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Abstract

Background: Previously we have shown that Ag85B-TB10.4 is a highly efficient vaccine against tuberculosis when delivered
in a Th1 inducing adjuvant based on cationic liposomes. Another Th1 inducing adjuvant, which has shown a very promising
profile in both preclinical and clinical trials, is IC31H. In this study, we examined the potential of Ag85B-TB10.4 delivered in
the adjuvant IC31H for the ability to induce protection against infection with Mycobacterium tuberculosis. In addition, we
examined if the antigen dose could influence the phenotype of the induced T cells.

Methods and Findings: We found that vaccination with the combination of Ag85B-TB10.4 and IC31H resulted in high
numbers of polyfunctional CD4 T cells co-expressing IL-2, IFN-c and TNF-a. This correlated with protection against
subsequent challenge with M.tb in the mouse TB model. Importantly, our results also showed that both the vaccine induced
T cell response, and the protective efficacy, was highly dependent on the antigen dose. Thus, whereas antigen doses of 5
and 15 mg did not induce significant protection against M.tb, reducing the dose to 0.5 mg selectively increased the number
of polyfunctional T cells and induced a strong protection against infection with M.tb. The influence of antigen dose was also
observed in the guinea pig model of aerosol infection with M.tb. In this model a 2.5 fold increase in the antigen dose
reduced the protection against infection with M.tb to the level observed in non-vaccinated animals.

Conclusions/Significance: Small changes in the antigen dose can greatly influence the induction of specific T cell
subpopulations and the dose is therefore a crucial factor when testing new vaccines. However, the adjuvant IC31H can, with
the optimal dose of Ag85B-TB10.4, induce strong protection against Mycobacterium tuberculosis. This vaccine has now
entered clinical trials.
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Introduction

The global effort to develop an effective TB vaccine involves

different strategies including live attenuated vaccines [1], virally

vectored TB vaccines [2], and subunit vaccines [3,4]. The subunit

approach holds a number of advantages, such as increased safety and

stability as well as the demonstrated ability to boost prior BCG

immunization [5,6]. In addition, as subunit vaccines does not appear

to be influenced by environmental mycobacteria this type of vaccine

may be of particular use in the developing world [7]. However,

progress in this field has been delayed by the lack of available

adjuvants that induce a strong cell-mediated immune (CMI)

response. Recently we showed that Ag85B-TB10.4 delivered in

cationic dimethyldioctadecylammonium (DDA) and Monopho-

sphoryl Lipid A (MPL) induced a strong protection against infection

with M.tb [8]. Furthermore, the closely related vaccine Ag85B-

ESAT-6 delivered in the CAF-01 adjuvant (consisting of DDA and

trehalose 6,69-dibehenate (TDB)) or in IC31H adjuvant induced a

strong Th1 response that efficiently protected against infection with

M.tb [9,10]. The IC31H adjuvant consists of a vehicle based on the

cationic peptide KLKL5KLK and the immunostimulatory oligo-

deoxynucleotide ODN1a that signals through the TLR9 receptor.

The combination of Ag85B-TB10.4 and IC31H is attractive for

several reasons; 1) IC31H has been shown to promote a strong Th1

response and was demonstrated to have a very compelling safety

profile in the first clinical trial, and 2) Ag85B-TB10.4 has the

advantage that it does not include ESAT-6, which is a valuable

diagnostic reagent and the basis of a number of commercial

diagnostic tests [11–13]. In the present work we therefore examined

the combination of Ag85B-TB10.4 and IC31H for immunogenicity

and efficacy against infection with M.tb. Our results show that Ag85B-

TB10.4/IC31H can induce high numbers of polyfunctional CD4 T
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cells and induce efficient protection against infection with M.tb.

However, the combination of the immunogenic Ag85B-TB10.4

antigen and the IC31H adjuvant activity was very sensitive to the dose

of antigen. Thus, whereas the higher doses antigen of Ag85B-TB10.4

(5 and 15 mg) in IC31H, induced very modest immune responses that

did not protect against M.tb challenge, reducing the dose to 0.5 mg

Ag85B-TB10.4 in IC31H led to a selective increase in the numbers of

polyfunctional T cells, which in turn increased the protection against

M.tb to the same level as BCG. Also in the Guinea pig TB animal

model we observed a strong correlation between vaccine efficacy and

antigen dose. Thus, we found that decreasing or increasing the

antigen dose as little as 2.5 fold compared to the optimal dose led to a

significantly reduced protective efficacy of the vaccine.

Results

Immune responses induced by Ag85B-TB10.4 in IC31H
using different vaccination doses

We first analyzed the immunogenicity of different doses of

Ag85B-TB10.4 delivered in IC31H and whether both components

of the fusion protein were recognized by the immune system after

immunization. Groups of mice were vaccinated three times with

Ag85B-TB10.4 in the adjuvant IC31H. As a negative control, a

group of mice received the adjuvant alone (data not shown). The

antigen dose used in the experiment was in the range from 0.005

to 15 mg. One week after the last injection, the mice were bled,

and the IFN-c release was evaluated after in vitro stimulation of

purified PBMCs with Ag85B or TB10.4 (or ESAT-6 as a negative

control) (Fig. 1A). Vaccination with Ag85B-TB10.4/IC31H
promoted a strong T cell response characterized by an IFN-c in

vitro recall response upon stimulation with Ag85B or TB10.4.

However, the immune response promoted by the vaccine was

greatly influenced by the dose of the antigen. The highest

immune-response was induced by vaccination with 1 mg

(.20000 pg IFN-c/ml) and increasing the dose from 1 to 5 mg

(or 15 mg) strongly reduced the secretion of IFN-c following in

vitro stimulation with Ag85B or TB10.4 (compared to mice

vaccinated with 0.5 mg antigen, p,0.001). The influence of dose

was particularly apparent when using the 15 mg dose which

resulted in a very low IFN-c response (362+/2305 pg/ml IFN-c

Figure 1. Immune recognition of vaccination antigens. PBMC’s (A) or splenocytes (B) isolated from groups of mice vaccinated with different
doses of Ag85B-TB10.4 in IC31H (and a saline control group) were stimulated with either Ag85B or TB10.4 (or ESAT-6 as negative control). After
72 hours the concentration of cell released IFN-c was determined by ELISA. Five mice per group were pooled. Values represent the means of triplicate
and SEM’s are indicated.
doi:10.1371/journal.pone.0005930.g001
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after in vitro stimulation with Ag85B and 33+/218 pg/ml IFN-c
after in vitro stimulation with TB10.4) that did not differ

significantly from that observed in non-vaccinated mice (data

not shown), or vaccinated mice stimulated in vitro with control

antigen ESAT-6. Remarkably, even a low dose of 0.005 mg

Ag85B-TB10.4 still induced a significant immune response

(8292+/22324 and 618+/2382 pg/ml IFN-c after in vitro

stimulation with Ag85B or TB10.4 respectively, Fig. 1A). The

same dose dependency was observed when analyzing splenocytes

(Fig. 1B) where the optimal dose once more seemed to peak

around 0.5 mg Ag85B-TB10.4. When comparing the secretion of

IFN-c with the number of antigen specific cells (here shown by

ELISPOT using Ag85B for in vitro stimulation of splenocytes)

following immunization with Ag85B-TB10.4 there was a clear

correlation. Thus, immunization with 0.5 mg induced the highest

number of antigen specific cells measured by the ELISPOT assay

and increasing the dose 10-fold led to a dramatic decrease in the

number of Ag85B specific T cells, demonstrating that the

increased secretion of IFN-c in animals immunized with 0.5 mg

compared to 5 (or 15) mg, was in part due to an increase in the

number of antigen specific T cells (Fig. 2).

Vaccination with Ag85B-TB10.4 in IC31H induces
polyfunctional CD4 T cells

We next analyzed the cytokine expression of the T cells induced

by immunizing with 0.5 mg compared to 5 mg Ag85B-TB10.4/

IC31H. In particular, we were interested in analyzing the induction

of polyfunctional CD4 T cells as these have been shown to

correlate with protective immunity against infections such as

Leishmania major and to form the basis for a long lived memory

response [14,15]. PBMCs from vaccinated mice were stimulated in

vitro with Ag85B, TB10.4 or Ag85B-TB10.4 and analyzed by flow

cytometry for expression of CD4, CD8, IFN-c, TNF-a, and IL-2.

The results showed that immunizing with Ag85B-TB10.4/IC31H
induced two major polyfunctional T cell populations; CD4+IFN-

c+IL-2+TNF-a+ and CD4+IL-2+TNF-a+ T cells. Similarly to in

the result depicted in figure 1, we observed an increased response

in the group vaccinated with 0.5 mg Ag85B-TB10.4 compared to

the group vaccinated with 5 mg Ag85B-TB10.4, against both

antigen components (Fig. 3). Interestingly, the T cell subsets that

were expanded by decreasing the antigen dose from 5 mg to

0.5 mg, were the polyfunctional memory T cell subsets expressing

IFN-c/IL-2/TNF-a (Fig. 3B–D) and this was observed for both

Ag85B (2 fold increase in IFN-c/IL-2/TNF-a cells) and TB10.4

(up to 10 fold increase in IFN-c/IL-2/TNF-a cells) specific T cells

(Fig. 3B and C). We also compared the level of IFN-c production

in all the IFN-c expressing subpopulations from both vaccine

groups by looking at the mean fluorescence intensity (MFI). These

results showed that animals vaccinated with 0.5 mg Ag85B-TB10.4

produced significantly more IFN-c per cell, than the correspond-

ing subpopulation in animals vaccinated with the high dose (5 mg

Ag85B-TB10.4). This was observed for both Ag85B and TB10.4

specific T cells (Fig. 3E). In summary, vaccination with Ag85B-

TB10.4/IC31H induced polyfunctional CD4 T cells and reducing

the dose increased the immunogenicity of the vaccine, specifically

in terms of the proportion of polyfunctional T cells within the pool

of antigen specific T cells. Moreover, the T cells from animals

vaccinated with the low dose also produced more IFN-c per cell.

Thus, the observed increase in IFN-c production (Fig. 1 and 2) was

due to both an increase in T cells numbers and an increase in IFN-

c production by these T cells (Fig. 3).

Protective efficacy of Ag85B-TB10.4/IC31H in a mouse TB
infection model

We next examined the protective efficacy of different doses of

Ag85B-TB10.4/IC31H. Mice were vaccinated three times at two

weeks interval with Ag85B-TB10.4/IC31H and as a positive

control for protection, BCG vaccinated mice were included. Ten

weeks after the first vaccination, the mice were challenged by the

aerosol route with virulent M. tuberculosis and bacterial numbers

were assessed in the lungs six weeks post challenge. As observed

with the immunogenicity of the vaccine, the protective efficacy of

the vaccine also decreased when vaccination dose was increased

from 0.5 mg to 5 or 15 mg (Fig. 4, which show the result of two

independent experiments). Thus, mice vaccinated with 0.5 mg

Ag85B-TB10.4 in IC31H were found to have 5.0+/20.2 Log10

CFU in the lungs, which was not significantly different from that

observed in BCG vaccinated mice (4.90+/20.35 Log10 CFU), but

significantly reduced (p,0.001) compared to the bacterial

numbers in non-vaccinated mice (5.83+/20.12 Log10 CFU)

Figure 2. ELISPOT analysis of splenocytes from vaccinated animals. (A and B) Splenocytes isolated from groups of mice vaccinated with 3
different doses of Ag85B-TB10.4 in IC31H or a saline control group (Non Vacc.) were stimulated in vitro with Ag85B for 48 hours and subjected to
ELISPOT analysis (A) or stimulated for 72 hours to measure IFN-c cytokine secretion by ELISA (B). The bars represent means of 3 individual mice. SEMs
are indicated. In both (A) and (B) a vaccination dose of 0.5 mg Ag85B-TB10.4 gave significantly (*p,0.05, one-way ANOVA and Tukey’s post test)
higher antigen responses, compared to vaccination doses of 5 and 15 mg.
doi:10.1371/journal.pone.0005930.g002
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(Fig. 4A). This was in contrast to mice vaccinated with 5 or 15 mg

of Ag85B-TB10.4 in IC31H, in which the bacterial numbers were

not significantly different from that found in the lungs of non-

vaccinated mice (Fig. 4A). Repeating the experiment led to the

same conclusion although the overall bacterial numbers were

slightly lower in all the groups (Fig. 4B).

In conclusion, the ability of the vaccine, Ag85B-TB10.4/IC31H,

to induce protection against M.tb correlated with the quantity and

quality of the T cell response induced, and in particular with the

proportion of polyfunctional T cells that co-express all three

cytokines, which was highest when the lowest antigen dose was used.

Protective efficacy of Ag85B-TB10.4/IC31H in a guinea pig
TB infection model

Having shown that the mouse model was very sensitive to the

dose of antigen used for vaccination, we next examined the

protective efficacy of Ag85B-TB10.4/IC31H in the guinea pig TB

model, and whether a dose dependency would also be observed in

this model. Groups of 15 animals per group were vaccinated three

times with Ag85B-TB10.4 in IC31H or with IC31H alone (as a

negative control) using an antigen dose of 0.1 ,1.0, 10, 20 and 50 mg.

10 weeks after the last vaccination the animals were infected via the

aerosol route with virulent M. tuberculosis, and survival was

monitored (based on weight loss). The results showed that there

was no significant difference in survival between adjuvant treated

guinea pigs and those receiving 0.1 or 50 mg of vaccine (Fig. 5).

However, significant differences (log rank analysis) in survival from

that of adjuvant treated animals were observed with doses of 1, 10

(p,0.05) and 20 mg (p,0.005). Taken together, the data suggest

that there is a range of doses of Ag85B-TB10.4 (in IC31H) that can

be used to significantly prolong the survival of guinea pigs, outside of

which, above and below, the vaccine becomes ineffective, and that

the guinea pig model is sensitive enough to distinguish these

differences. Thus, as observed in the mouse TB model, there was a

strict dose dependency regarding the antigen Ag85B-TB10.4, but

the optimal dose of Ag85B-TB10.4 also induced significant

protection in the guinea pig TB model.

Discussion

Our study demonstrates that Ag85B-TB10.4 administered in

the novel adjuvant IC31H promote an immune response that

efficiently protects against aerosol infection with M.tb. Surprising-

Figure 3. Ag85B and TB10.4 specific T cells are polyfunctional. (A). Cytokine profiles of H4 specific CD4 T cells were determined by first dividing
the CD4 T cells into IFN-c positive (+) or IFN-c negative (-) cells. Both the IFN-c+ and IFN-c2 cells were analyzed with respect to the production of TNF-a
and IL-2. The numbers in the quadrant gates of the plots denominates each distinct population based on their cytokine production and is color coded as
shown. (B–D) The pie charts are grouped after vaccination dose and colour coded according to the cytokine production profile and summarizes the
fractions of the CD4+ T cell response (out of the antigen specific CD4 T cells) that are positive for a given cytokine production profile. Every possible
combination of cytokines is shown on the x-axis of the bar chart and the percentage of Ag85B, TB10.4 or Ag85B-TB10.4 (H4) specific CD4+ T cells
expressing any combination of cytokines is given for each immunization group. The antigen used for in vitro stimulation of the PBMC’s is indicated. No
responses were seen in the CD8+ T cell subset. (E) The mean fluorescence intensity (MFI) of IFN-c in the subpopulations expressing this cytokine from
animals vaccinated with either 0.5 mg H4 or 5 mg H4. Results are representative of two independent experiments.
doi:10.1371/journal.pone.0005930.g003
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ly, compared to a standard dose of 5 mg antigen, reducing the dose

down to 0.005 mg (61000 fold reduction) led to a stronger immune

response directed to both vaccine components (Fig. 1 and 2). In

previous work we have shown that the optimal vaccination dose

for the Ag85B-ESAT-6/CAF01 antigen was approximately 10 mg,

but also for this antigen there was an inhibition of the cellular

immune response at higher doses [16]. When analyzing the

expression of IFN-c, IL-2, and TNF-a we found that Ag85B-

TB10.4/IC31H vaccination induced two major CD4 T cell

populations, one co-expressing IFN-c, IL-2, and TNF-a, and

another expressing IL-2 and TNF-a (Fig. 3). By decreasing the

antigen dose we observed a selective increase in the CD4 T cell

population expressing IFN-c, IL-2, and TNF-a. In agreement with

the IFN-c secretion measured by ELISA it was the lowest dose of

Ag85B-TB10.4 (0.5 mg) that induced the highest number of

specific T cells (Fig. 2), in particular polyfunctional T cells (Fig. 3),

which showed an increased production of IFN-c compared to the

T cells from animals vaccinated with the higher antigen dose of

5 mg (Fig. 3E). The highly potentiated immune response induced

in the low dose vaccinated mice correlated with increased

protection against infection with virulent M.tb (Fig. 4). These

results are in agreement with a number of recent studies on various

pathogens in different animal models which have shown that not

only the magnitude, but also the quality, of the T cell response

appear to have significant impact on the establishment of

protective memory. Hence, measuring a single factor such as

IFN-c production or frequency may not reflect the full functional

potential of Th1 cells, and the ability of memory T cells to co-

express multiple cytokines seems to be important for endowing

these cells with superior recall responses [14,17]. Furthermore,

polyfunctional CD4 T cells are characteristic of the response in

HIV-controllers and display an inverse correlation with viral load,

whereas non-controllers elicit responses dominated by IFN-c
single positive CD4 T cells [18]. In mice, vaccine-induced

polyfunctional CD4 T cells have been shown to correlate with

protection against Leishmania major infection as the degree of

protection against Leishmania major infection in mice correlated

with the frequency of CD4 T cells simultaneously producing IFN-

c, IL-2 and TNF-a. The mechanisms by which such polyfunc-

tional, triple-positive cells exert their function may be manifold.

IFN-c is clearly indispensable for resistance to mycobacterial and

other intracellular infections [19], and TNF-a is on its own an

effector cytokine, which can synergise with IFN-c to eliminate

intracellular pathogens [20,21]. Regarding IFN-c, it is interesting

that on a per cell basis, the T cells from animals vaccinated with

the low vaccine dose produced more IFN-c per cell than T cells

from animals vaccinated with the high dose. Moreover, the

polyfunctional T cells in both the vaccine groups were more

efficient producers of IFN-c than the double (IFN-c/TNF-a) or

single-positive (IFN-c) CD4 T cells (Fig. 3E, and data not shown).

This finding is in accordance with a recent report from Leishmania

vaccination studies in mice that showed that polyfunctional

effector cells were unique in their capacity to produce high

amounts of IFN-c [14]. In addition, human studies have also

showed that triple-positive antiviral T cells expressed the highest

levels of cytokines per cell, while the single positive T cells

expressed the lowest [18,22,23]. Thus, polyfunctionel cells may be

superior both in terms of establishing immunological memory, as

well as in producing high amounts of cytokines.

Previous studies have shown that vaccination with 5 mg of

Ag85B-TB10.4 in cationic liposomes was as protective as BCG in

a mouse TB animal model [8] unlike 5 mg Ag85B-TB10.4 in

IC31H (Fig. 4). Moreover, the dose of 5 mg of Ag85B-ESAT-6 in

IC31H was as protective as BCG in a mouse TB model [10]. These

differences suggest that the Ag85B-TB10.4 and Ag85B-ESAT-6

molecules, when combined with the adjuvants IC31H or cationic

liposomes, differ in their immunogenicity and dose/response

relationship. Our findings highlight the importance of optimizing

Figure 4. Protective efficacy of different doses of Ag85B-
TB10.4 in IC31H. In two independent experiments (A and B) groups of
mice were vaccinated with three different doses of H4 formulated in
IC31H and compared to saline and BCG vaccinated controls. All groups
were challenged by the aerosol route with virulent M.tb ten weeks after
the first vaccination. Six weeks post-challenge, all mice were killed and
the bacterial burden (CFU) was measured in the lung. In both
experiments data are presented as mean values from six animals per
group and standard errors of the means are indicated by bars. Statistical
comparison among the vaccination groups were done by one-way
ANOVA and Tukey’s post test. Significant differences are shown. ***:
p,0.001, *: p,0.05.
doi:10.1371/journal.pone.0005930.g004
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the dose when testing a new adjuvant/antigen formulation since

the optimal efficacy of the vaccine clearly depends both on the

dose of the antigen and the adjuvant used. Our results indicated

that increasing the antigen dose did not favor a Th2 response, as it

did not lead to increased production of antibodies normally

associated with a Th2 response (data not shown). It could be

suggested that using a high a dose of a highly immunogenic

antigen, such as the one used in this study, may not sufficiently

allow for generation of protective memory T cells, but will instead

lead to short lived terminally differentiated effector T cells, a

subset that would already be contracted or show reduced cytokine

response, and therefore not be detectable, at the time point for the

immunological evaluation. Confirming our results obtained with

the mouse TB model, we showed that the guinea pig model was

also very sensitive to the dose of antigen used for vaccination. Also

in this model, small doses (1 mg Ag85B-TB10.4) showed some

protective efficacy whereas increasing the optimal dose 2.5 fold

(from 20 to 50 mg) reduced the protection to a level not different

from that seen in non-vaccinated animals. These results thus

confirmed that 1) small changes in the dose of antigen can

significantly affect the efficacy of the vaccine, 2) increasing the

vaccine dose beyond a specific threshold decreases the protective

efficacy, 3) different animal models have different optimal doses

(that probably depend on both the antigen and the adjuvant), and

4) the optimal dose of Ag85B-TB10.4 in IC31H does induce

significant protection also in the guinea pig TB model.

Taken together, a more comprehensive understanding of the

full functional capacity of effector and memory T cell responses is

needed, which may have important implications for vaccine design

and development. One of the important success criterion for any

vaccine, is the formation of a reservoir of memory cells of both

adequate size and quality to maintain efficient immune surveil-

lance for prolonged periods. Consequently, for evaluating

vaccines, memory responses should be examined in terms of

frequency, phenotype, quality and persistence of the memory T

cells induced, as all of these factors are anticipated to contribute to

a successful vaccination regimen. Importantly, our study shows

that the dose of the vaccine antigen can dramatically affect several

of these important parameters, and titration of the antigen dose

should be a high priority in all vaccine testing programs, in animal

models as well as in the initial clinical trials. Finally, in terms of

vaccine efficacy we have shown that the Ag85B-TB10.4/IC31H
vaccine is a very a promising TB vaccine candidate. Clinical

testing of a range of different doses of Ag85B-TB10.4 in IC31H
was recently initiated.

Materials and Methods

Ethics Statement
The handling of mice were conducted in accordance with the

regulations set forward by the Danish Ministry of Justice and

animal protection committees by Danish Animal Experiments

Figure 5. Kaplan-Meier plot of different doses of Ag85B-TB10.4 in the guinea pig TB model. (A and B). Groups of 15 animals per group
were vaccinated three times with Ag85B-TB10.4 in IC31H or with IC31H alone (as a negative control). For antigen dose we used from 0.1 mg to 50 mg.
10 weeks after the last vaccination the animals were infected via the aerosol route with virulent M. tuberculosis, and monitored for weight loss post
infection. B. Selected groups from the same experiment.
doi:10.1371/journal.pone.0005930.g005

H4/IC31 Protects against M.tb
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Inspectorate, and in compliance with European Community

Directive 86/609 and the U.S. Association for Laboratory Animal

Care recommendations for the care and use of laboratory animals.

All guinea pig experimental procedures were approved by the

Colorado State University Institutional Animal Care and Use

Committee.

Animals
Studies were performed with 6–8 week-old female CB6F1

(BALB/c6C57BL/6) mice from Harland Netherlands. Infected

animals were housed in cages contained within laminar flow safety

enclosures in a BSL-3 facility. All mice were fed radiation sterilized

2016 Global Rodent Maintenance diet (Harlan, Scandinavia) and

water ad libitum. All animals were allowed a one-week rest before

initiation of the experiments. Out-bred Hartley guinea pigs

(Charles River Laboratories, Wilmington MA) were infected and

housed in cages contained within a BL-3 laminar flow safety

enclosure. Guinea pigs were weighed weekly and were euthanized

based on weight loss, increased respiratory rate (laboured/heavy

breathing) and general behaviour and appearance.

Bacteria
Mycobacterium tuberculosis Erdman were grown at 37uC on

Löwenstein-Jensen medium or in suspension in Sauton medium

enriched with 0.5% sodium pyruvate and 0.5% glucose. M.

tuberculosis H37Rv (TMC#102) for guinea pig infection studies was

grown in Proskaur & Beck medium as described previously [24].

Vaccination
Mice were vaccinated three times at 2-week intervals subcuta-

neously on the back with experimental vaccines containing 0.005,

0.05, 0.5, 5 or 15 mg of Ag85B-TB10.4 (H4)/dose, emulsified in

IC31H in a total volume of 0.2 ml/dose. The adjuvant

IC31Hconsists of a mixture of the peptide KLK (NH2-

KLKL5KLK-COOH) and the oligodeoxynucleotide ODN1a

(oligo-(dIdC)13) provided by Intercell. Doses were 100 nmol

peptide and 4 nmol oligonucleotide. All vaccines were formulated

using 10 mM Tris-HCL/270 mM sorbitol buffer (pH 7.9) as

previously described [12] to obtain a final volume of 0.2 ml/

mouse. At the time of the first subunit vaccination, one group of

mice received a single dose of BCG Danish 1331 (2.56105 CFU)

injected subcutaneously at the base of the tail and one group

received a saline injection. All groups of mice were challenged 10

weeks after the first vaccination.

Experimental infections
When challenged by the aerosol route, the mice were infected

with approximately 50 CFU of M. tuberculosis Erdman/mouse.

These mice were sacrificed 6 weeks after challenge. Numbers of

bacteria in the spleen or lung were determined by serial threefold

dilutions of individual whole-organ homogenates in duplicate on

7H11 medium. Organs from the BCG-vaccinated animals were

grown on medium supplemented with 2 mg of 2-thiophene-

carboxylic acid hydrazide (TCH)/ml to selectively inhibit the

growth of the residual BCG bacteria in the test organs. Colonies

were counted after 2 to 3 weeks of incubation at 37uC. Bacterial

burden in the lungs was expressed as log10 coloni forming units

(CFU).

Lymphocyte cultures
Lymphocytes from spleens were obtained as described previ-

ously [25]. Briefly, peripheral blood mononuclear cells (PBMCs)

were purified on a density gradient of mammal lympholyteH cell

separation media (Cedarlane Laboratories Inc., Canada). PBMC

containing layers was carefully transferred to a new tube, and two

washing procedures using RPMI was performed before cells were

counted. Cells pooled from five mice in each experiment were

cultured in microtiter wells (96-well plates; Nunc, Roskilde,

Denmark) containing 26105 cells in a volume of 200 ml of RPMI

1640 supplemented with 561025 M 2-mercaptoethanol, 1%

penicillin-streptomycin, 1 mM glutamine, and 5% (vol/vol) fetal

calf serum. Based on previous dose-response investigations, the

mycobacterial antigens were all used at 1 mg/ml. All preparations

were tested in cell cultures and found to be nontoxic at the

concentrations used in the present study. Supernatants were

harvested from cultures after 72h of incubation for the

investigation of IFN-c.

IFN-c enzyme-linked immunosorbent assay (ELISA)
Microtiter plates (96 wells; Maxisorb; Nunc) were coated with

monoclonal hamster anti-murine IFN-c (Genzyme, Cambridge,

Mass.) in PBS at 4uC. Free binding sites were blocked with 1%

(wt/vol) bovine serum albumin-0.05% Tween 20. Culture

supernatants were tested in triplicate, and IFN-c was detected

with a biotin-labelled rat anti-murine monoclonal antibody (clone

XMG1.2; Pharmingen, San Diego, CA). Recombinant IFN-c
(Pharmingen, San Diego, CA) was used as a standard.

Flow cytometry analysis of lymphocytes
Intracellular cytokine staining procedure: Cells from blood,

spleen or lungs of mice were stimulated for 1–2 h with 2 mg/ml Ag

at 37uC and subsequently incubated for 5 h at 37uC with 10 mg/

ml brefeldin A (Sigma-Aldrich, Denmark) at 37uC. Fc receptors

were blocked with 0.5 ı̀g/ml anti-CD16/CD32 mAb (BD

Pharmingen, USA) for 10 minutes, whereafter the cells were

washed in FACS buffer (PBS containing 0.1% sodium azide and

1% FCS) before staining with a combination of the following rat

anti-mouse antibodies PE-Cy7-, PerCP-Cy5.5-anti-CD8á (53–6.7,

RM4-5), APC-Cy7-anti-CD4 (GKI.5) (Pharmingen, San Diego,

USA). Cells were washed with FACS buffer before fixation and

permeabilization using the BD Cytofix/CytopermTM (BD, San

Diego, CA, USA) according to the manufacturer’s protocol before

intracellular staining with PE-, PE-Cy7, APC-Anti-IFN-ã

(XMG1.2), PE-anti-TNFa, and/or PE-, APC-anti-IL-2 (JES6-

5H4). After washing, cells were resuspended in formaldehyde

solution 4% (w/v) pH 7.0 (Bie & Berntsen, Denmark) and samples

were analyzed on a six-color BD FACSCanto flow cytometer (BD

Biosciences, USA). Data analysis was done with FACSDiva

Software (Becton-Dickinson, San Diego, CA, USA) and Flowjo

Software (� Tree Star, Asland, OR, USA).

IFN-c ELISPOT
96-well microtiter plates (MAHA S45 10 cellulose ester,

Millipore) were coated with 4 mg/ml monoclonal rat anti-murine

IFN-c (clone R4-6A2; BD Pharmingen). Free binding sites were

blocked with RMPI 1640 supplemented as described above for

lymphocyte cul-tures. After 48 hrs of incubation with 2 mg/ml Ag

at 37uC IFN-c was detected with 1.25 m/ml biotin labeled rat anti-

murine Ab (clone XMG1.2; BD Pharmingen) and 0.5 mg/ml al-

kaline phosphatase-conjugated streptavidin (Jackson ImmunoR-

esearch Laboratories Europe). The enzyme reaction was devel-

oped with SIGMA FASTTM BCIP/NBT (5-Bromo-4-chloro-3-

indolyl phosphate/Nitro blue tetrazolium) (Sigma-Aldrich, Den-

mark) and stopped by washing the plates with ddH2O. ELISPOT

plates were counted using an AID plate reader (Autoimmun

Diagnostika, Strassberg, Germany) and AID ELISPOT 3.0c
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software. IFN-c-specific cells expressed as number of spot-forming

units (SFU)/106 spleen cells.

Statistical methods
The data obtained were tested by analysis of variance.

Differences between means were assessed for statistical significance

by Tukey’s test. A P value of ,0.05 was considered significant.

The Log Rank tested was used to analyze guinea pig survival data.
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