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Abstract

The lack of predictive preclinical models is a fundamental barrier to translating knowledge

about the molecular pathogenesis of cancer into improved therapies. Insertional mutagene-

sis (IM) in mice is a robust strategy for generating malignancies that recapitulate the exten-

sive inter- and intra-tumoral genetic heterogeneity found in advanced human cancers. While

the central role of "driver" viral insertions in IM models that aberrantly increase the expres-

sion of proto-oncogenes or disrupt tumor suppressors has been appreciated for many

years, the contributions of cooperating somatic mutations and large chromosomal alter-

ations to tumorigenesis are largely unknown. Integrated genomic studies of T lineage acute

lymphoblastic leukemias (T-ALLs) generated by IM in wild-type (WT) and Kras mutant mice

reveal frequent point mutations and other recurrent non-insertional genetic alterations that

also occur in human T-ALL. These somatic mutations are sensitive and specific markers for

defining clonal dynamics and identifying candidate resistance mechanisms in leukemias

that relapse after an initial therapeutic response. Primary cancers initiated by IM and resis-

tant clones that emerge during in vivo treatment close key gaps in existing preclinical mod-

els, and are robust platforms for investigating the efficacy of new therapies and for

elucidating how drug exposure shapes tumor evolution and patterns of resistance.
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Author summary

A lack of predictive cancer models is a major bottleneck for prioritizing new anti-cancer

drugs for clinical trials. We comprehensively profiled a panel of primary mouse T lineage

leukemias initiated by insertional mutagenesis and found remarkable similarities with

human T-ALL in regard to overall mutational burden, the occurrence of specific somatic

mutations and large chromosomal alterations, and concordant gene expression signa-

tures. We observed frequent duplication of the Kras oncogene with loss of the normal

allele, which has potential therapeutic implications that merit further investigation in

human leukemia and in other preclinical models. Mutations identified in mouse leuke-

mias that relapsed after in vivo treatment with signal transduction inhibitors were also

observed in relapsed human T-ALL, indicating that this model system can be utilized to

investigate strategies for overcoming intrinsic and acquired drug resistance. Finally, pre-

clinical models similar to the one described here that are characterized by a normal

endogenous tumor microenvironment and intact immune system will become increas-

ingly important for testing immunotherapy approaches for human cancer.

Introduction

Most new anti-cancer agents fail in the clinic [1]. Whereas cancer cell lines have been integral

to the development of most anti-cancer drugs and exhibit genotype-specific responses to some

targeted inhibitors, they fail to model many fundamental properties of primary tumors. Patient

derived xenograft (PDX) models are promising platforms for testing anti-cancer drugs, but

also have inherent limitations, including lack of an intact immune system or normal tumor

microenvironment and failure to fully recapitulate the clonal heterogeneity of advanced

human cancers [1–3]. Mouse models in which cancers arise due to mutations introduced into

the germline or following exposure to chemical mutagens also have distinct advantages and lia-

bilities. Genetically engineered mouse (GEM) models reproduce many morphologic features

of advanced human cancers, but diverge substantially with respect to the overall mutational

burden and pattern of copy number alterations [4–8]. Whereas models initiated by chemical

carcinogens may more accurately reflect the mutational profile of some human cancers [4, 6],

extensive genetic variability and the inability to perform technical replicates are substantial

barriers to widespread preclinical use.

IM was developed as an unbiased strategy for cancer gene discovery [9]. This approach ini-

tially involved injecting mice with retroviruses, which integrated into the genome and pro-

moted tumorigenesis by activating proto-oncogenes or disrupting tumor suppressors. The

locations of exogenous viral DNA insertions also served as molecular sequence tags that facili-

tated identifying candidate cancer genes. An appealing aspect of IM models is that they reca-

pitulate the inter- and intra-tumoral genetic heterogeneity that is a hallmark of advanced

human cancers [2]. Furthermore, technical advances such as the PiggyBAC and Sleeping
Beauty transposon systems both expanded the spectrum of cancers that can be modeled and

yielded tumors with insertions within many genes that are altered in corresponding human

cancers [10–17].

We previously generated primary T-ALLs by injecting C57Bl/6 x 129Sv/Jae F1 mouse pups

harboring a conditional mutant Kras oncogene (Lox-STOP-Lox KrasG12D) and congenic WT

animals with the MOL4070LTR retrovirus [18]. Subsequent activation of endogenous

KrasG12D expression both accelerated disease onset and increased penetrance. Importantly,

this system differs from other GEM models of RAS-driven cancers because the KrasG12D
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mutation is a secondary event that cooperates with antecedent retroviral integrations [19, 20],

and thus reflects the most common pathogenic sequence in patients [21]. T-ALLs initiated by

IM typically exhibited 3–6 dominant clonal retroviral integrations, many of which occurred

within or adjacent to known cancer genes. Interestingly, most of these leukemias also acquired

somatic Notch1 mutations, which are highly prevalent in human T-ALLs [19] and have also

been observed in other murine models of T-ALL [22–24]. This unexpected observation raised

the possibility that non-insertional genetic mechanisms broadly contribute to tumorigenesis

in cancer models driven by IM. In this study, we set out to more thoroughly define the geno-

mic and transcriptional landscape of a cancer model initiated by IM and to assess the contribu-

tion that non-insertional genetic mechanisms have on tumorigenesis and clonal evolution

upon treatment with signal transduction inhibitors.

Results

The mutational landscape of IM-induced T-ALL is similar to that of human

T-ALL

We performed whole exome sequencing (WES) on 21 independent IM-induced T-ALLs that

were tested in preclinical efficacy studies of MEK and PI3 kinase (PI3K) inhibitors [20]. These

leukemias included 15 primary T-ALLs isolated from KrasG12D mice and 6 from WT mice

(hereafter referred to as KrasWT). The mutational burden in T-ALLs induced by IM ranged

from 0.2 to 0.8 somatic alterations per megabase of exome sequence (Fig 1A), which is similar

to the mutation burden reported in human ALL [25].

WES identified all 14 known Notch1 mutations [19], and also uncovered somatic mutations

in the Notch pathway genes Notch4 and Cntn1 in two additional leukemias (Fig 1B). Thus, the

frequency of somatic mutations in genes linked to Notch signaling (16 of 21; 75%) was similar

to what is observed in human T-ALL (Fig 1B), with NOTCH1/Notch1 targeted most frequently

in both species.

IKZF1 encodes the Ikaros transcription factor that functions as a regulator of lymphocyte

differentiation. Ten independent T-ALLs harbored a variety of Ikzk1 alterations including ret-

roviral integrations predicted to disrupt the coding region (n = 7), missense or truncating

mutations (n = 3), and copy number losses (n = 2) (Fig 1B). Five additional genes that are

mutated in human T-ALL and broadly regulate gene transcription or epigenetic programming

were altered by retroviral integration (Myb, Lmo2, Runx1) or mutation (Kdm6a, Smarca4).

Myb integrations and Kdm6a mutations were observed in three and two independent leuke-

mias, respectively. Overall, 14 of 21 T-ALLs had one or more alterations of genes classified as

transcriptional/epigenetic regulators, which is similar to the frequency observed in human

T-ALL (Fig 1B). However, the involvement of specific genes varied between species. For exam-

ple, while Ikzf1 was affected far more often in murine T-ALL, IKZF1 is recurrently mutated or

deleted in relapsed human ALL and in certain high-risk leukemia subtypes at diagnosis [26–

28].

Somatic Ras/PI3K pathway alterations were detected in 6 of 6 KrasWT leukemias (100%),

but in only 4 of 15 KrasG12D T-ALLs (27%). Rasgrp1, which encodes a guanine nucleotide

exchange factor that promotes Ras activation, is a recurrent site of retroviral integrations in

KrasWT leukemias [19, 29]. WES also identified mutations in five genes encoding protein com-

ponents of the Ras/PI3K pathway in six additional T-ALLs. The low frequency of somatic Ras/

PI3K pathway abnormalities in KrasG12D T-ALLs suggests that expression of endogenous

oncogenic KrasG12D in leukemia initiating cells is sufficient to confer a clonal growth advan-

tage in the absence of additional signaling mutations. Interestingly, however, mutant Kras
allele frequencies were above 80% in 12 of 15 KrasG12D leukemias (Fig 1C). We considered two
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potential explanations for this observation: a structural deletion of the WT Kras allele or

somatic uniparental disomy (UPD) resulting in loss of WT Kras and duplication of KrasG12D.

The presence of neutral Kras copy number inferred from WES data combined with frequent

loss of C57Bl/6-specific single nucleotide polymorphisms (SNPs) around the Kras locus

strongly implicated copy neutral loss of heterozygosity with increased KrasG12D dosage as the

underlying genetic mechanism (S1 Fig). These data are indicative of substantial selective pres-

sure favoring the outgrowth of leukemic clones that have increased Ras signaling through a

genetic mechanism that precisely duplicates KrasG12D copy number, and are consistent with

recent studies of mouse and human cancers [30, 31]. The overall proportion of mouse leuke-

mias with Ras/PI3K mutations is substantially higher in this model system than in human

T-ALL due to the presence of a KrasG12D knock in mutation in 15 of the 21 of them (Fig 1B).

Many somatic alterations occur in hotspots and are predicated to be

pathogenic

To assess the functional consequence of single nucleotide variants (SNVs) and indels in

murine T-ALLs, we mapped mutations to the corresponding human protein homologs and

compared these data to somatic alterations reported previously. This analysis revealed

Fig 1. Somatic alterations and retroviral integrations in IM-induced T-ALLs recapitulate features of human T-ALL. (A) The overall mutational burden of IM-

induced T-ALLs is similar to human ALL. (B) SNVs and indels in high-likelihood T-ALL driver genes are frequent and recurrent in IM-induced T-ALLs. Pathways that

are most frequently affected include Ras, PI3K, Notch, Ikaros, and transcriptional regulators. Corresponding gene and pathway alterations are recurrent in human

T-ALL as reported by Liu, et al. (C) Frequent copy neutral loss of heterozygosity occurs at the Kras locus with duplication of the mutant KrasG12D allele in murine

T-ALLs.

https://doi.org/10.1371/journal.pgen.1008168.g001
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alterations within conserved functional motifs, including PtenR130W and Raf1S259P (Fig 2A)

[32–34]. In silico protein function prediction analysis revealed that most of the reported

somatic alterations shown in Fig 1B are expected to abrogate or impair protein function

(Fig 2B).

The transcriptional signatures of IM-induced T-ALL closely resemble

human T-ALL

Based on the genetic similarities between human T-ALL and IM-induced T-ALL, we per-

formed RNA-seq to assess the transcriptional landscape of 5 KrasG12D and 4 KrasWT T-ALLs.

Gene expression signatures that reflect a T lymphoblastic immunophenotype were enriched

across these samples, and we observed low-level expression of genes associated with B lympho-

blastic and myeloid leukemia immunophenotypes (S2 Fig). Consistent with human T-ALL,

Fig 2. Somatic alterations are frequently predicted to be pathogenic and correspond to mutations in human T-ALL. (A) Notch1, Pten, Raf1, and

Trp53 mutations in IM-induced T-ALLs (top panels) occur within hotspot locations that correspond to recurrent mutations in human cancer (bottom

panels). (B) In silico protein function prediction indicates that mutations highlighted in Fig 1 are frequently deleterious and occur at residues that are

conserved across multiple species.

https://doi.org/10.1371/journal.pgen.1008168.g002
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we also detected distinct and clonal T-cell receptor gene VDJ rearrangements in individual

leukemias (S2 Fig) [35]. We then compared the gene expression of IM-induced leukemias

with previously reported microarray data used to discriminate human T-ALL from various

subtypes of B lineage acute lymphoblastic leukemia (B-ALL) [36, 37]. Expression profile signa-

tures that most accurately distinguish T-ALL from B-ALL were used to compare the relative

expression in IM-induced T-ALLs, which clustered with human T-ALL (Fig 3A). We also per-

formed unbiased gene set enrichment analysis (GSEA) using the Molecular Signature

Fig 3. The transcriptional signature and pathway analysis of IM-induced T-ALL cluster with human T-ALL. (A)

Expression profiling that discriminate human T-ALL from B-ALL clusters IM T-ALL closely with human T-ALL. (B)

MYC, PI3K, and NOTCH1 pathway gene sets are significantly enriched in murine IM-induced and human T-ALLs

compared to B-ALL.

https://doi.org/10.1371/journal.pgen.1008168.g003
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Database Hallmark Gene Sets and C2 Curated Gene Sets to compare: (1) T-ALL versus B-ALL;

and, (2) IM-induced T-ALL versus B-ALL. Genes that discriminate various subtypes of B-ALL

from each other were included in the analysis [36, 37]. MYC, PI3K, NOTCH1, and TCR path-

way gene sets were enriched across human and mouse T-ALLs (Fig 3B and S3A Fig), and we

also observed negative enrichment scores for gene sets that are upregulated in subtypes of

B-ALL (S3B Fig).

Clonal evolution occurs at the level of somatic alterations in response to

targeted therapies

Treatment with the pan-PI3K inhibitor GDC-0941 alone and in combination with the MEK

inhibitor PD0325901 (PD901) markedly extended the survival of recipient mice transplanted

with KrasWT and KrasG12D T-ALLs [20], but these leukemias invariably relapsed despite con-

tinuous drug administration. As in relapsed human leukemias [38], these resistant murine

T-ALLs were derived from pre-existing ancestral clones and they frequently showed loss of

activated Notch1 expression and PI3K pathway activation [20]. To identify additional genetic

alterations that might contribute to treatment resistance, we performed WES on parental/

relapsed T-ALL pairs. This analysis revealed SNVs and indels that were enriched or depleted

in individual relapsed leukemias, including two in which inactivating Pten mutations emerged

at the cost of other drivers (Fig 4). In KrasWT T-ALL JW81, treatment with GDC-0941 and

with the combination of GDC-0941/PD901 significantly prolonged survival. At relapse, this

leukemia acquired a de novo PtenH123R mutation and also showed markedly decreased Notch1
mutant allele frequency (Fig 4). Conversely, KrasG12D T-ALL 73M, which harbored a loss of

the WT Kras allele and a duplication of KrasG12D, had a minimal response to treatment.

Remarkably, however, this leukemia exhibited rapid clonal evolution upon in vivo drug expo-

sure with outgrowth of cells showing decreased mutant KrasG12D allele frequency and substan-

tial enrichment of a pre-existing, low frequency PtenR130W mutation (Fig 4) [32]. Consistent

with these results, analysis of heterozygous SNPs revealed enrichment in the 129Sv/Jae SNP

allele frequency across the chromosome containing the Pten mutant allele and the presence of

both WT and mutant Kras associated SNPs in the resistant clone (S4 Fig).

Discussion

We describe the first comprehensive molecular characterization of a mouse cancer model initi-

ated by insertional mutagenesis. Through integrated analyses, we demonstrate that T-ALLs

initiated by insertional mutagenesis harbor extensive genomic diversity and also acquire a sim-

ilar spectrum and overall burden of somatic mutations as the corresponding human leuke-

mias. Specifically, many driver genes that are mutated in human T-ALL [39] are also

recurrently altered in IM-induced T-ALL, including Notch1, Pten, Myb, and Ikzf1. Data from

both species implicate deregulated transcriptional programs in disease initiation with subse-

quent Ras/PI3K and Notch pathway mutations cooperating in leukemic transformation [19,

26, 39].

Genome-wide analysis of solid cancers arising in GEM models expressing one or more

oncogenic driver mutations has consistently revealed markedly fewer pathogenic point muta-

tions than in the corresponding human tumors and a higher frequency of large chromosomal

alterations [4–8]. This likely reflects the ability of alterations in potent cancer genes such as

Kras, Trp53, Rb, and Pten to bypass the need for environmentally-induced and age-related

mutations that contribute to tumorigenesis. For example, genetic models of Kras-driven lung

cancer and skin squamous cell carcinoma acquired an average of six and four additional

somatic alterations, respectively [4, 6]. By contrast, in parallel analyses, carcinogen-induced

Convergent genetics of mouse and human leukemias
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models of the same two cancer types acquired an average of 192 and 846 somatic alterations,

respectively, with mutational profiles that more accurately reflect human carcinomas [4, 6].

Acute leukemias are distinct from non-hematopoietic cancers with respect to a lower over-

all somatic mutational burden [25] and also exhibit characteristic patterns of initiating and

cooperating events. Deep sequencing studies have identified epigenetic and transcription fac-

tor alterations as early events in both lymphoblastic and myeloid acute leukemias, with subse-

quent signal transduction pathway mutations playing a central role in driving leukemic

outgrowth [26, 38, 40, 41]. Molecular analysis of IM-induced T-ALLs suggest that they recapit-

ulate this pathogenic sequence with disease-initiating retroviral integrations that deregulate

transcriptional programs generating preleukemic clones [19], that subsequently acquired an

average of 13 additional somatic alterations, including recurring mutations in Ras/PI3K path-

way genes in KrasWT leukemias. This latter observation is consistent with the fact that activat-

ing KrasG12D expression as a secondary event increased leukemia penetrance and also reduced

latency [19]. In addition, resistant leukemias that emerged during in vivo treatment with MEK

and PI3K inhibitors invariably retained multiple retroviral integrations found in the corre-

sponding drug-sensitive parental T-ALL, but frequently showed loss of Notch1 mutation [20].

Frequent uniparental disomy resulting in loss of WT Kras and duplication of KrasG12D in

14 of 17 IM-induced T-ALLs is consistent with recent work demonstrating that KRAS

Fig 4. Clonal evolution following combination treatment with PI3K and MEK inhibitors. Leukemias were transplanted and treated with GDC-0941 and PD901. (A)

Variant allele frequencies of primary versus relapsed leukemias were determined based on whole exome sequencing. Treatment resulted in the emergence of a resistant

clone that acquired a de novo Pten mutation in T-ALL JW81 and the outgrowth of a subclone of T-ALL 73M with a pre-existing Pten mutation at the cost of other drivers.

(B) Graphical representation of clonal evolution of each primary/relapsed leukemia pair.

https://doi.org/10.1371/journal.pgen.1008168.g004
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mutations in acute myeloid leukemia and colorectal cancer frequently exhibit allelic imbalance

that modulate competitive fitness and MEK dependency [30]. Similarly, a comprehensive

genomic characterization of 264 primary T-ALLs showed that KRAS mutations, but not NRAS
mutations, were specifically associated with mutant allele fractions of greater than 0.7 in a sub-

set of patients at diagnosis [39]. Another study that investigated large numbers of murine

KrasG12D pancreatic and lung cancers also identified frequent Kras allelic imbalance that was

modulated by treatment with a MEK inhibitor [8]. The panel of primary mouse leukemias

described here are novel reagents for investigating the effects of restoring WT Kras expression

on fitness and for interrogating K-Ras protein dimerization and other candidate molecular

mechanisms of growth inhibition [42, 43].

MYC is a downstream target of activated Notch1 signaling that contributes to T-ALL patho-

genesis [44–47]. As the mouse Myc gene is located on chromosome 15, it is intriguing that 13

of 21 T-ALLs analyzed in this study exhibited trisomy 15. However, Myc expression was simi-

lar in leukemias with and without trisomy 15 and we did not observe any with focal Myc
amplification. Similarly, Mullighan, et al. [39] identified 12 human T-ALLs with trisomy 8 or

large gains of 8q, which is the chromosome arm that contains MYC, that were not character-

ized by elevated MYC expression and did not harbor focal MYC amplification. Thus, the role

of MYC/Myc in promoting the outgrowth of T-ALLs with trisomy 8 (human) or 15 (mouse) is

uncertain.

NRAS, KRAS, PTEN, and AKT mutations are associated with worse outcomes in patients

newly diagnosed with T-ALL [39, 48, 49], are enriched in relapse specimens [38, 50], and have

previously been shown to provide a proliferative advantage based on xenograft models [51].

While cure rates have improved substantially in T-ALL, relapsed disease is still associated with

dismal outcomes [52]. Furthermore, whereas T-ALLs characterized by activated Notch signal-

ing are vulnerable to inhibitors of the Notch processing enzyme gamma secretase, Pten inacti-

vation overcomes this dependency [53]. This might, in part, underlie the disappointing

response rates seen in early phase clinical trials of agents targeting gamma secretase in T-ALL

[54, 55]. Together, these data indicate a need for both therapeutic approaches directed against

hyperactive Ras/PI3K signaling in T-ALL and for robust preclinical models to test them.

Along these lines, it is notable that the 21 primary leukemias characterized here exhibit fre-

quent alterations in Ras and PI3K pathway genes, some of which were enriched at relapse.

This panel of transplantable primary and relapsed/refractory leukemias with known genetic

aberrations thus comprises a unique resource for testing novel therapeutic strategies for high-

risk subsets of T-ALL and for delineating additional resistance mechanisms.

Materials and methods

Ethics statement

All animal experiments conformed to national regulatory standards and were approved by the

University of California, San Francisco Committee on Animal Research (IACUC Protocol

Approval Number AN136527).

Murine leukemias

All animal experiments conformed to national regulatory standards and were approved by the

University of California, San Francisco Committee on Animal Research. C57Bl/6 x 129Sv/Jae

Mx1-Cre x KrasLSL-G12D mice (KrasG12D) and wild-type littermates (KrasWT) were injected with

MOL4070LTR at 3–5 days of age and KrasG12D expression was activated at 21 days of age by

administering a single dose of polyinosinic-polycytidylic acid (pIpC) as previously described

[19, 20]. For adoptive transfer of acute leukemias, 2 × 106 cells were injected retro-orbitally
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into 8–12 week old wild-type C57Bl/6 x 129Sv/Jae F1 recipient mice that had been irradiated

with 450 cGy. Mice that appeared ill were euthanized and underwent full pathological exami-

nation. Flushed bone marrow cells were isolated to confirm relapse and to assess for tumor

purity. Relapsed leukemia cells were cryopreserved for molecular and genetic analysis.

Whole exome sequencing

Genomic DNA was extracted from the bone marrows of mice transplanted with IM-induced

leukemias and then sheared to generate 150 to 200 base pair fragments using a Covaris S2

focused-ultrasonicator. Indexed libraries were prepared using the Agilent SureSelect XT2

Reagent Kit for the HiSeq platform. Exomes were captured using the Agilent SureSelect XT2

Mouse All Exon bait library. Sample quality and quantity were assessed using the Agilent 2100

Bioanalyzer instrument. Paired-end 100 base pair reads were generated on an Illumina HiSeq

2000 platform. All sequence data including read alignment; quality and performance metrics;

post-processing, somatic mutation and DNA copy number alteration detection; and variant

annotation were performed as previously described [56, 57] using the mm10 build of the

mouse genome. Briefly, reads were aligned with Burrows-Wheeler Aligner [58], and processed

using Picard (http://broadinstitute.github.io/picard) tools and the Genome Analysis Toolkit

(GATK) [59] to perform base quality recalibration and multiple sequence realignment. Single

nucleotide variants and indels were detected with the MuTect [60] and Pindel [61] algorithms,

respectively. Candidate somatic mutations were manually reviewed using Integrative Geno-

mics Viewer [62] and were confirmed by performing orthogonal Sanger sequencing valida-

tion. Tumor-specific copy number alterations were inferred from depth of coverage and B

allele frequencies using control normal bone marrow samples. Loss of heterozygosity analysis

was performed using GATK UnifiedGenotyper to compare germline heterozygous SNPs that

differ between C57Bl/6 and 129Sv/Jae mouse strains called at a depth of 20x or greater between

leukemia and control bone marrow samples.

MOL4070 integration cloning

Restriction enzyme digestion of genomic DNA from mouse T-ALLs, gel electrophoresis, South-

ern blot analysis, and hybridization with a MOL4070LTR-specific probe was performed as

described previously [20, 30]. Junctional fragments at sites of retroviral integration were identi-

fied as previously described using linker-based PCR amplification and sequencing [63, 64].

Mutation mapping and in silico protein function prediction

Mutations were mapped onto corresponding protein sequence using MutationMapper [65].

Associated mutational frequencies in human cancer were extracted from Catalogue of Somatic

Mutations in Cancer (COSMIC, version 82) [66]. Pairwise alignments between homologous

proteins were generated using NCBI HomoloGene and BLASTP. In silico protein function pre-

diction was performed using Mutation Assessor [67], PolyPhen-2 [68], and Sorted Intolerant

From Tolerant (SIFT) [69].

Transcriptome sequencing

Total RNA was extracted from the bone marrows of mice transplanted with IM-induced leuke-

mias using TRIzol. Phenol-chloroform-isoamyl extraction and ethanol precipitation were per-

formed. Total RNA (1 μg) was treated with DNase I at room temperature for 15 min. The

integrity of the DNase I-treated RNA was analyzed on an Agilent 2100 Bioanalyzer before

selection of poly(A) mRNA. Selection for poly(A) mRNA and subsequent cDNA synthesis and
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library preparation were carried out using the Illumina TruSeq RNA sample preparation kit

according to the manufacturer’s protocol. cDNA was fragmented (200-bp peak) with a Covaris

E210 ultrasonicator prior to library preparation. The quality and size of the final library prepa-

ration were analyzed on an Agilent 2100 Bioanalyzer. Paired-end 100 base pair reads were gen-

erated on an Illumina HiSeq 2500 platform. Reads were aligned with Bowtie 2 [70] using the

mm10 database, and transcript quantification was performed with RNA-seq by Expectation

Maximization (RSEM) [71].

Gene expression analysis

Raw microarray gene expression profiling data on patients with T-ALL and B-ALL was down-

loaded from publicly accessible repositories as previously described [36, 37]. Microarray data

was normalized using the robust multi-array average (RMA) method [72]. Probe identifiers

were mapped to associated gene identifiers using the Affymetrix HG U95A Annotations Refer-

ence (Release 36). Gene identifiers generated from RNA-seq data on IM-induced T-ALLs were

mapped to human orthologs using NCBI HomoloGene. FPKM values were normalized to the

microarray data using the trimmed mean of M-values (TMM) method [73]. Normalization

was assessed by plotting average versus fold change normalized expression (MA plot) between

the two datasets and average normalized expression comparing the two datasets. Clustering

and heatmap dendrogram analysis was performed using a correlation similarity metric and

average linkage clustering as previously described [74]. Gene set enrichment analysis was per-

formed as previously described [75]. Gene set permutation was performed to calculate p-values

and FDR due to small sample size.

Supporting information

S1 Fig. Frequent copy neutral loss of heterozygosity at the Kras locus with duplication of

the mutant KrasG12D allele. Leukemias were generated on a C57Bl/6 x 129Sv/Jae F1 strain

background allowing us to analyze single nucleotide polymorphisms (SNPs) that differ

between the two strains. Raw SNP allele frequencies are plotted against relative position on

chromosome 6. The location of Kras is indicated with a diamond. Kras mutant IM T-ALLs fre-

quently have loss of heterozygosity (AF = allele frequency), which is copy neutral (LR = log

ratio copy number) and does not occur in wild-type Kras counterparts.

(TIF)

S2 Fig. IM-induced T-ALL antigen expression is highly similar to human T-ALL patterns

of expression. RNA-seq was performed on 9 primary IM-induced T-ALLs. The gene expres-

sion of IM T-ALLs is lineage specific with high gene expression of T-ALL specific antigens and

low expression of B-ALL and/or myeloid specific antigens. TCR gene rearrangements are vari-

able based on the primary leukemia (gray).

(EPS)

S3 Fig. IM-induced T-ALL and human T-ALL have similar pathway enrichment compared

to B-ALL. (A) A TCR pathway gene set are significantly enriched in murine IM-induced and

human T-ALLs compared to B-ALL. (B) Gene sets associated with various subtypes of B-ALL

are enriched in the respective subtype of B-ALL compared to either T-ALL or IM-induced

T-ALL.

(EPS)

S4 Fig. Clonal evolution following treatment with combination MEK and PI3K inhibitors.

(A) Sequence reads aligned to Pten locus generated from WES of JW81 primary (top panel)

versus relapsed leukemia (bottom panel). The Pten mutation is not detectable within the
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primary tumor, whereas it is present at a 0.547 (read depth 137) allele frequency after treat-

ment with combination MEK and PI3K inhibitors. (B) KrasG12D allelic frequencies were deter-

mined based on Sanger sequencing and relative peak intensities of mutant versus wild-type

alleles. Loss of heterozygosity during leukemogenesis is a common event resulting in near loss

of wild-type Kras in multiple independent leukemias. Outlier leukemia T-ALL 73M initially

lost WT Kras, but re-acquired KrasG12D heterozygosity following treatment with combination

MEK and PI3K inhibitors (red line). (C) Sequence reads aligned to Kras and Pten locus gener-

ated from WES of 73M primary versus relapsed leukemias. The Kras allele frequency decreases

from 0.920 (read depth 138) to 0.547 (read depth 150), whereas the Pten allele frequency

increases from 0.108 (read depth 102) to 0.618 (read depth 137) after treatment with combina-

tion MEK and PI3K inhibitors. (D) SNP allele frequencies plotted against relative position on

chromosome 6 (Kras) and 19 (Pten) for parental and relapsed 73M and (E) copy neutral num-

ber for both parental and relapsed 73M support uniparental disomy as the underlying mecha-

nism for increased mutant Kras and Pten allele frequencies.

(TIF)
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