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Cardiovascular disease and heart failure (HF) still collect the largest toll of death in 
western societies and all over the world. A growing number of molecular mechanisms 
represent possible targets for new therapeutic strategies, which can counteract the met-
abolic and structural changes observed in the failing heart. G protein-coupled receptor 
kinase 2 (GRK2) is one of such targets for which experimental and clinical evidence are 
established. Indeed, several strategies have been carried out in place to interface with 
the known GRK2 mechanisms of action in the failing heart. This review deals with results 
from basic and preclinical studies. It shows different strategies to inhibit GRK2 in HF 
in vivo (βARK-ct gene therapy, treatment with gallein, and treatment with paroxetine) and 
in vitro (RNA aptamer, RKIP, and peptide-based inhibitors). These strategies are based 
either on the inhibition of the catalytic activity of the kinase (“Freeze!”) or the prevention 
of its shuttling within the cell (“Don’t Move!”). Here, we review the peculiarity of each 
strategy with regard to the ability to interact with the multiple tasks of GRK2 and the 
perspective development of eventual clinical use.

Keywords: GRK2, heart failure, catalytic activity, gene therapy, peptide-based drug, GRK2 interactome

iNTRODUCTiON

Heart failure (HF) is the final phenotype of several degenerative conditions, which lead to the 
incapacity of the heart to pump enough blood to meet body’s demand, if they are not counteracted 
(1, 2): myocardial infarction, high blood pressure, arrhythmia, cardiomyopathy, congenital heart 
defects, heart valve disease, diabetes, alcohol abuse or illegal drug use, HIV/AIDS, thyroid disorders, 
radiation, and chemotherapy.

In the early stages of HF, cardiovascular homeostasis is maintained by several compensatory 
neurohormonal mechanisms and patients can remain asymptomatic for a long time. Then, the heart 
undergoes several changes, such as an increase in cardiac mass and alterations in the extracellular 
matrix, even if the cardiac function is still maintained (remodeling). The late stage of HF, which is 
due to a constant and long-term strain, is characterized by cardiac enlargement and a progressive 
decrease of the contractile function (3).

Several changes lead to the progressive loss of the contractile function and to the decreased 
responsiveness to the normal adrenergic control mechanisms (4): loss of myofilaments in cardiac 
myocytes (5), alterations in cytoskeletal proteins (5), alterations in excitation–contraction cou-
pling (6), and desensitization of β-adrenergic signaling (7). Moreover, the failing cardiomyocyte 
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is characterized by mitochondrial dysfunction with an altered 
ability to use metabolic substrates for the production of energetic 
compounds (8, 9). Recent studies have underlined the key role of 
mitochondria in the progression of the myocardial dysfunction 
and the metabolic remodeling, in the deficit of the cardiac energet-
ics and the increased oxidative stress (10). This latter is due to an 
excessive production of reactive oxygen species (ROS) and plays 
a key role in the pathophysiology of the cardiac remodeling and 
the HF. Indeed, oxidative stress causes cellular dysfunction and 
damage, leading to the activation of pro-death signaling (11–14).

In the last decade, molecular biology and genetics have eluci-
dated the key pathways that are involved in the development and 
the progression of HF and have identified specific molecules that 
could be potential targets for pharmacological approaches (15). 
In this context, G protein-coupled receptor kinase type 2 (GRK2) 
seems to be one of the main candidates.

GRK2 iN HeART FAiLURe

G protein-coupled receptor kinase type 2 is a cytosolic enzyme 
that localizes to the plasma membrane, through the binding to 
the βγ subunits of activated G proteins (Gβγ), and regulates the 
activation of beta-adrenergic receptor (βAR) signaling (16, 17). 
Changes of kinase activity and expression play an important role 
in the development and maintenance of the cardiac hypertrophy 
and of HF (16, 18). In particular, GRK2 levels increase during left 
ventricular hypertrophy (19–24) and associate with a reduction 
of βAR signaling and with an impaired cardiac contractility (25). 
In the heart, besides βAR downregulation and desensitization, 
GRK2 interacts with different intracellular partners to regulate 
several cardiomyocyte functions. Indeed, the increase of GRK2 
levels during chronic HF induces several changes: increase of 
cardiac insulin resistance, reduction of cardiac metabolic plastic-
ity (18, 26), regulation of intracellular calcium homeostasis (27), 
and activation of NFκB signaling (24) (Figure 1). It has also been 
demonstrated in cell types different from cardiac myocytes that 
GRK2 activates the mitochondrial function (28, 29). Because 
of its molecular and functional complexity, it is not surprising 
that this molecule regulates both the function and the develop-
ment of the cardiovascular system. Indeed, the genetic deletion 
of GRK2 is lethal since it leads to a wrong development of the 
cardiovascular system during prenatal life (30, 31). Moreover, 
the selective cardiac deletion of the kinase causes a prevalent 
eccentric remodeling in response to the chronic exposure to β 
adrenergic agonists (32).

FReeZe/DO NOT MOve

It is now validated the proof of concept that GRK2 regulates 
several intracellular signaling pathways not only through the 
phosphorylation of specific substrates but also through protein–
protein interactions independently from its catalytic activity 
(24, 29, 33–35). In this context, it is clear that potential approaches 
to inhibit the kinase effects could be countless. Indeed, it is 
possible to freeze GRK2 through the selective inhibition of its 
catalytic activity to modulate phosphorylation-dependent effects. 
It is also possible to disrupt GRK2 interactions with its substrates 

through the use of selective peptides. Given the recent findings on 
GRK2 subcellular localization, it is likely that the regulation of the 
kinase moving within the cell could be useful to control its effects, 
such as favoring its mitochondrial localization rather than plasma 
membrane translocation. Here, we discuss these issues and deal 
with known and potential approaches to freezing GRK2 in HF.

TARGeTiNG GRK2 iN HeART FAiLURe

Given the key role of GRK2 in the development and progression 
of cardiovascular diseases (CVD), including HF, targeting GRK2 
could be an effective therapeutic strategy for HF. To date, several 
approaches have been evaluated to reach this aim in an animal 
model of HF (gene therapy, treatment with paroxetine and gallein, 
cardiac expression of a specific sequence of GRK2) (Figure 2).

Gene Therapy
Gene therapy is a novel approach to treat and prevent diseases by 
changing the expression of target genes. Recently, this technique 
has been moved from the laboratory research to translational 
clinical trials for many diseases, such as severe combined immune 
deficiency, hemophilia, cancer, chronic granulomatous disorder, 
and neurodegenerative diseases (36).

For CVD, gene therapy has recently been proposed (37–39) 
mainly for the treatment of coronary artery disease, HF, and 
arrhythmias (40). In particular, gene therapy targets for HF are 
sarcoendoplasmic reticulum calcium-ATPase 2a (SERCA2a) and 
stromal-derived factor-1 (SDF-1), which are the actual objects of 
ongoing clinical trials (41, 42).

In addition to these targets, it has been demonstrated that 
several other genes are effective in the treatment of HF in animal 
models of disease. In this context, gene therapy has been used 
in preclinical studies to target GRK2 on the plasma membrane 
and to avoid βAR desensitization. This is achieved through the 
expression of βARKct that is mediated by the adenovirus (AD) or 
adeno-associated virus (AAV). βARKct resembles the carboxy-
terminal domain of GRK2 that is responsible for its translocation 
to the plasma membrane and its binding to Gβγ. This strategy is 
effective in several models of CVD. Raake and colleagues used 
adeno-associated virus serotype 6 (AAV6) to express βARKct in a 
porcine model of HF (43). The Authors found that the long-term 
βARKct expression induced a significant amelioration of left 
ventricular hemodynamics and contractile function in pigs with 
HF compared to controls, which showed an impaired cardiac 
function.

The ventricular delivery of Adeno-βARKct in failing hearts of 
rabbits, using coronary catheterization, reversed ventricular dys-
function (44). These findings support the idea that gene therapy 
with βARKct could become an effective therapeutic strategy for 
HF. Viral vectors are commonly used for cardiovascular applica-
tions, including AD and AAV, which can infect non-dividing cells 
and transduce heart with good efficiency. Differences between 
the two DNA viruses regard the limited amount of DNA that 
AAVs can carry, and the high inflammatory response of the ADs, 
which limits the time of expression of the transgene. Therefore, 
limitations that prevent the use of AAV expressing βARKct in 
humans have still to be overcome. First of all, it is not completely 
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FiGURe 1 | GRK2 effects on intracellular signaling. GRK2 exerts different effects within the cell affecting several intracellular signaling. Indeed, GRK2 regulates 
GPCR activation by receptor phosphorylation, thus affecting GPCR dependent phenotypes, such as regulation of calcium intake. GRK2 localizes to mitochondria 
and regulates mitochondrial function. Finally, GRK2 phosphorylates IκBα thus allowing NFκB nuclear translocation and transcription activity. Upon GPCR activation, 
RKIP is phosphorylated at Ser153 by PKC and inhibits GRK2.
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known the full range of effects that viruses expressing βARKct 
can exert on GRK2 and also on other intracellular signalings. 
Indeed, it is known that βARKct is able to displace GRK2 from 
plasma membrane allowing its translocation to other compart-
ments (29). In lipopolysaccharide (LPS)-treated macrophages, 
the adenoviral-mediated gene transfer of βARKct maintains mac-
rophage functionality by inducing an earlier localization of GRK2 
to mitochondria (29). Indeed, βARKct also blocks βγ signaling 
(45) and prevents cellular responses to important extracellular 
stimulants. These findings clearly demonstrate that βARKct, 
besides GRK2 inhibition in the plasma membrane, exerts mul-
tiple effects within the cell. Indeed, through the interaction with 
Gβγ, βARKct also inhibits Gβγ signaling that is involved in the 
regulation of cell proliferation and survival. Moreover, βARKct, 
by displacing GRK2 from the plasma membrane, allows the kinase 

to accumulate in other cellular compartments, where GRK2 can 
interfere with many other cellular functions. Therefore, it is 
likely that βARKct-based gene therapy in humans could provoke 
several side effects.

Selective inhibitory Drugs
A recent study shows that paroxetine, the selective serotonin 
reuptake inhibitor (SSRI), can inhibit GRK2 activity (46, 47). 
Thal and colleagues show that paroxetine binds the active site 
of GRK2 stabilizing the kinase domain in a novel conformation 
(46). Both in vitro in isolated cardiomyocytes and in vivo in mice, 
pretreatment with paroxetine potentiates isoproterenol effects on 
βAR-mediated contractility (46). Moreover, in wild-type mice 
with myocardial infarction, paroxetine significantly improves 
cardiac function (47). Paroxetine seems to be an efficient 
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FiGURe 2 | GRK2 structure and inhibitors. GRK2 has a central catalytic domain flanked by an N-terminal domain, including the RGS domain, and a carboxyl-
terminal domain, including the catalytic domain and the PH domain. The binding site of GRK2 inhibitors is indicated by arrows.
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inhibitor of GRK2 with selectivity over other GRKs even if it is 
still unknown its selectivity over other kinases and its side effects 
in vivo in other tissues. A major limitation for the use of this drug 
is the very high dosage at which it is effective to inhibit the kinase. 
Indeed, the effective doses exceed those approved for the use of 
paroxetine in humans, making unavoidable effects on the central 
nervous system. It is most likely that paroxetine will never be used 
in humans for the treatment of cardiac dysfunction in HF.

Non-Selective inhibitory Drugs
Gallein is a novel small molecule that selectively blocks Gβγ-
binding interactions, including the one with GRK2. It has been 
shown that gallein reduces the recruitment of GRK2 on the plasma 
membrane and enhances contractility in isolated adult mouse 
cardiomyocytes in response to a βAR agonist (48). In a mouse 
model of HF due to isoproterenol injections, the treatment with 
gallein prevents HF and reduces GRK2 expression (48). These 
data suggest that gallein could be a promising therapeutic drug 
for the treatment of HF. However, gallein is a specific inhibitor of 
Gβγ rather than GRK2. Thus, it is likely that this molecule affects 
other intracellular signalings like βARKct.

Cardiac Overexpression of a Specific 
Domain of GRK2
Since it has been shown that the Regulator of G Protein Signaling 
(RGS) domain of GRK2 interacts with Gαq and inhibits it in vitro, 

transgenic mice with cardiac-specific expression of the RGS 
domain of GRK2 have been generated and subjected to cardiac 
damage in response to pressure overload. These mice show less 
hypertrophy and less adverse structural remodeling compared 
with controls (49). In this case, it appears that the beneficial 
effect is more on Gαq inhibition rather than on GRK2 inhibi-
tion. These data confirm previous works of the group of Gerard 
Dorn, who was the first to exploit Gαq as a mechanism of cardiac 
hypertrophy (50). Thus, RGS domain of GRK2 could be used 
as a prototype for the development of effective drugs to prevent 
cardiac hypertrophy.

POTeNTiAL STRATeGieS TO iNHiBiT 
GRK2 iN HeART FAiLURe

Other potential inhibitors have been identified and tested in vitro 
in cultured cells [RNA aptamers, Raf kinase inhibitor protein 
(RKIP), and peptide inhibitors] (Figure 2), but their effectiveness 
has never been tested in vivo in animal models of HF. Thus, they 
could become therapeutic drugs for HF in vivo even if further 
experiments are necessary to verify this hypothesis.

RNA-Based inhibitors
RNA aptamers have been developed to inhibit GRK2 through sys-
tematic evolution of ligands by exponential enrichment (SELEX). 
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FiGURe 3 | The balance between GRK2 synthesis and degradation. 
The identification of novel inhibitors of HSP90–GRK2 interaction could be 
useful to induce GRK2 degradation by proteasome vs. its synthesis thus 
reducing the deleterious effects of the kinase in cardiovascular diseases.
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Among them, C13 binds GRK2 with a high affinity and inhibits 
GRK2-dependent rhodopsin phosphorylation in vitro (51). C13 
can stabilize GRK2 in an inactive conformation through multiple 
interactions in the active site pocket of the kinase domain (52). 
In particular, the positioning of an adenine nucleotide in the 
ATP-binding pocket and the interactions with the basic αF–αG 
helicoidal regions of the GRK2 kinase domain are mainly involved 
in the kinase inhibition. The use of aptamers is limited to in vitro 
studies but could be converted into small inhibitors through an 
aptamer-displacement assay (53). Thus, this approach could be 
potentially transferred to the clinical scenario, even if further 
studies are necessary to reach this aim.

Physiological inhibitors: RKiP
Raf kinase inhibitor protein modulates several key intracellular 
signaling, including the signaling cascades of ERK, NFκB, glyco-
gen synthase kinase-3β (54–56). It has been shown that RKIP is 
also a physiological inhibitor of GRK2 (57). After the activation 
of G protein-coupled receptors, RKIP dissociates from Raf-1 to 
associate with GRK2. This switch is due to RKIP dimerization 
(58) that is regulated by PKC-mediated phosphorylation at 
Ser-153 (57). RKIP binds GRK2 in the amino-terminal domain. 
In cardiomyocytes, the downregulation of RKIP inhibits beta-
adrenergic signaling and contractile activity (57). This evidence 
suggests that this physiological mechanism of inhibition of GRK2 
could be useful for the treatment of CVD. However, the enthu-
siasm of this discovery is cooled by the poor selectivity of this 
small protein on kinase activity since RKIP also affects several 
intracellular signaling pathways.

Peptide-Based inhibitors
The design and the synthesis of peptide-based compounds have 
spread in the last decade (59). The use of peptides as therapeutic 
drugs has some limitations, including the parenteral route 
of administration since peptides are not well absorbed in the 
gastrointestinal tract. Moreover, peptides do not usually cross 
plasma membrane and are rapidly metabolized by proteolytic 
enzymes. However, compared to synthetic small molecules, pep-
tides are less toxic, more selective, and they do not accumulate 
in organs. Their rapid degradation makes them less harmful, and 
their degradation products are simply amino acids and should 
not have toxic effects (60). Considering these advantages, it is 
not surprising that there are many peptide-based drugs available 
on the market (59), such as receptor agonists and antagonists, 
peptide hormones and analogs, and HIV protease inhibitors 
(61). Several peptide inhibitors of GRK2 have been developed, 
modeled on the structure of the kinase. It has been demonstrated 
that the inhibition of GRK2 by GRKInh, a peptide inhibitor of 
the kinase (62), could counteract the dysfunctional metabolism 
of HF in a transgenic model of myocardium-specific expression 
of fatty acid synthase (FASN) (63). Anis et al. (64) demonstrated 
that myristyl or lauryl glycine derivatives of short peptides 
derived from the HJ loop of GRK2, KRX-683107, and KRX-683124 
are potent inhibitors of the kinase and exert hypoglycemic effects 
in animal models of type 2 diabetes. We have recently found 
that non-acylated derivatives of KRX-683107 and KRX-683124 
(peptides 2 and 3) selectively inhibit GRK2 in vitro (65). In vivo 

in hypertensive rats, the infusion of peptide 3 for 30 days ame-
liorates GRK2-dependent insulin resistance and IRS1 tyrosine 
phosphorylation (66). Moreover, the intracardiac injection of 
this peptide reduces phenylephrine- or hypertension-induced 
left ventricular hypertrophy (24). Thus, it is likely that this pep-
tide could be effective to ameliorate the cardiac morphology and 
function in the failing heart.

SUGGeSTiONS FOR FUTURe 
DiReCTiONS

The New Generation of Peptide inhibitors: 
Cyclic Peptides
To reach better results, cyclic peptides have recently been 
designed. These are polypeptide chains taking cyclic ring 
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structure by linking the two ends of the peptide with an amide 
bond or other chemically stable bonds. Cyclic peptides have a 
better biological activity compared to their linear counterparts 
due to their conformational rigidity (67), which allows a selec-
tive binding with their targets. Moreover, their cyclic structure 
makes peptides resistant to hydrolysis by exopeptidases (due to 
the lack of both amino and carboxyl termini) and endopeptidases 
(since the structure is less flexible than linear peptides). Some 
cyclic peptides can autonomously cross plasma membrane, thus 
avoiding the need of a vehicle for internalization, such as HIV-1 
Tat protein and Penetratin, which increases peptide size.

In particular, cyclic compounds have been designed, which 
are modeled on the conformation of the HJ loop within the X-ray 
structure of GRK and are based on the structure of the above-
described KRX-683124. One of these compounds, the cyclic pep-
tide 7, can inhibit GRK2 activity and is more active than its linear 
precursor. In cultured cells, this peptide confirms its potentiality 
and specificity as a GRK2 inhibitor (68). Thus, this cyclic peptide 
has a great potentiality to be translated to clinical trials.

Balance between GRK2 Degradation  
and Synthesis
The regulation of the balance between GRK2 degradation and its 
synthesis could be an effective approach to reducing GRK2 levels 
in several diseases (69, 70) (Figure 3). The degradation of GRK2, 
for instance, that occurs via the proteasome (69) can be prevented 
by its interaction with Hsp90, which stabilizes the correct folding 
of the protein (71). Thus, NMR analysis of this complex could 
help to develop new inhibitors that can reduce the interaction 

between HSP90 and GRK2, leading to kinase degradation in 
pathological conditions.

Regulation of the Subcellular  
Localization of GRK2
The regulation of GRK2 localization within the cell could be a 
useful target for diseases. Indeed, it is emerging that GRK2 exerts 
different effects within the cell, which depend on its localization, 
cell type, stimuli, and physiopathological context (28, 33, 34, 
72). In particular, several stressors increase the levels of GRK2 
in mitochondria, in an ERK- and HSP90-dependent mechanism 
(73). The effects of such accumulation are still the object of 
investigation since opposite results in the literature show either a 
protective mechanism (28, 29, 74) or the acceleration of unfavora-
ble processes (73). Nevertheless, given the established notion that 
the accumulation of GRK2 in plasma membrane inhibits GPCR 
signaling or its binding with cytosolic substrates activates pro-
death signaling, the possibility to modulate GRK2 accumulation 
within specific organelles might in the future pose the strategy 
to regulate kinase effects in pathological conditions (Figure 4).

CONCLUSiON

To date, several approaches have been developed to inhibit GRK2 
activity, which are based on different molecular mechanisms. Most 
of them are far from clinical applications, but they will be helpful 
for the development of novel inhibitors (βARK-ct, paroxetine, 
gallein, RNA aptamers). To date, the most feasible approach, 
which could easily be translated to clinical trials, seems to be the 

FiGURe 4 | The regulation of GRK2 localization within the cell. The possibility to induce mitochondrial localization of GRK2 could increase cell metabolism 
thus favoring the advantageous effects of the kinase vs. the deleterious effects on plasma membrane or cytosol.
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