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Abstract: The aim of this work was to study the interfacial behavior of basalt-fiber-reinforced
thermoplastic blends of polypropylene and poly(butylene terephthalate) (PP/PBT). We examined the
effect of two compatibilizers and two basalt fiber (BF) sizings: commercial (REF) and experimental
(EXP). Differential scanning calorimetry was used to assess the influence of BFs on the phase structure
of obtained composites. Furthermore, dielectric relaxation spectroscopy was used for the first
time to non-destructively study the interfacial adhesion within an entire volume of BF-reinforced
composites by assessing the α relaxation, DC conductivity, and Maxwell–Wagner–Sillars (MWS)
polarization. The fiber–matrix adhesion was further investigated using the Havriliak–Negami model.
Using complex plane analysis, the dielectric strength, which is inversely related to the adhesion,
was calculated. The composites reinforced with EXP fibers showed significantly lower values of
dielectric strength compared to the REF fibers, indicating better adhesion between the reinforcement
and blend matrix. Static bending tests also confirmed improved fiber adhesion with EXP fibers,
while also suggesting a synergistic effect between compatibilizer and sizing in enhancing interfacial
properties. Thus, we conclude that substantially improved adhesion of PP/PBT BF-reinforced
composites is the result of mutual interactions of functional groups of blend matrix, mostly from
blend compatibilizer, and fiber surface due to sizing.

Keywords: basalt fiber; interface; MWS polarization; thermoplastic composites; polymer blend

1. Introduction

Over the last several decades, the modification of existing polymeric systems has arguably become
even more important than the synthesis of new polymers. Polymer modification can be achieved
in various ways, including copolymerization, blending, and/or by adding organic and inorganic
compounds, fillers, or fibrous reinforcement. Each approach leads to the improvement of specific
physical properties (i.e., mechanical [1,2], thermal [3,4], electrical [5], and/or dielectric properties [6–8]).
For highly demanding applications, composite materials—thermoplastic composites in particular—are
considered most promising, owing to their high strength-to-weight ratios and excellent fatigue
resistance [9]. More importantly, the most common technique of processing thermoplastic composites
is injection molding, which enables the production of large quantities of parts with complex shapes
within strict dimensional tolerances [10]. Over the last several decades, basalt fibers (BFs) have come
into consideration as potential reinforcement of composite materials [11–14] due to their numerous
attractive properties. Thermoplastic BF-reinforced composites are a realistic answer to market demands
for materials with lower environmental impact, increased recyclability, ease of processing, and lower
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cost, while maintaining all of the thermal and mechanical benefits offered by composite materials.
However, there are a number of challenges limiting the use of BF reinforcement in thermoplastic
composites. The main issue is poor adhesion between the BF and thermoplastic polymers, especially
non-polar ones like polyolefins, resulting in ineffective load transfer along the fibers and therefore
poor mechanical properties. The interfacial properties of BF-reinforced composites (BFRCs) can be
improved using many different approaches, including plasma treatment [15] or chemical activation of
the fiber surface [16]. Another method to improve the interfacial properties of BFRCs is the so-called
fiber sizing. Sizing is a thin, complex coating applied to the fiber surface during manufacture, partly
chemically bonded with the fiber [17,18]. Its purpose is to change the surface wettability and lower the
interfacial tension, as well as to provide some additional functional groups that can form intermolecular
interactions (i.e., PP–g–MA moieties) [19]. The amount of the sizing usually accounts for 0.2 to
0.5 wt.% of the fiber and consists of primary components (mainly silanes), wetting and antistatic
agents, lubricants, and binders [20,21]. The development and application of fiber sizing is a common
part of fiber manufacture and has already proven effective in enhancing adhesion between glass and
carbon fibers, and different thermoset/thermoplastic resins [22,23]. However, for BF reinforcement,
there remains a lack of unambiguous reports in the literature that comprehensively explain the role of
fiber sizing and the nature of interfacial interactions occurring in BF-reinforced thermoplastics.

Thus, motivated by the increasing demand for high-performance composites, including
BF-reinforced thermoplastic composites, we aimed to assess the adhesion of BFs impregnated with
different sizings (commercial and experimentally modified by the manufacturer) to thermoplastic
PP/PBT blend matrix and to discuss the relationship between fiber–matrix interactions and composite
performance. Towards this aim, we used the broadband dielectric spectroscopy (BDS) technique
to quantify the interfacial adhesion within the entire volume of the polymer blend matrix.
To our knowledge, this is the first time this approach has been used to study BF/thermoplastic
blend interactions.

2. Materials and Methods

2.1. Materials

The homopolymer of polypropylene (PP) (Moplen HP 2409) that was used as the PP blend
component was purchased from Basell Polyolefins (Płock, Poland). Neat poly(butylene terephthalate)
(PBT) (Celanex 1600A) was obtained from Ticona Engineering Polymers (Frankfurt, Germany).
The blend components were carefully selected after taking into account their viscosities, as expressed
by their mass melt flow indexes (MFIs) at the processing temperature (230 ◦C) (MFIPP:MFIPBT,
2.5:3.0 g/10 min). Based on our previous work [24], we used two different compatibilizers to
obtain miscible PP/PBT blends of 50/50 wt.% ratio: (1) commercially available SEBS copolymer
(Kraton FG 1901GT), obtained from Kraton LLC Polymers (Houston, Texas, USA), with 30 wt.%
content of styrene hard segments; (2) PBT–DLA copolymer, consisting of hard segments of butylene
terephthalate (30 wt.%) and soft segments of butylene dilinolate (an ester of dimerized fatty acid,
here dilinoleic acid, and 1,4-butanediol), synthesized as previously described [25,26]. We added
reinforcing materials in the form of two different basalt fiber (BF) types, designated REF and EXP
(provided by Isomatex, Gembloux (Isnes), Belgium) [27]. Both BFs used had a diameter of 11 µm
and average fiber length of 5 mm, but differed in surface chemistry (the exact coating formula is
proprietary): (1) REF was covered with a commercial sizing containing 1◦ and 2◦ amine groups,
based on 3-(2-aminoethylaminopropyl)trimethoxysilane as coupling agent, which is commonly used in
many formulations, especially in thermosetting composites; (2) EXP was covered with an experimental
sizing additionally enriched with maleic anhydride moieties (PP–g–MA). The graphical representation
of the possible arrangements of the molecules on the basalt fiber surface is presented in Figure 1.
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Figure 1. Likely structures of organofunctionalized basalt fiber (BF) surface: (a) reference (REF) BFs; 
and (b) experimental (EXP) BFs. 
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single-screw extruder (L/D = 30, custom built, West Pomeranian University of Technology, Szczecin, 
Poland) with a screw speed of 10 rpm, at temperatures ranging from 230 to 240 °C. The chopped, 
5 mm BFs were dosed manually because they tended to agglomerate due to their electrostatic 
properties. The reinforcement content for all of the prepared composites was fixed at 10 wt.%. The 
polymer composites were then dried in a vacuum oven (air atmosphere, 100 mbar) at 60 °C overnight. 
For mechanical testing, bar specimens (4 mm × 10 mm) were prepared using a BOY 35A injection 
molding machine (Dr. Boy GmbH & Co. K, Neustadt-Fernthal, Germany) and conditioned for 48 h at 
room temperature.  

Differential scanning calorimetry (DSC) analysis was performed with Q100 DSC (TA 
Instruments Inc., New Castle, Delaware, USA). Experiments were conducted under nitrogen 
atmosphere (nitrogen 5.0), in the heating–cooling–heating cycle, with samples weighing from 10 to 
15 mg. The temperature range was between −50 and 250 °C, with a heating/cooling rate of 10 °C/min. 
The Tg value of each sample was determined from the midpoint of the transition in the second heating 
run. 

Dielectric measurements [28] were performed using a Novocontrol Broadband Dielectric 
Spectrometer, based on an Alpha analyzer and a Quatro temperature controller BDS 1100 
(Novocontrol Technologies GmbH & Co. KG, Montabaur, Germany). The samples were studied in a 
temperature domain (with 5 °C/min ramp) from −30 to 100 °C, isochronal at 101, 102, 103, 104, and 105 
Hz in the case of polymer matrix, and in a frequency domain from 10−1 to 106 Hz, isothermally from 
−30 to 135 °C with 15 °C increment in the case of polymer composites. A circular silver electrode (2 cm 
in diameter) was sputtered on both surfaces of the sample (1-mm thick) to ensure good electrical 
contact with the measuring electrodes. The sample was fixed between two external electrodes in the 
sample holder and placed in a cryostat. A sinusoidal voltage of 1 V was applied, creating an 
alternating electric field. This resulted in polarization in the sample, oscillating at the same frequency 
as the electric field, but with a phase angle shift, δ. Measurements of capacitance and conductance 
were used to calculate the: (1) real part of permittivity (apparent permittivity) ε’, which is 
proportional to the capacitance and measures the alignment of dipoles; (2) imaginary part of 

Figure 1. Likely structures of organofunctionalized basalt fiber (BF) surface: (a) reference (REF) BFs;
and (b) experimental (EXP) BFs.

2.2. Methods

Thermoplastic composites were prepared by a melt-mixing technique [27], using a 20-mm
single-screw extruder (L/D = 30, custom built, West Pomeranian University of Technology, Szczecin,
Poland) with a screw speed of 10 rpm, at temperatures ranging from 230 to 240 ◦C. The chopped, 5 mm
BFs were dosed manually because they tended to agglomerate due to their electrostatic properties.
The reinforcement content for all of the prepared composites was fixed at 10 wt.%. The polymer
composites were then dried in a vacuum oven (air atmosphere, 100 mbar) at 60 ◦C overnight.
For mechanical testing, bar specimens (4 mm × 10 mm) were prepared using a BOY 35A injection
molding machine (Dr. Boy GmbH & Co. K, Neustadt-Fernthal, Germany) and conditioned for 48 h at
room temperature.

Differential scanning calorimetry (DSC) analysis was performed with Q100 DSC (TA Instruments
Inc., New Castle, Delaware, USA). Experiments were conducted under nitrogen atmosphere (nitrogen
5.0), in the heating–cooling–heating cycle, with samples weighing from 10 to 15 mg. The temperature
range was between −50 and 250 ◦C, with a heating/cooling rate of 10 ◦C/min. The Tg value of each
sample was determined from the midpoint of the transition in the second heating run.

Dielectric measurements [28] were performed using a Novocontrol Broadband Dielectric
Spectrometer, based on an Alpha analyzer and a Quatro temperature controller BDS 1100 (Novocontrol
Technologies GmbH & Co. KG, Montabaur, Germany). The samples were studied in a temperature
domain (with 5 ◦C/min ramp) from −30 to 100 ◦C, isochronal at 101, 102, 103, 104, and 105 Hz in the
case of polymer matrix, and in a frequency domain from 10−1 to 106 Hz, isothermally from −30 to
135 ◦C with 15 ◦C increment in the case of polymer composites. A circular silver electrode (2 cm in
diameter) was sputtered on both surfaces of the sample (1-mm thick) to ensure good electrical contact
with the measuring electrodes. The sample was fixed between two external electrodes in the sample
holder and placed in a cryostat. A sinusoidal voltage of 1 V was applied, creating an alternating electric
field. This resulted in polarization in the sample, oscillating at the same frequency as the electric field,
but with a phase angle shift, δ. Measurements of capacitance and conductance were used to calculate
the: (1) real part of permittivity (apparent permittivity) ε’, which is proportional to the capacitance
and measures the alignment of dipoles; (2) imaginary part of permittivity (loss factor) ε”, which is
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proportional to the conductance and represents the energy required to align dipoles and move ions;
and (3) dissipation factor, tan δ = ε”/ ε’. The measured dielectric data were collected and evaluated
using WinDETA and WinFIT (Novocontrol Technologies GmbH & Co. KG, Montabaur, Germany)
impedance analysis software for non-linear models.

The mechanical properties of the obtained composites were assessed using the 3-point bending
test at room temperature with an Instron 3366 (Instron, Norwood, Massachusetts, USA) machine
equipped with a 10 kN load cell, according to PN-EN ISO 14125: 2001 standard. For each material,
at least 10 specimens were tested. The samples, in the form of bars (4 mm x 10 mm), were tested at a
crosshead speed of 10 mm/min (~4 N/s for blends and ~5 N/s for composites).

3. Results and Discussion

3.1. Thermal Properties

Figure 2 shows representative DSC thermograms (obtained during the cooling and second heating)
of 50/50 PP/PBT matrix compatibilized with PBT–DLA and composites reinforced with the two types
of BF.
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Figure 2. Thermal properties of representative 50/50 PP/PBT composites reinforced with basalt fibers.
(a) Crystallization; (b) Melting; (c) Glass transition.

Glass transition temperatures (Tg), as well as melting points and crystallization temperatures, for all
blends and composites studied were determined using Universal Analysis software (TA Instruments
Inc., New Castle, Delaware, USA), and are provided in Table 1.

Table 1. Thermal properties of 50/50 PP/PBT composites compatibilized with two different copolymers
(PBT–DLA and SEBS) and reinforced with basalt fibers.

Matrix Fiber Tc1 (◦C) Tc2 (◦C) Tm1 (◦C) Tm2 (◦C) Tg1 (◦C) Tg2 (◦C)

50/50

- 122.9 193.3 160.6 223.3 −6.3 44.0

REF 120.8 195.8 160.5 223.9 −7.6 42.6

EXP 120.7 194.5 161.8 225.0 −9.3 43.0

50/50 + PBT–DLA

− 124.7 190.4 160.5 223.3 −6.4 43.6

REF 123.3 193.7 161.0 223.5 −7.5 43.4

EXP 115.8 192.0 161.8 225.2 −9.5 43.2

50/50 + SEBS

− 124.5 192.8 160.6 223.3 −6.4 43.4

REF 123.1 193.9 160.3 224.3 −8.8 43.7

EXP 113.4 193.6 161.2 225.9 −9.7 44.1

The addition of BFs influences both the melting and crystallization processes. The addition
of 10 wt.% of BF to compatibilized blends resulted in a marked decrease in Tc1, the crystallization



Polymers 2020, 12, 1486 5 of 16

temperature of the PP phase, by 10 ◦C in the case of EXP fibers, indicating a strong interaction between
the PP macromolecules and the surface of BFs enriched, in this case, with PP–g–MA moieties. On the
other hand, there was a slight increase in Tc2, the crystallization temperature of the PBT phase of the
composites—here BFs serve as nucleating agents. The fiber sizing allows for an even distribution of
fibers, thus providing more nucleation sites [10,19,29,30]. Meanwhile, after incorporation of the BF,
no significant changes in melting temperatures of the PP phase (Tm1) were observed, while the melting
points of the PBT phase (Tm2) were shifted towards higher temperatures, likely due to well-developed
crystalline structure, stabilized by chopped BFs.

The minor decrease in the Tg of the composites as compared to that of the thermoplastic blend
matrix may indicate an increase in the mobility of the polymer chains in the matrix. This decrease
is again more pronounced for the PP phase (Tg1), which may be related to the presence of a low
concentration of fibers [31]. Thus, BFs may also act as blend plasticizers.

3.2. Dielectric Properties

The dielectric characterization of the thermoplastic matrix was conducted isochronally from−30 to
100 ◦C. Figures 3–5 show the variation of the real part of the permittivity ε’ and the dissipation factor
tan δ versus temperature for the five frequencies (101, 102, 103, 104, and 105 Hz), for three different
50/50 PP/PBT blends: raw, compatibilized with PBT–DLA copolymer, and compatibilized with SEBS
copolymer, respectively.
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The segmental mobility of the polymer chains increased with temperature, leading to an increase
in the real part of the permittivity ε’. Each of the thermoplastic matrices exhibited two maximum
losses (α relaxation) at low and high temperatures, related to the glass transitions of PP and PBT phase,
respectively. The first maximum (αPP) was noticeable only at relatively high frequencies (105 and
104 Hz) and can be ascribed to the impurities or methyl side groups and dipoles arising from the
oxidation of the PP chain. Among these impurities, the residual catalyst and its potential antioxidant
effect may have a more pronounced effect on the dielectric properties of PP [32]. The maximum,
marked as αPBT, is related to the chain mobility of the polar polyester constituent and occurs in
the temperature range of 50 to 80 ◦C, becoming sharper with increasing frequencies. In the case
of PP/PBT blend modified with PBT–DLA copolymer (Figure 4), an additional dielectric relaxation
can be observed, marked as DC conduction, most likely due to the presence of some oligomeric
and catalyst residues in the synthesized, experimental compatibilizer, which are polarizable at high
temperatures. This type of relaxation is also observed in other condensation polyesters derived from
either petrochemical or renewable resources [33,34]. The DC conduction effect is much less pronounced
in the PP/PBT blend modified with commercial SEBS copolymer (Figure 5), indicating a lower content
of low-molecular-weight fraction and catalyst residues, as a result of the employed method of SEBS
synthesis (anionic polymerization over organolithium initiators). This method makes it possible to
obtain copolymers with low polydispersity indexes and to remove the initiator residues much more
effectively using hydrocarbon solvents [35,36].

In order to calculate the activation energies as well as relaxation times of α relaxation in the
polymer blend matrix, isothermal runs in the frequency domain from 10−1 to 106 Hz were conducted
over a temperature range from −30 to 100 ◦C, with an increment of 5 ◦C. To minimize the effect of
DC conductivity, the formalism of the electric modulus [37] was adopted. The electric modulus, M*,
is defined by the following equation:

M∗ =
1
ε∗

=
1

ε′ − iε′′
=

ε′

ε′2 + ε′′2
+ i

ε′′

ε′2 + ε′′2
= M′ + iM′′ (1)

where M′ and M” are the real and imaginary parts of the electric modulus, respectively. Figure 6
illustrates the isothermal variations of the imaginary part of the electric modulus of the representative
thermoplastic matrix.

The temperature dependence of the imaginary part of the electric modulus for the representative
PP/PBT+PBT–DLA matrix is presented in Figure 7 as an Arrhenius plot. The Arrhenius law was
applied to describe the temperature dependence versus maximum frequency (fmax) associated with the
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maximum of M” [6,38]. The activation energy of the relaxation processes was calculated according to
the equation:

fmax = f0 exp
(
−Ea

KBT

)
(2)

where f 0, Ea, KB, and T are the frequency at high temperatures, activation energy of the relaxation
process, Boltzmann constant, and temperature, respectively. Ea and f 0 are extracted from the slopes
and the intercepts of the plots of log fmax versus reciprocal temperature. The relaxation time τ0, as
τ0 = 1

2π f0
, was also calculated. A summary of the calculated activation energies and relaxation times
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Table 2. Activation energies and relaxation times for thermoplastic 50/50 PP/PBT matrix.

PP/PBT Matrix Relaxation Ea (kJ/mol) τ0 (s)

50/50
αPP 51.97 10−17.83

αPBT 469.97 10−63.11

50/50 + PBT–DLA
αPP 41.94 10−14.22

αPBT 412.44 10−59.38

50/50 + SEBS
αPP 43.18 10−14.51

αPBT 429.58 10−61.16
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The values of the activation energies and relaxation times for all of the thermoplastic matrices
were comparable, but there was a subtle decrease of the apparent Ea and increase in relaxation time
for the compatibilized blends. Generally, the reduction of the activation energy is associated with the
appearance of some additional interactions between individual components [39] and the induction of
chain motions (charge carriers) within a specific volume of polymer matrix, called an interface [40].
This observation is in good agreement with our previous work, where we demonstrated that the
miscibility of the PP/PBT blends could be improved by the formation of a specific interface between
blend components and two different copolymer compatibilizers [24].

Next, in order to evaluate the adhesion of BFs to the polymer blend matrix, dielectric
characterization of the thermoplastic composites was conducted. Figures 8 and 9 present plots
of the frequency dependence of the real (ε’) and the imaginary parts (ε”) of permittivity, as well as the
dissipation factor (tan δ), for the composites reinforced with reference fibers (REF) and experimental
ones (EXP), characterized isothermally at different temperatures.
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composite reinforced with REF basalt fibers.

An overall increase in ε’ with temperature at low frequencies was observed for both composites,
as a result of an increasing amount of free charges. In the temperature range of 105–135 ◦C,
the juxtaposition of the two effects can be seen, which are related to the DC conductivity and
the interfacial polarization process, known as Maxwell–Wagner–Sillars (MWS) polarization [7,40,41].
This phenomenon, comprehensively described in the literature [42,43], is due to the accumulation of
free charges at the interface between two or more components differing in electric conductivity. The free
charges present in polymeric material as a result of synthesis and thermal processing are anchored
in the polymer matrix. Once the temperature is sufficiently high to yield a certain conductivity,
the free charges roam due to the applied external electric field. However, when the free charges hit an
obstacle in the form of inorganic fibers, with different conductivity, they are polarized at the interface.
Furthermore, the ability of these dipoles to relax is associated with the adhesion of the reinforcement
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to the polymer matrix, and can be numerically evaluated from the dielectric data [44,45]. The complex
plane (known as the Argand diagram) representation was used to analyze the nature of this relaxation.
It has been well established that the Havriliak–Negami model [46,47] can be used to describe this
type of experimental data. Thus, our experimental data were fitted using the Havriliak–Negami
equation [46,47] given by the following:

ε∗(ω) = ε∞ +
εs − ε∞(

1 + (iωτ)1−α
)β (3)

where α is the symmetric and β is the asymmetric broadening exponent, respectively, ranging from
0 to 1, εs and ε∞ are the dielectric constants for the low- and high-frequency sides of the relaxation,
respectively, τ = 1

2π fmax
is the relaxation time, and ω is the radial frequency. In the electric modulus

formalism, the Havriliak–Negami equation takes the following form:

M′ = MsM∞

[
MsAβ + (M∞ −Ms)cosβϕ

]
Aβ

M2
s A2β(M∞ −Ms)Mscosβϕ+ (M∞ −Ms)

2 (4)

M′′ = MsM∞
[(M∞ −Ms)sinβϕ]Aβ

M2
s A2β(M∞ −Ms)Mscosβϕ+ (M∞ −Ms)

2 (5)

where Ms =
1
εs

and M∞ = 1
ε∞

A =
[
1 + 2(ωτ)1−αsin

απ
2

+ (ωτ)2(1−α)
]1/2

(6)

ϕ = arctg

 (ωτ)1−αcosαπ2
1 + (ωτ)1−αsinαπ2

 (7)

For each composite, the values of α, β, Ms, and M∞ were evaluated using a least squares method,
where the following expressions were minimized:

χ2
M′ =

∑
i

(
M′th −M′exp

)2
(8)

χ2
M′′ =

∑
i

(
M′′

th −M′′

exp

)2
(9)

Note that the Havriliak–Negami model was not able to account for all the experimental points,
most likely due to the nature of both relaxations and DC conduction at lower frequencies [37,48] and their
simultaneous superposition. Thus, the best fits of the experimental data with the Havriliak–Negami
model were obtained when two overlapping relaxations were modeled: DC conductivity and MWS
interfacial polarization [38,39]. As a result, two semicircles were obtained for each composite material
in a high temperature range (i.e., 105, 120, and 135 ◦C). The Argand plots of the thermoplastic
composites with 10 wt.% of REF and EXP fibers, based on the three types of 50/50 PP/PBT matrices
(uncompatibilized and modified with two different compatibilizers), at maximum temperature (135 ◦C)
are shown in Figures 10 and 11, respectively.



Polymers 2020, 12, 1486 10 of 16
Polymers 2019, 11, x FOR PEER REVIEW 9 of 16 

 

 
Figure 9. Isothermal runs of: (a) real part of permittivity, ε’; (b) dissipation factor, tan δ; (c) imaginary 
part of permittivity, ε’’; (d) imaginary part of electric modulus, M’’, for PP/PBT+PBT–DLA 
thermoplastic composite reinforced with EXP basalt fibers. 

An overall increase in ε’ with temperature at low frequencies was observed for both composites, 
as a result of an increasing amount of free charges. In the temperature range of 105–135 °C, the 
juxtaposition of the two effects can be seen, which are related to the DC conductivity and the 
interfacial polarization process, known as Maxwell–Wagner–Sillars (MWS) polarization [7,40,41]. 
This phenomenon, comprehensively described in the literature [42,43], is due to the accumulation of 
free charges at the interface between two or more components differing in electric conductivity. The 
free charges present in polymeric material as a result of synthesis and thermal processing are 
anchored in the polymer matrix. Once the temperature is sufficiently high to yield a certain 
conductivity, the free charges roam due to the applied external electric field. However, when the free 
charges hit an obstacle in the form of inorganic fibers, with different conductivity, they are polarized 
at the interface. Furthermore, the ability of these dipoles to relax is associated with the adhesion of 
the reinforcement to the polymer matrix, and can be numerically evaluated from the dielectric data 
[44,45]. The complex plane (known as the Argand diagram) representation was used to analyze the 
nature of this relaxation. It has been well established that the Havriliak–Negami model [46,47] can be 
used to describe this type of experimental data. Thus, our experimental data were fitted using the 
Havriliak–Negami equation [46,47] given by the following: ߝ∗ሺ߱ሻ ൌ ஶߝ ൅ ௦ߝ െ ஶሺ1ߝ ൅ ሺ݅߱߬ሻଵିఈሻఉ (3)

where α is the symmetric and β is the asymmetric broadening exponent, respectively, ranging from 
0 to 1, ߝ௦ and ߝஶ are the dielectric constants for the low- and high-frequency sides of the relaxation, 
respectively, ߬ ൌ ଵଶగ௙೘ೌೣ is the relaxation time, and ω is the radial frequency. In the electric modulus 

formalism, the Havriliak–Negami equation takes the following form: ܯᇱ ൌ ஶܯ௦ܯ ఉܣ௦ܯൣ ൅ ሺܯஶ െܯ௦ሻܿ߮ߚݏ݋൧ܣఉܯ௦ଶܣଶఉሺܯஶ െܯ௦ሻܯ௦ܿ߮ߚݏ݋ ൅ ሺܯஶ െܯ௦ሻଶ (4)

Figure 9. Isothermal runs of: (a) real part of permittivity, ε’; (b) dissipation factor, tan δ; (c) imaginary
part of permittivity, ε”; (d) imaginary part of electric modulus, M”, for PP/PBT+PBT–DLA thermoplastic
composite reinforced with EXP basalt fibers.
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The first semicircle of each figure (blue dashed lines), over approx. 0 < M′ < 0.25, was assigned
to the DC conduction effect, and the second one (red dashed lines), over approx. 0.03 < M′< 0.3,
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to Maxwell–Wagner–Sillars polarization in the thermoplastic composites. All of the calculated model
parameters for the data collected at 135 ◦C are provided in Table 3.

Table 3. Parameters of the Havriliak–Negami model fitted to the experimental data at 135 ◦C for 50/50
PP/PBT composites reinforced with different BFs.

PP/PBT Matrix BF Relaxation α β Ms M∞

50/50

REF
conduction 0.843 0.999 0.0001 0.255

MWS 0.676 0.988 0.027 0.294

EXP
conduction 0.772 0.954 0.002 0.252

MWS 0.708 0.959 0.034 0.2885

50/50 + PBT–DLA

REF
conduction 0.782 0.856 0.0001 0.251

MWS 0.698 0.989 0.030 0.296

EXP
conduction 0.707 0.925 0.001 0.259

MWS 0.634 0.983 0.036 0.307

50/50 + SEBS

REF
conduction 0.657 0.921 0.0004 0.245

MWS 0.679 0.998 0.031 0.298

EXP
conduction 0.619 0.997 0.001 0.247

MWS 0.703 0.998 0.037 0.290

The values of α and β indicate that both DC conduction as well as MWS polarization showed
notable deviation from the Debye model (α and β equal to 1), most likely due to their mutual
superposition. In fact, the deviation from the Debye theory was even greater when additional
components were introduced (i.e., additional component on the fiber surface). The change from REF to
EXP sizing resulted in a reduction of the α parameter of the DC conduction for all composites: from
0.843 to 0.772 in the case of raw 50/50 PP/PBT blend, from 0.782 to 0.707 for the PBT–DLA modified
blend, and from 0.657 to 0.619 for the SEBS modified blend.

Table 4 shows the interfacial relaxation strength (∆ε) of the MWS polarization effect for the
thermoplastic composites at the three highest temperatures. Relaxation strength is inversely related to
the adhesion between reinforcement and polymer matrix [49], and can be simply calculated from Ms

and M∞ values (∆ε = εs − ε∞) [50].
For each composite, the dielectric strength ∆ε of the interfacial polarization increased with

increasing temperature. This behavior can be explained by the formation of a greater number of
free charges with a tendency to accumulate at the interfaces. This effect is more significant at high
temperatures. Furthermore, the increase in temperature results in a greater tendency of dipoles
to be polarized, usually accompanied by a subtle shift of the relaxation maxima towards higher
frequencies [51]. Overall, the composites reinforced with EXP fibers showed lower values of dielectric
strength in comparison with composites reinforced with REF fibers (reduction of ∆ε from 33.6 to 25.9
at 135 ◦C for composites with raw 50/50 PP/PBT blend). The reduction in the ability of dipoles to relax,
resulting in a lower ∆ε, can be attributed to better adhesion between the reinforcement and polymer
blend matrix. In fact, the greater affinity of EXP BFs to the polymer blend matrix is the result of the
presence of maleic anhydride moieties (PP–g–MA) on the fiber surface, enhancing the BFs’ adhesion,
primarily to the PP phase of the composites. The introduction of compatibilizers (PBT–DLA or SEBS)
during the blend preparation step also resulted in a slight decrease in dielectric strength. The presence
of a third component having additional functional groups may also lead to improvements in the
mutual interaction between the BFs and polymer matrix. Thus, we hypothesize that the functional
groups of compatibilizers more willingly interact with hydroxyl/amino groups present on the fiber
surface, because the effect of ∆ε reduction was more pronounced for REF fibers.
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These results are in good agreement with our previous work where we used micromechanical
testing to examine the effect of EXP BF on the interfacial properties of composites [27]. More importantly,
by using dielectric spectroscopy, we were able to assess the fiber–matrix adhesion in the entire volume
of the actual composite material, not only in an artificial model system, as was in the case of
micromechanical tests.

Table 4. Interfacial relaxation strength ∆ε of PP/PBT composites reinforced with different BFs.

BF PP/PBT Matrix ∆ε T (◦C)

REF

50/50 7.79

105

50/50 + PBT–DLA 6.33

50/50 + SEBS 6.02

EXP

50/50 6.83

50/50 + PBT–DLA 5.11

50/50 + SEBS 5.22

REF

50/50 22.16

120

50/50 + PBT–DLA 19.03

50/50 + SEBS 18.65

EXP

50/50 17.44

50/50 + PBT–DLA 15.32

50/50 + SEBS 15.16

REF

50/50 33.64

135

50/50 + PBT–DLA 29.95

50/50 + SEBS 28.9

EXP

50/50 25.94

50/50 + PBT–DLA 24.52

50/50 + SEBS 23.57

3.3. Mechanical Properties

The results of the three-point bending test of PP/PBT composites are presented in Figure 12.Polymers 2019, 11, x FOR PEER REVIEW 13 of 16 
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Figure 12. Representative stress–strain curves illustrating the effect of fiber sizing and the matrix
(PP/PBT blend containing different compatibilizers) on the mechanical properties of BF-reinforced
composites (numerical values represent mean and SD of at least 10 samples).

The bending stiffness and strength of 50/50 PP/PBT blends decreased after compatibilization,
most likely due to the strong influence of the addition of highly elastic compatibilizers with relatively
low values of Young’s modulus (several megapascals). Regardless of the matrix, both BF types resulted
in a similar increase in flexural stiffness. However, a significant increase in flexural strength (up to
17 MPa) was observed for composites reinforced with EXP fibers when compared to REF fibers—likely
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due to better stress transfer to the fiber via the polymer matrix. Furthermore, flexural strength values
also exhibited an additional impact of applied compatibilizers. Compared to the uncompatibilized
PP/PBT blend, both compatibilized PP/PBT blends showed similar, approx. 10% higher and approx.
20% higher, flexural strength when reinforced with REF and EXP fibers, respectively. The addition of
both compatibilizing copolymers facilitates additional interactions with the functional polar groups
of fiber sizing (e.g., hydrogen bonding or van der Waals interactions), thus improving BF–matrix
adhesion. Thus, the trends observed for the mechanical properties of the BF composites reflect the
dielectric measurements of interfacial polarization. Furthermore, our results are in good agreement
with the literature, where the adhesion of different types of BFs to thermoplastic matrices has been
correlated with the polarity of the matrix [19,52].

4. Conclusions

The effect of BF sizing on the thermal, dielectric, and mechanical properties of reinforced
thermoplastic PP/PBT blend composites was studied. The dielectric measurements show the presence
of four relaxation processes in PP/PBT composites, associated with α relaxation of both PP and PBT
phases, DC conduction, and MWS polarization. The last phenomenon was studied analytically using
the Havriliak–Negami model applying modulus formalism. Based on the dielectric properties, as well
as improved mechanical performance, we conclude that the chemical composition of basalt fiber sizing
plays a crucial role in forming a strong interfacial fiber–matrix layer. Collectively, our results indicate
that the overall adhesion between BFs and PP/PBT matrix is the result of synergistic interactions of
functional groups present within the blend matrix, as a result of their compatibilization, and on the
fiber surface, due to fiber sizing. Most importantly, our study successfully demonstrates the possibility
of assessing the adhesion of BFs to the thermoplastic matrix within the entire volume of material,
using the non-destructive dielectric spectroscopy method. Thus, this technique holds promise for the
analysis of other BF-reinforced composites.
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