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All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also
subject to stochastic fluctuations, or ‘‘noise.’’ Several recent studies in Saccharomyces cerevisiae and Escherichia coli
have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein
levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the
fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been
addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly
affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the
protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits
of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we
estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of
essential and complex-forming proteins involves lower levels of noise than does the production of most other genes.
Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally
detrimental to organismal fitness, and is subject to natural selection.

Introduction

Stochasticity is a ubiquitous characteristic of life. Such
apparent randomness, or ‘‘noise,’’ can be observed in a wide
range of organisms, resulting in phenomena ranging from
progressive loss of cell-cycle synchronization in an initially
synchronized population of microbes to the pattern of hair
coloration in female calico cats. An important source of
stochasticity in biological systems is the random noise of
transcription and translation, which can result in very
different rates of synthesis of a specific protein in genetically
identical cells in essentially identical environments (Elowitz et
al. 2002; Ozbudak et al. 2002; Blake et al. 2003).

Understanding how stochasticity contributes to cellular
phenotypes is important to developing a more complete
picture of how cells work. Accordingly, noise in gene
expression and other cellular processes has been a major
focus of research for more than a decade. While several cases
have been described where stochasticity is advantageous (e.g.,
phase variation in bacteria [Hallet 2001] and the lysis/lysogeny
decision in phage lambda [Arkin et al. 1998]), it is expected
that noise is not advantageous in most cellular processes, as
precisely controlled levels of gene expression are presumably
optimal (c.f. Barkai and Leibler 2000). However, whether
noise in expression is of consequence to organismal fitness
has not previously been investigated, despite the centrality of
this question to our understanding of the role of noise in
biological systems.

In this study, we investigate whether the differences in
noise levels among genes are consistent with the hypothesis
that noise in gene expression has been subject to natural
selection to reduce its deleterious effects. We propose that
random fluctuations in the expression levels of two groups of
genes in yeast, essential genes and genes encoding protein
complex subunits, should be particularly consequential for
organismal fitness. If noise in gene expression is not an

important factor to yeast—i.e., if the level of stochasticity
experienced by yeast in gene expression is below that which
would have negative consequences—then we would expect to
see no difference in the randomness of expression in genes
for which noisy expression is predicted to be relatively more
or less deleterious. However, if stochasticity is an important
variable on which natural selection has acted, we would
expect to see the strongest signature of such selection in the
expression of genes for which yeast are the most sensitive to
randomness.

Results

If deletion of a gene has only a small deleterious effect on
the fitness of yeast, then random fluctuations in the amount
of protein produced from that gene are likely to have a
similarly small, or even smaller, impact. In contrast, the same
fluctuations in the level of a protein essential for viability may
have a profound effect on fitness; in the extreme, fluctuation
to levels below that required for normal cellular function
could compromise viability. Considering this predicted
difference in the sensitivity of yeast to randomness in
expression of essential versus relatively dispensable genes,
we reasoned that if noise in gene expression is a biologically
important variable, selection for reduction of stochasticity in
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expression levels would likely be stronger for essential genes
than for nonessential ones.

A recent study linking noise in protein levels to tran-
scription and translation rates in yeast (Blake et al. 2003)
allows us to test this prediction. In the study, noise in the
expression of a green fluorescent protein (GFP) reporter gene
was measured by flow cytometry; stochasticity was measured
as the amount of variation in GFP levels per cell in a
population. Thus if all cells in a population had very similar
levels of GFP, there was little noise in the production of the
GFP. The effect of transcription and translation on noise
levels was studied by independently varying these two
parameters and measuring the resulting noise levels for a
population of cells. This experimental approach, as well as a
mathematical model of protein production (Blake et al. 2003),
indicates that noise in protein production is maximized at
intermediate levels of transcription (at approximately one-
third of the maximal transcription rate of a gene, regardless
of what that maximum is; see Materials and Methods), as well
as at maximal levels of translation per mRNA molecule.

To produce a given amount of any particular protein, yeast
could adopt one of three qualitatively different strategies
(Thattai and van Oudenaarden 2000) (Figure 1): (1) maximize
transcription and minimize translation per mRNA, (2) max-
imize translation per mRNA and minimize transcription, or
(3) employ intermediate levels of both transcription and
translation per mRNA. Importantly, strategy 1 should result
in less stochasticity than strategy 2 or 3. Strategy 2 is noisy
due to the high translation, and strategy 3 is noisy due to both

intermediate transcription and translation (the data cur-
rently available do not allow us to predict whether expression
strategy 2 is more or less noisy than strategy 3). In contrast,
noise is minimized at both transcription and translation steps
for genes that exhibit strategy 1. Thus we predicted that if
noise in protein production is an important factor in yeast,
then genes that are essential for viability would be biased
towards having high transcription rates and a low number of
translations per mRNA.
To test this prediction, we estimated protein production

rates (proteins/s; see Materials and Methods) for all yeast
genes and asked whether essential genes tended to adopt
strategy 1 more often than nonessential genes with similar
protein production rates. It was critical to control for overall
rates of protein production, as there is an overall correlation
between a gene’s dispensability (defined as the growth defect
of a yeast strain missing that gene in rich glucose medium, i.e.,
an essential gene is indispensable) and its rate of protein
production (Figure S1). This correlation between dispens-
ability and the rate of protein synthesis may have nothing to
do with stochasticity; most essential proteins may simply be
needed in somewhat greater quantity than most nonessential
proteins, so their genes must be more highly transcribed and/
or translated. Since such a relationship could lead to an
association between gene importance and the likelihood of
adopting expression strategy 1, we employed two statistical
methods to control for this possibility.
In the first of these two methods, we binned yeast genes by

their protein production rate, so that all genes in each of 15
bins had approximately equal levels of protein production
(see Table S1 for details). The genes in each bin could have
achieved their similar protein production levels by any of the
three strategies listed above; our prediction was that if noise
in gene expression is relevant to yeast, then essential genes
would be biased towards having the highest transcription and
lowest translation per mRNA (strategy 1) in each bin. Indeed,
this was confirmed by the data: when the genes within each
bin were separated into thirds by their number of trans-
lations per mRNA, a larger number of essential genes were in
the third with the lowest number of translations (low noise)
than in the third with the highest number of translations
(high noise) for all but one of 15 bins (Figure 2A). A Fisher’s
exact test (Sokal and Rohlf 1994) demonstrated that for all of
the 14 bins with more essential genes in the low noise third
than the high noise third, this difference was significant (p �
0.02). Similar results were found when using different
numbers of bins, when using halves or quartiles instead of
thirds, or when separating bins by transcription rate instead
of by number of translations per mRNA (data not shown).
This result cannot be explained by the overall positive
correlation between dispensability and rate of protein syn-
thesis. (In the binning analysis, the third of each bin with the
lowest translation rate had, on average, a slightly lower
overall protein synthesis rate than the third with the highest
translation rate [data not shown]; this bias is the opposite of
what would be expected from the positive correlation
between protein synthesis rate and fitness effect or protein
complex membership, and thus it acts against our observed
bias to make the results of this analysis conservative estimates
of the true bias.)
Because binning genes still allows for a small amount of

variability in protein production within each bin (see Table

Figure 1. Strategies for Expression

Three different strategies for achieving a given rate of protein
production (four proteins will be produced in each case) and the
amount of noise in expected to result from each strategy. Curved
lines represent mRNA molecules, with ribosomes translating them; a
larger number of mRNA molecules represents higher transcription,
and a larger number of ribosomes per mRNA represents higher
translation per mRNA.
DOI: 10.1371/journal.pbio.0020137.g001
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S1), we sought to control for protein production rate in
another fashion as well. We employed partial correlation, a
method that allows one to examine the relationship between
two variables when other, possibly confounding, variables are
statistically held constant (see Materials and Methods). The
stochastic model of gene expression (Blake et al. 2003) led us
to the prediction that, when protein production rate is
controlled for, fitness effect ( f, where f = 0 indicates no
effect on growth when a gene is deleted, f = 1 indicates that a
gene is essential, and 0, f, 1 indicates a quantitative growth
defect [Hirsh and Fraser 2001]) would correlate positively
with transcription rate and negatively with translation rate
per mRNA. Indeed, this is what we observed ( f versus
transcription [txn] rate j protein production rate, Spearman
partial r = 0.282, n = 4,746, p = 10�87; f versus translations
[tlns] per mRNA j protein production rate, Spearman partial
r =�0.258, n = 4,746, p = 10�75). We also expected that the
relationship between gene importance and implementation
of the expression strategy that minimizes noise could addi-
tionally be seen by considering transcription rate and
translation rate per mRNA together, as a ratio; a large ratio
of transcription rate to translations per mRNA would
indicate that transcripts are produced quickly but are
translated slowly, corresponding to our expression strategy
1. Confirming this, the correlation between fitness effect and
the ratio of transcription rate to translations per mRNA
(controlling for protein production rate) is highly significant
( f versus txn rate/tlns per mRNA j protein production rate,
Spearman partial r = 0.275, n = 4,746, p = 10�86). Partial
correlation analysis is thus in accordance with the trend
illustrated in Figure 2A: essential genes preferentially use
expression strategy 1, which minimizes stochasticity.

In addition to essential genes, genes whose protein
products participate in stable protein complexes (‘‘complex
subunits’’) would also be expected to exhibit sensitivity to
randomness in expression: producing too little or too much
of a single protein complex subunit can compromise the
proper assembly of the entire complex and waste the energy

invested in the production of the other complex subunits. In
support of this, it has been found that both under- and
overexpression of complex subunits is more likely to result in
a reduced growth rate or inviability of yeast than is
misexpression of other genes, and also that complex subunits
tend to be more precisely coexpressed with other genes than
noncomplex subunits (Papp et al. 2003). Using data from two
high-throughput studies that identified proteins involved in
stable complexes (Gavin et al. 2002; Ho et al. 2002), we
assigned genes to two groups: those whose protein products
were members of a stable complex found in either study and
those whose protein products were not. (Since the protein
complex data do not include all protein complexes, we expect
that many protein complex subunits will not be classified as
such in our list; this, as well as any false positives in the data,
makes our results a conservative estimate the true strength of
the effect.) We then performed the same binning analysis as
described above, substituting our list of complex subunits for
our list of essential genes. Again the prediction was
confirmed: in all 15 bins, the third of the bin with the least
translation per mRNA (and thus the lowest noise level)
contained more complex subunits than the third with the
most translation per mRNA (Figure 2B). The association
between low translation per mRNA and protein complex
membership was significant (Fisher’s exact test, p � 0.02) for
all but one bin. As in Figure 2A, this result is robust with
respect to the number of bins and the size of the divisions
within bins (data not shown). Also as in Figure 2A, the bias is
the opposite of that expected from the positive correlation
between fitness effect and protein production rate; it is also
the opposite of what would be the result of highly expressed
genes being more likely to appear in the list of protein
complex subunits than are poorly expressed genes. (It has
been found that highly expressed genes are overrepresented
in protein complex data [whether this is an experimental
artifact or a true relationship is unclear; von Mering et al.
2002]; this would also act against our observed bias of
complex subunits being overrepresented in the third with the

Figure 2. Essential Genes and Protein Complex Subunits Minimize Noise in Expression

Binning analysis of (A) essential genes and (B) protein complex subunits. All genes for which transcription and translation rate data were
available were separated into 15 bins by their protein production rate. Each bin was then separated into thirds by number of translations per
mRNA. The two-thirds in each bin with the most extreme transcription and translation are shown: black bars are the number of each type of
gene (essential or complex subunit) in the third of each bin with the lowest number of translations per mRNA and the highest transcription rate,
and thus low noise; gray bars are the number of each type of gene in the third with the highest number of translations per mRNA and the lowest
transcripton rate, and thus high noise. Bins are ordered by their rate of protein synthesis. The number of asterisks indicates the Fisher’s exact
test probability of observing the values for each bin under the null model of independence. *, p � 0.02; **, p , 0.005; ***, p , 0.0005.
DOI: 10.1371/journal.pbio.0020137.g002
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lowest overall protein synthesis rate in each bin, thus making
our results conservative.)

When we repeated the partial correlation analysis for
complex subunits (genes were assigned a value of one if they
were a complex subunit, zero if not), we found similar results.
When total protein synthesis was controlled for with the
partial correlation, complex subunits were more likely to
have a high transcription rate (complex subunit versus txn
rate j protein production rate, Spearman partial r = 0.203, n
¼ 4,900, p = 10�46) and a low number of translations per
mRNA (complex subunit versus tlns per mRNA j protein
production rate, Spearman partial r =�0.200, n= 4,900, p=
10�46). Using the ratio of transcription rate to translations
per mRNA also yielded similar results (complex subunit
versus txn rate/tlns per mRNA j protein production rate,
Spearman partial r = 0.220, n = 4,900, p = 10�56). Thus,
partial correlations confirm the finding illustrated in Figure
2B.

Since proteins that participate in many protein–protein
interactions are more likely to be essential (Jeong et al. 2001;
Fraser et al. 2002), it was not immediately clear whether
protein fitness effect and membership in a multiprotein
complex are independently associated with the expression
strategy that minimizes stochastic fluctuations. To address
this question, we calculated the partial correlation between
fitness effect and the ratio of transcription rate to trans-
lations per mRNA, while controlling for both protein
production rate and protein complex membership. Likewise,
we calculated the correlation between protein complex
membership and the ratio of transcription rate to translation
rate per mRNA while controlling for both protein production
rate and fitness effect. The two partial correlations were both
quite significant (f versus txn rate/tlns per mRNA j protein
production rate, complex membership: Spearman partial r =
0.227, n = 4,746, p = 10�57; complex membership versus txn
rate/tlns per mRNA j protein production rate, f: Spearman
partial r= 0.147, n= 4,746, p= 10�24), suggesting that fitness
effect and protein complex membership are independently
associated with the expression strategy that minimizes
stochastic fluctuation. (However, the relative strengths of
the partial correlations cannot be interpreted as their true
relative contributions because of the differing quality of
fitness effect and protein complex membership data.)
Repeating the partial correlations above with either tran-
scription rate or translations per mRNA in place of their
ratio gave significant partial correlations with both fitness
effect and protein complex membership as well (data not
shown).

The hypothesis that genes of large fitness effect are under
stronger selection to reduce stochastic fluctuation in ex-
pression provides an explanation for a previously observed,
but as yet unexplained, correlate of protein evolutionary rate.
Pal et al. (2001) noted a weak but significant negative
correlation (r = �0.11, p = 10�9) between an mRNA’s rate
of decay and the evolutionary rate of the protein it encodes.
This correlation was surprising, as it is precisely the opposite
of what one would expect if the relationship between the
rates of mRNA decay and protein evolution were mediated by
the level of expression: slow decay would result in increased
expression, which is known to be associated with slow
evolution (Pal et al. 2001). Thus, we would expect a positive
correlation between rates of mRNA decay and protein

evolution, not the negative one that is observed. However,
under the present hypothesis that relatively important genes
are under stronger selection to reduce noise, the relationship
between mRNA decay and protein evolutionary rate is
interpretable. Both genes of large fitness effect and genes
that encode protein complex subunits are known to evolve
slowly (Hirsh and Fraser 2001; Fraser et al. 2002; Jordan et al.
2002). (While the reason why genes of large fitness effect
evolve slowly has been debated [Hirsh and Fraser 2003; Pal et
al. 2003], the presence of the correlation has not been
disputed, and it can be seen to be much stronger than
previously reported when using more accurate fitness effect
and evolutionary rate data [data not shown]). Here we have
shown that they are also associated with a strategy of
expression that maximizes the rate of transcription and
minimizes the number of translations per mRNA. Given a
desired rate of protein production, one way to maximize
transcription rate while minimizing the number of trans-
lations per mRNA is to maximize the mRNA decay rate. Thus,
we would expect rapid mRNA decay among essential genes
and protein complex subunits, both of which evolve slowly,
yielding the observed negative correlation between the rates
of mRNA decay and protein evolution. In support of this
prediction, both essential genes and protein complex
subunits have substantially shorter mRNA half-lives than
the rest of the genome (e.g., mRNA half-lives of nonessential
genes are 32% longer than those of essential genes, and the
bias remains when controlling for protein production rate; p
¼ 10�36 by the Wilcoxon test [Sokal and Rohlf 1994]).

Discussion

We found that noise in protein production is minimized in
genes for which it is likely to be most harmful, specifically
essential genes and genes encoding protein complex subunits.
This finding supports the hypothesis that noise in gene
expression is generally deleterious to yeast.
Yeast appear to control the noise in their gene expression

at both transcriptional and translational levels preferentially
for some genes; however, this noise minimization is not
without a cost, as the high transcription and high mRNA
decay rates that are needed to minimize noise are energeti-
cally expensive and are thus expected to be advantageous
only when the benefit of reducing noise in a particular gene’s
expression outweighs this cost (Thattai and van Oudenaarden
2000). Protein degradation rates may also play a role in
controlling noise, but this cannot be tested until genome-
wide protein degradation rates have been measured.
As is the case with many genome-wide studies, it is possible

that a hidden variable could bias our results. For example, it
is possible that essential genes and genes encoding protein
complex subunits tend to have high transcription and low
translation for reasons unrelated to noise minimization.
However, until such a reason is identified, the most
parsimonious interpretation of our results is that yeast
adaptively minimize noise in the expression of certain genes.
As genome-wide transcription and translation rate data

become available for other organisms, it will be interesting to
see if the apparent tendency to minimize noise in the
expression of important genes extends to organisms other
than yeast. Considering that several anecdotal examples of
indispensable genes with unusually low translation rates, and
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thus low noise in expression, have already been noted in
Escherichia coli (Ozbudak et al. 2002), this could well be the
case.

Materials and Methods

Functional genomic data sources. Transcription rates were
calculated from mRNA abundances and decay rates in log-phase
yeast growing in rich glucose medium (Wang et al. 2002) according to
the steady-state equation R =�ln(0.5) * A/T, where R is transcription
rate, A is mRNA abundance, and T is mRNA half-life. Translation
rates per mRNA in rich glucose medium were calculated from
ribosome occupancy data by Arava et al. (2003); specifically, ribosome
density per mRNA present in the polysome fraction was multiplied by
the fraction of each mRNA that was found in the polysome fraction
to estimate the average ribosome density for all copies of each mRNA
in a cell. This density is equivalent to a relative translation rate,
assuming that the speed at which ribosomes produce proteins is
constant over different mRNAs. An estimate of the actual translation
rate was found by multiplying the relative translation rates by a
constant: the speed of translation, which is approximately ten amino
acids/s (Arava et al. 2003). Protein production rate (proteins/s) was
then calculated by multiplying translation rate per mRNA with
mRNA abundance. Note that the protein production rate can also be
represented as the product of transcription rate and number of
translations per mRNA. It is this latter variable that was used to
separate each bin into thirds in Figure 2, since it is thought to be
more directly relevant to noise in protein production than related
quantities such as translation rate per mRNA (Berg 1978); the
variable was calculated by dividing protein production rate by
transcription rate for each gene. However, bins could also be
separated into thirds by transcription rate, transcript abundance,
or translation rate per mRNA, all yielding similar results (data not
shown).

Fitness effect ranks were calculated from 12 replicate growth
experiments for all viable homozygous yeast deletion strains in rich
glucose medium; growth experiments were conducted using the
method described in Giaever et al. (2004). The logarithms of deletion
strain tag fluorescence intensities on high-density oligonucelotide
microarrays for each growth time course were fitted to a linear model
that accounted for time-course-specific effects and variable initial
strain concentrations. The slope of the linear regression was then
used as the relative growth rate for each strain.

Estimates of percent induction levels. Blake et al. (2003) showed for
two different promoters in yeast, as well as in their mathematical
model, that noise due to transcription peaked at approximately one-
third of maximal transcriptional induction. Importantly, one of their
promoters (PADH1*) was 10-fold weaker than the other two at full
induction, but all three showed very similar relationships between
noise strength and percent transcriptional induction. Since we do not

have genome-wide data for the percent induction for genes in rich
glucose medium (or any other environment), in our analysis we make
the assumption that the promoters of more highly transcribed genes
tend to be at higher percent induction levels. While this certainly
does not hold for all genes, we believe that it is a reasonable
approximation for most genes.

Partial correlations. Partial correlations were calculated as
described by Sokal and Rohlf (1994). Briefly, let rXY be the correlation
coefficient between variablesX and Y. To control for a third variable Z,

rXY �Z ¼ rXY � rXZrYZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2XZ
� �

1� r2YZ
� �q ; ð1Þ

To assess the significance of the partial correlation, it is transformed
to be distributed according to a Student’s t distribution, by the
equation

t ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 3
1� r2

r
; ð2Þ

The two-sided p-value can then be calculated according to where the t-
value falls with respect to its expected distribution.

Supporting Information

Figure S1. The Relationship between Fitness Effect and Protein
Production Rate

Fitness effect ranks are shown on the y-axis (the large number of
points at 519.5 are the essential genes, with fitness effect = 1). Protein
production rate (proteins/s) is shown on the x-axis. The Spearman
rank correlation coefficient is r =�0.202 (p = 10�49).
Found at DOI: 10.1371/journal.pbio.0020137.sg001 (316 KB PPT).

Table S1. Details of the Protein Production Rates (Proteins/s) within
Each Bin from Figure 2.
Found at DOI: 10.1371/journal.pbio.0020137.st001 (37 KB DOC).
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