25%
of variance, it is almost certainly detected even with a low sample
size of n ≥ 50.

Simulations show that nonnormality has a minimal effect on
the power of the tests, except in case of extreme nonnormal-
ity (Fig. 5). Simulations with sigmoid dependence resulted in an
apparent loss of statistical power, but this is simply a conse-
quence of the simulation methodology: with the same parame-
ters, the sigmoid-transformed confounder explains only approxi-
mately half the variance as compared to linear simulations. Type
I error control was valid in case of categorical variables, as well
(Supplementary Figs. S1, S3, S5, S7).

Neuroimaging data
To demonstrate the usefulness of the proposed tests in detect-
ing various types of confounding bias, they have been deployed

in 2 typical research scenarios—a regression and a classification
problem—where confounder effects are known to hamper the de-
velopment of biomedically useful predictive models. The empiri-
cal analyses confirmed the presence of nonlinearity and nonnor-
mality in the output of the predictive models (see Supplementary
Fig. S11 for more details).

HCP dataset

Functional connectivity data from the Human Connectome
Project [55] (HCP) were used to build predictive models of fluid
intelligence (Gf) and to test for the previously discussed con-
founding effect of age [18, 19] and, additionally, the—somewhat
underdiscussed—batch-like effect of acquisition date of the data
within the course of the data acquisition process.

Both acquisition batch and age group were statistically signifi-
cantly associated with Gf (R2 = 0.032 and 0.011 and P < 0.001 and
P = 0.001, respectively; see also Table 2). The model trained on the
raw (unadjusted) connectivity features predicted fluid intelligence
with a medium effect size (R2 = 0.095, P < 0.001).
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Figure 5 The partial confounder test is robust to nonnormality and nonlinearity.
Simulations included variables with 5 different degrees of nonnormality (top panel), as introduced with various δ and ε values of the sinh-arcsinh
transformation (yellow: normally distributed). Fisher’s kurtosis and skewness are given for each distribution. False- and true-positive rates in the
simulations under H0 and H1, respectively, for each investigated sample size (N), are depicted by barplots for both linear and sigmoid dependency
structure. Upper 95% binomial confidence limit corresponding to alpha = 0.05 is shown with a vertical dashed line.

Table 2. Coefficients of determination (R2), the corresponding P values, and the P values of the partial confounder tests, for all investigated
datasets, confounders (conf.), and confounder mitigation methods (method). Bold numbers denote significant confounding bias identified
by the partial confounder test.

Dataset Conf. Method R2
y,c py, c R2

ŷ,c pŷ,c R2
ŷ,y pŷ,y

Partial
confounder

test

HCP acq. raw 0.032 <0.001 0.071 <0.001 0.095 <0.001 <0.0001
f.reg. 0.0 1.0 0.114 <0.001 1.0
COMBAT 0.013 0.4 0.122 <0.001 0.65

age raw 0.011 0.001 0.034 <0.001 0.095 <0.001 <0.0001
f.reg. 0.0 0.92 0.118 <0.001 0.95
COMBAT 0.005 0.048 0.121 <0.001 0.16

ABIDE center raw 0.019 <0.001 0.169 <0.001 0.126 <0.001 <0.0001
f.reg. 0.004 1.0 0.179 <0.001 1.0
COMBAT 0.05 0.001 0.17 <0.001 0.009

motion raw 0.028 <0.001 0.111 <0.001 0.126 <0.001 <0.0001
f.reg. 0.002 0.16 0.098 <0.001 0.51
COMBAT 0.002 0.19 0.111 <0.001 0.59
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The partial confounder test revealed that the “raw” model
(without confounder mitigation) was significantly biased by both
age group and acquisition batch (both P < 0.0001, first column of
Fig. 6), with later phases of the acquisition and lower age being
associated with larger predicted values.

After applying confound mitigation approaches (feature regres-
sion or COMBAT), the partial confounder test did not provide evi-
dence for confounding bias anymore (P > 0.05 for all; shown in the
second and third columns of Fig. 6), neither for acquisition batch
nor for age. Both feature regression and COMBAT increased the
predictive performance, with COMBAT providing the overall best
performances (R2 = 0.122 and 0.121 when applied to remove the
effect of acquisition and age, respectively).

ABIDE dataset

Functional connectivity data from the ABIDE [62] database were
used to investigate the potential motion and center bias (as previ-
ously reported, e.g., by [13, 14] or [12]) when training models that
aim to predict ASD diagnosis.

Imaging center and in-scanner motion (normalized mean
framewise displacement) were statistically significantly associ-
ated with ASD diagnosis (R2 = 0.019 and 0.028, respectively; P
< 0.001 for both; see also Table 2). The model trained on the
raw (unadjusted) connectivity features predicted diagnosis with
a medium effect size (R2 = 0.126, ROC AUC = 0.71, P < 0.001).

The partial confounder test revealed that the raw model was
significantly biased for both age group and acquisition batch (both
P < 0.0001; see first column in Fig. 7). Predictions for several
sites (e.g., Carnegie Mellon University, University of Leuven, So-
cial Brain Lab UMC Groningen) were severely miscalibrated, and
higher motion was associated with a higher probability for ASD
diagnosis.

Both feature regression and COMBAT seemed to significantly
attenuate center bias, but with COMBAT, the partial confounder
test still provided evidence for a significant residual bias (0.009,
third columns of the first row in Fig. 7).

When trying to mitigate the effect of in-scanner motion (bot-
tom row in Fig. 7), both confounder mitigation approaches seemed
to effectively mitigate motion bias, as suggested by the partial
confounder test (P > 0.05, middle and right panels in the bottom
row of Fig. 7).

Both feature regression and COMBAT considerably improved
the predictive performance when mitigating center effects (AUC
= 0.71 without correction and 0.75 with both feature regression
and combat). With both feature regression and COMBAT, however,
the effort of mitigating motion effects happened at the cost of a
drop in predictive performance (AUC = 0.69 and 0.70, for feature
regression and COMBAT, respectively).

Discussion
The concept of conditional independence provides a straight-
forward framework for assessing confounding bias in predictive
models, assuming that both the target variable and the potential
confounder have been observed for the validation dataset. How-
ever, handling the nonnormal and/or nonlinear conditional de-
pendencies often seen in predictive models [37, 38] (Supplemen-
tary Figs. S10–S11) poses a great challenge. In fact, as recently
shown by Shah and Peters in their “no free lunch” theorem [35],
it is effectively impossible to establish a fully nonparametric con-
ditional independence test with a valid type I error control and
a nontrivial power. Indeed, perhaps somewhat surprisingly, but
not totally unexpectedly [31], partial correlation–like analogs of

a widely used bivariate nonparametric test, like partial Spearman
correlation, exhibit inflated type I errors even with slight viola-
tions of normality and/or linearity (as clearly demonstrated with
simulated data in Fig. 3). While the magnitude of this problem
may not be fully appreciated in case of predictive model diagnos-
tics, such tests are, in general, poor choices for testing confound-
ing bias in machine learning. Conditional independence-based
confounding bias testing must, therefore, be designed so that its
suitability for the particular problem may be judged easily.

These tests place no assumptions on the conditional distri-
butions of the model output, ensuring valid model diagnostics
even in cases of nonnormally and nonlinearly dependent predic-
tions. This property distinguishes the approach from other alter-
natives as it guarantees a valid type I error control even in cases of
nonnormally and nonlinearly dependent predictions (i.e., in cases
where Pearson and Spearman partial correlations and many other
methods fail).

The proposed tests are based on solid theoretical foundations,
underpinned by mathematical proofs. The main purpose of the
simulated and empirical experiments was, therefore, not to jus-
tify the validity of the approach but to (i) test the software im-
plementation, (ii) estimate statistical power in various situations,
and (iii) exemplify how the partial confounder test can be used
with real experimental data. The validity of the type I error con-
trol and was confirmed by our simulations, even if both the pre-
dictions and the confounder are nonnormally and/or nonlinearly
dependent on the target variable (except by extreme nonnormal-
ity). While different biomedical applications may consider differ-
ent amounts of bias to be relevant, in most cases, it is possible
to set an upper bound for confounding bias that is still tolerable
in certain applications. The simulation results can serve as a ba-
sis for power calculations in these cases, in order to identify the
necessary sample size for proper model diagnostics.

A characteristic example for the potential areas of applications
is the novel field of population neuroscience, where applying pre-
dictive modeling and machine learning on large-scale functional
neuroimaging data holds great potential for both revolutioniz-
ing our understanding of the physical basis of mind and deliver-
ing clinically useful tools for diagnostics or therapeutic decision-
making [3, 5, 23, 25]. However, the presence of confounders that
are typical for biomedical research (e.g., sample demographics,
center effects) or specific to the data acquisition and processing
approach (e.g., imaging artifacts) presents a great challenge to
these efforts [29]. The usefulness of the proposed tests is demon-
strated in 2 such examples, using the HCP [55] and the ABIDE [62]
datasets.

In the case of the HCP dataset, the statistically significant age
bias of the “raw” model for predicting fluid intelligence is in line
with previous findings [18, 19] and could likely exaggerate to a se-
rious bias when testing the model on data of participants outside
of the—relatively narrow—age range of the HCP sample. In this
case, the bias would likely significantly harm the out-of-sample
generalizability of this model. The bias of the same model for ac-
quisition batch can also be problematic, especially as it has not
yet been thoroughly discussed in case of the HCP dataset. There
can be manifold reasons for the observed acquisition bias. Fluid
intelligence of the included participants might be, for instance, af-
fected by a changing selection bias during participant recruitment
(e.g., as a consequence of the HCP receiving an increasing degree
of public interest during its course).

In the ABIDE dataset, neither the center bias nor the age bias
is surprising in the case of the “raw” model, but both would be
obviously severely problematic for a diagnostic biomarker candi-
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Figure 6: The partial confounder test reveals that acquisition batch and age bias in predictive models of fluid intelligence can be effectively attenuated
by confounder mitigation approaches in the HCP dataset. Scatterplots and regression lines (with 95% confidence intervals) show the association of the
observed (horizontals axis) and predicted (vertical axis) fluid intelligence scores with various confound regression strategies. Color-coding of the
confounder variables (top: acquisition batch, bottom: age group, as shown by the corresponding legends) reveals confounding bias for both acquisition
and age in the models trained on the raw data. This bias is robustly detected by the partial confounder test (P < 0.0001) and seems to be effectively
mitigated by both feature regression and COMBAT. Relation between the observed (Gf) and predicted (ŷ) intelligence scores and the confounder
variables is given on the graphs via R2 values. Both confound mitigation techniques, but especially COMBAT, improve the predictive performance. Solid
red line between the confounder and the prediction means significant confounding bias, whereas blue dashed line denotes that confounder testing
provided no evidence for bias. P values are determined with the partial confounder test.

date of ASD. For instance, the model trained on the raw (unad-
justed) features—depending on the calibration of the predicted
class probabilities—might classify all participants from, for exam-
ple, the Carnegie Mellon University center, as neurotypical con-
trol participants. Similarly, the models biased by motion—next
to having questionable neuroscientific validity—might systemat-
ically fail in populations with a tendency for higher in-scanner
motion (as known for many conditions, among others, attention-
deficit/hyperactivity disorder [10] or Alzheimer’s disease [9]).

The partial confounder test provided quantitative, statistically
rigorous metrics for assessing the effectiveness of the investigated
confounder mitigation techniques. In the HCP data, it revealed
that both the acquisition bias and the age bias were very effec-
tively removed by both feature regression and COMBAT (P > 0.05
for all). Given the high power of the test at the sample sizes of the
HCP dataset (N = 999), any remaining confounding bias is most
probably very safely negligible and well out of the range of prac-
tical relevance.

The confound mitigation approaches performed well in atten-
uating motion bias in the ABIDE dataset, as well, as no residual
bias was detected by the proposed test. However, the success of
COMBAT in eliminating motion bias is not to be taken without any
objections. As COMBAT was originally developed for harmonizing
effects of categorical variables (e.g., center or batch), its applica-
tion for continuous confounder variables is not trivial. Inputting
discretized versions of continuous variables into COMBAT might
be suboptimal and raises further questions, for example, regard-
ing the optimal number of bins used during the discretization.

Importantly, the partial confounder test revealed that the cen-
ter bias of the classification in the massively multicenter ABIDE
dataset was, although mitigated, not successfully removed by
COMBAT. While determining the relevance of the remaining bias is
out of the scope of this article, the example demonstrates the need
for checking confounder bias even if state-of-the-art confounder
mitigation approaches have been applied. If the proposed test
provides evidence for residual confounding bias, the researcher
might consider the use of another mitigation approach (e.g., fea-
ture regression in the given case) or the evaluation of confound-
free performance (e.g., via “confound-isolating cross-validation”)
[29].

In sum, the application of the partial confounder test on the
real data examples suggests that confounding bias must be al-
ways carefully investigated and reported in studies utilizing pre-
dictive modeling and machine learning as (i) variables as trivial
as the date of the acquisition can cause significant confounding
bias, and (ii) in certain situations, state-of-the-art confounder mit-
igation techniques may not provide sufficient mitigation of con-
founding bias, and (iii) unnecessary confounder correction may
eliminate variance of interest. As the proposed test is a model-
agnostic post hoc test, it can be used to benchmark different ma-
chine learning models and to further characterize already trained
models in external validation samples, where a larger set of po-
tential confounder variables is available (Supplementary Fig. S13).
The partial confounder test can be considered a useful, objective
benchmark to guide the search for a suitable confounder mitiga-
tion approach for every dataset.
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Figure 7: The partial confounder test identifies an efficient mitigation strategy for motion bias in predictive models of autism spectrum disorder and
reveals residual center bias after COMBAT in the ABIDE dataset. Boxplots and points show the predicted class probabilities (0: Healthy Control (HC), 1:
ASD), separately for the HC and ASD groups. In the top panel, predictions are plotted for each center separately. Color indicates the true diagnosis
(DX). At the bottom plot, color indicates the normalized index of in-scanner motion (normalized FD). The proposed confounder test reveals significant
center and motion bias in the model trained on the raw data (P < 0.0001). While both motion and center bias were effectively mitigated by both
feature regression and COMBAT, the proposed partial confounder test revealed COMBAT was not able to fully remove center bias and resulted in
significant “residual bias” (P < 0.05). Relation between the true (ŷ) and predicted diagnosis scores and the confounder variables is shown by the graphs
as R2 values. Solid red line between the confounder and the prediction means significant confounding bias, whereas blue dashed line denotes that
confounder testing provided no evidence for bias. P values are determined with the partial confounder test.

Conclusion
The lack of rigorous statistical tests for confounding bias signif-
icantly hampers the development of predictive models in many
fields of research, including population neuroscience, where han-
dling confounding effects is especially challenging [23].

To fill this critical gap in predictive model development, here
I proposed 2 novel tests, the partial and the full confounder tests,
which probe the null hypotheses of “no confounding bias” and
“full confounding bias,” respectively. The tests are distinguished
from alternative approaches by their robustness to nonnormally
and nonlinearly dependent predictions, rendering them applica-
ble with a wide variety of machine learning models. The tests
have, moreover, a minimal computational overhead, as refitting
the model is not required.

As demonstrated on functional brain connectivity-based pre-
dictive models of fluid intelligence and ASD, the tests can guide
the optimization of confound mitigation strategies and allow
quantitative statistical assessment of the robustness, general-
izability, and neurobiological validity of predictive models in
biomedical research. Given their simplicity, robustness, wide ap-
plicability, high statistical power, and computationally effective
implementation (available in the Python package mlconfound; ht
tps://mlconfound.readthedocs.io), the partial and full confounder
tests emerge as novel tools in the methodological arsenal of pre-
dictive modeling and may largely accelerate the development of
clinically useful machine learning biomarkers.

Data Availability
Empirical analysis was based on preprocessed data provided by
the Human Connectome Project, WU-Minn Consortium [55] (prin-
cipal investigators: D. Van Essen and K. Ugurbil; 1U54MH091657),
funded by the 16 National Institutes of Health (NIH) institutes
and centers that support the NIH Blueprint for Neuroscience
Research, and by the McDonnell Center for Systems Neuro-
science at Washington University and the ABIDE consortium
[62].

All data used in the present study are available for down-
load from the Human Connectome Project (www.humanconnect
ome.org). Users must agree to data use terms for the HCP be-
fore being allowed access to the data and ConnectomeDB; de-
tails are provided at https://www.humanconnectome.org/study/
hcp-young-adult/data-use-terms. Python implementation of the
“mlconfound” package is available on GitHub. All analysis code
is available at GitHub and via the GigaScience database GigaDB
[69].

Additional Files
Supplemental Figure S1. Heatmaps showing the positive rates of
the “partial” confounder test, with categorical variables, normal
conditional distribution, and linear dependence.
Supplemental Figure S2. Heatmaps showing the positive rates of
the “full” confounder test, with numerical variables, normal con-
ditional distribution, and linear dependence.

https://mlconfound.readthedocs.io
file:www.humanconnectome.org
https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms
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Supplemental Figure S3. Heatmaps showing the positive rates of
the “full” confounder test, with categorical variables, normal con-
ditional distribution, and linear dependence.
Supplemental Figure S4. Heatmaps showing the positive rates of
the “partial” confounder test, with numerical variables, normal
conditional distribution, and sigmoid dependence.
Supplemental Figure S5. Heatmaps showing the positive rates of
the “partial” confounder test, with categorical variables, normal
conditional distribution, and sigmoid dependence.
Supplemental Figure S6. Heatmaps showing the positive rates of
the “full” confounder test, with numerical variables, normal con-
ditional distribution, and sigmoid dependence.
Supplemental Figure S7. Heatmaps showing the positive rates of
the “full” confounder test, with categorical variables, normal con-
ditional distribution, and sigmoid dependence.
Supplemental Figure S8. Histogram of fluid intelligence score in
the HPC dataset, before (left) and after (right) quantile transfor-
mation.
Supplemental Figure S9. Histogram of mean framewise displace-
ment in the ABIDE dataset, before (left) and after (right) quantile
transformation.
Supplemental Figure S10. Example of nonlinearity of model pre-
dictions as a consequence of regularization. The same 4 (simu-
lated) features may result in nonlinear predictions as the regu-
larization (alpha) of the Ridge model is increased. Model coef-
ficients are shown above the lines connecting the features and
the prediction. The full analysis is available at https://github.com
/pni-lab/mlconfound- manuscript/blob/main/simulated/normal
ityandlinearityviolation.ipynb.
Supplemental Figure S11. Example of nonnormality of the con-
ditional distributions ŷ|y and ŷ|c. (A) Example from the analy-
sis of the HCP dataset, as presented in the previous version of
the manuscript. (B) No evidence of confounder bias with the par-
tial confounder test. (C) Presumably false-positive observations by
Pearson’s and Spearman’s partial correlations, due to invalid P val-
ues with nonnormal conditional distributions. Prediction target:
age. Confounder: age. Confound mitigation: age regression. Non-
normality was frequently observed in the other cases, as well. The
full analysis is available at https://github.com/pni-lab/mlconfoun
d- manuscript/blob/main/empirical/supplement/check_assumpt
ions.ipynb.
Supplemental Figure S12. In case of linearity and normality, the
power of the proposed test is virtually equal to that of Pearson’s
partial correlation. Blue: partial confounder test; orange: Pear-
son’s partial correlation. Boxplots are based on the simulation
cases from Fig. 4 of the article.
Supplemental Figure S13. The partial confounder test can be
used at any phase of model validation. The NYU site from the
ABIDE dataset has been used as a “discovery sample” to train
a model predicting ASD diagnosis. The partial confounder test
found no evidence for motion bias. The finalized model has been
externally validated in data from the University of Utah School
of Medicine (USM). Next to the repeated testing of motion bias,
the proposed test is used here for testing another potential con-
founder (fluid intelligence, Gf) and, additionally, to test if the
model generalizes to the SRS (Social Response Scale). Source code
available at https://github.com/pni- lab/mlconfound-manuscrip
t/blob/main/empirical/supplement/external_validation.ipynb.
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