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ABSTRACT We present an algorithm for inferring ancestry segments and characterizing admixture events, which involve an arbitrary
number of genetically differentiated groups coming together. This allows inference of the demographic history of the species,
properties of admixing groups, identification of signatures of natural selection, and may aid disease gene mapping. The algorithm
employs nested hidden Markov models to obtain local ancestry estimation along the genome for each admixed individual. In a range of
simulations, the accuracy of these estimates equals or exceeds leading existing methods. Moreover, and unlike these approaches, we
do not require any prior knowledge of the relationship between subgroups of donor reference haplotypes and the unseen mixing
ancestral populations. Our approach infers these in terms of conditional “copying probabilities.” In application to the Human Genome
Diversity Project, we corroborate many previously inferred admixture events (e.g., an ancient admixture event in the Kalash). We further
identify novel events such as complex four-way admixture in San-Khomani individuals, and show that Eastern European populations
possess 12 3% ancestry from a group resembling modern-day central Asians. We also identify evidence of recent natural selection
favoring sub-Saharan ancestry at the human leukocyte antigen (HLA) region, across North African individuals. We make available an R
and C++ software library, which we term MOSAIC (which stands for MOSAIC Organizes Segments of Ancestry In Chromosomes).
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ADMIXTURE occurs when reproductive isolation between
groups allows genetic divergence via genetic drift and

randommutation, followedbymixingof thedivergedgroups to
form new populations. Such genetic admixture is near ubiqui-
tous inobservedhumanpopulations (Patterson et al.2012; Loh
et al. 2013; Hellenthal et al. 2014) and indeed other species
including cattle (Upadhyay et al. 2017), bison (Musani et al.
2006), and wolves (Pickrell and Pritchard 2012).

Genome-wide summaries can reveal not only complex
relationships between modern populations but also details

of their demographic histories (Pickrell and Pritchard 2012;
Hellenthal et al. 2014; Peter 2016) while accurate inference
of local ancestry can be used to correct for population struc-
ture in association testing (Diao and Chen 2012; Xu and Guan
2014), detect selection (Zhou et al. 2016), and can be used
for mapping disease loci (Zhang and Stram 2014).

Due to the process of recombination, contiguous chunks
of admixed individuals’ genomes are inherited intact from
one mixing population or another. In the second generation
following the initial admixture, chromosomes from distinct
ancestral groups begin to recombine, and so the expected
length of these chunks (in units of Morgans) will be 1 (by
definition), and (neglecting crossover interference) chunk
lengths can be modeled using an exponential distribution
with rate parameter 1. In each subsequent generation, re-
combination further breaks down these chunks so that the
chunk lengths (if they could be observed) are distributed
according to an exponential distribution with rate parameter
one less than the number of generations since admixture.

To fully characterize admixture for the above purposes, we
need to infer: (1)Whether a groupof individuals are admixed;

Copyright © 2019 Salter-Townshend and Myers
doi: https://doi.org/10.1534/genetics.119.302139
Manuscript received March 21, 2019; accepted for publication May 18, 2019;
published Early Online May 23, 2019.
Available freely online through the author-supported open access option.
This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.
Supplemental material available at FigShare: https://doi.org/10.25386/genetics.
8144159.
1Corresponding author: School of Mathematics and Statistics, University College
Dublin, Science Centre East, Belfield, Dublin 4, Ireland. E-mail: michael.salter-
townshend@ucd.ie

Genetics, Vol. 212, 869–889 July 2019 869

http://orcid.org/0000-0001-6232-9109
http://orcid.org/0000-0002-2585-9626
https://doi.org/10.1534/genetics.119.302139
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.25386/genetics.8144159
https://doi.org/10.25386/genetics.8144159
mailto:michael.salter-townshend@ucd.ie
mailto:michael.salter-townshend@ucd.ie


(2) the component/mixing groups; (3) the timing of the
admixture event(s); and (4) which segments of the admixed
genome are inherited from each mixing group. Typically, we
lack prior knowledge of each of these points and we do not
have access to representative samples of themixing groups, as
these are often no longer present (without drift) in modern
samples.

Awide variety of approaches to model admixture have been
developed in recent years. STRUCTURE (Pritchard et al.
2000) clusters similar genomes together by fitting a mixture
model using Gibbs sampling and STRUCTURE 2.0. Falush
et al. (2003) extended this model to allow for admixed indi-
viduals using a Hidden Markov Model (HMM) that allowed
for linkage along the genome. A drawback of these and sim-
ilar approaches (e.g., Sohn et al. 2012) is that they do not
attempt to fully model linkage disequilibrium (LD), because
SNPs within each source population are assumed to be in-
dependent, meaning they are not maximally powerful for
inferring ancestry segments, particularly for subtle admixture
events.

Other approaches focus on dating/characterizing admix-
ture events, without performing local ancestry estimation. In
the ALDER model (Loh et al. 2013) the exponential decay of
ancestry segments is estimated as a function of genetic dis-
tance, allowing dating of admixture events. GLOBETROTTER
(Hellenthal et al. 2014) uses a related approach for dating
events by leveraging haplotype data, accounting for LD, but
also infers admixture proportions and properties of the an-
cestral mixing groups, by quantifying their relationships with
modern observed populations, and can handle multi-way ad-
mixture. In common with other approaches (some discussed
below), GLOBETROTTER incorporates LD between nearby
SNPs by fitting a haplotype copying model (Lawson et al.
2012) closely related to the Hidden Markov model intro-
duced by Li and Stephens (2003). Here, “target” chromo-
somes of interest are formed as a mosaic whereby they
imperfectly “copy” segments of DNA from donor haplotypes,
according to a HMM. See Gravel (2012) for a review of this
and other local ancestry models. The subsequent copying
profiles (both global and locally along the genome) are ana-
lyzed and decomposed. Admixture times are then inferred by
fitting curves measuring the correlation in copying along the
genome: the relative probability of copying from pairs of do-
nor populations is estimated at increasing genetic distances.

Several statistical algorithms [e.g., MultiMix (Churchhouse
and Marchini 2013), LAMP-LD (Baran et al. 2012), ELAI
(Guan 2014), and HapMix (Price et al. 2009)], have been de-
veloped to identify local ancestry segments while accounting
for LD at both the admixture and background scales. The first
two rely on “windowing” the genome into nonoverlapping
segments of equal size, and ancestry switches are assumed
to occur only at window boundaries, whereas the second
two build two-layer HMMs that allow ancestry switching any-
where along the genome. However, all of these rely on pre-
specification of the number ofmixing groups, and the inclusion
of groups of donor samples identical to, or at least closely

related, to these mixing groups. HapMix models both pre
and post-admixture recombination via a two-layer HMM, us-
ing an algorithm based on an extension to Li and Stephens
(2003) and related to that developed here. However, HAPMIX
allows for only two admixing groups and the user must supply
known surrogates for both ancestries (although a low mis-
copying rate is allowed for in the model to facilitate copying
from the surrogates not associated with the current local
ancestry).

A related, but different, approach is taken under the Con-
ditional Sampling Distribution framework of Steinrücken et al.
(2013). This approach considers a particular haplotype and
tracks when, and with which other haplotype, it first coa-
lesces in a HMM, given an underlying demographic history
of the samples. Thus hypotheses of historic migration, etc.,
may be tested using the samples. This was further extended
to model admixture in Steinrücken et al. (2018), with a spe-
cific application in detecting the introgression of Neanderthal
tracts into non-African genomes. This model, DICAL-ADMIX,
requires first fixing the demographic model [although demo-
graphic inference is demonstrated in the related model of
Steinrücken et al. (2015)] and then estimating gene-flow
rates, times, etc. Spence et al. (2018) discusses these models
in the context of extensions to Li and Stephens (2003), and
notes that the “method can scale to tens of haplotypes and
has been used on models with three populations, but can
handle arbitrarily many populations at increased computa-
tional cost.”

LAMP-LD (Baran et al. 2012), RFMix (Maples et al.
2013), and ELAI (Guan 2014) are among the most widely
known local ancestry methods. The LAMP-LD model was
created to model local ancestry in Latino populations, com-
prising a HMM copying model that is optimized for recent
three-way admixture for which good surrogate donor refer-
ence panels are available. It can outperform other ap-
proaches even for two-way local ancestry inference in
certain settings (e.g., African-American simulated admix-
ture six generations ago). This is achieved by building a
two-layer HMM with the first layer defined on nonoverlap-
ping, evenly sized, windows. Ancestry switches within win-
dows do not occur, but ancestry switches are allowed at the
window boundaries. Conditional on hidden ancestry states
on the ends of a window, the genotypes are emitted by pairs
of the second layer HMMs. The most likely pair of local
ancestries across the windows is inferred before a postpro-
cessing lifting on the restriction of ancestry switches at
boundaries. This equates to a reduced state-space in the
first instance, followed by a pass with a full set of states.
As noted in Guan (2014), the largest concern is the over-
confidence of the method, manifesting as very certain local
ancestry assignment almost everywhere. Crucially, as per
the other methods listed here, a close correspondence be-
tween ancestral mixing groups and donor reference panels
is both required and assumed known—an assumption we
do not make. The method does not estimate parameters
such as generations since admixture, and assumes that all
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individuals have experienced the same admixture event in
terms of proportion and date.

RFMix differs from the other methods listed here in that a
discriminative, rather than generative, approach is used to
infer local ancestry tracts. Again, a known close mapping
between latent ancestral and observed surrogate (reference)
donor sets is required. Equally sized windows along chromo-
somes are then used, and, within each window, a random
forest is trained to infer ancestry using the reference panels. A
HMM is then trained to output the smoothed local ancestry
estimates along the entire chromosome. The method scales
well, and can handlemultiway admixture scenarios. Similarly
to our approach, phasing errors within the admixed samples
can be corrected; however, RFMix assumes that there is, at
most, one such error per ancestry window to correct, whereas
wedonotassumeanupper limit on thenumberof theseerrors.
Demographic parameters suchas generations since admixture
are not inferred by the method but related settings (window
size in centi-Morgans) must be provided.

ELAI works with diploid admixed samples (reference pan-
els should be phased), but canmake use of phased haplotypes
if available. No recombination map is required as local re-
combination rates are implicitly estimated. However, this can
lead to reduced accuracy in settings where the reference
panels are small, or it is otherwise difficult to estimate the
recombination rates this way. Like HapMix, ELAI can detect
short local ancestry tracts (a few tenths of a centi-Morgan). By
assigning weights to cohort samples it can be applied to large
samples and weights are taken such that the effective sample
size for each ancestry is twice the target sample size. One
advantage of ELAI is that it does not require ad hoc division of
the chromosomes into equally sized windows of single ances-
try. As per all other existing local ancestry methods that we
are aware of, ELAI requires training panels that represent
good direct surrogates for the mixing populations, and, thus,
does not infer the panel-ancestry relationship. It can be run
without surrogates for one of the mixing groups (as noted in
Zhou et al. 2016) and requires a single admixture date as
input.

We compare results on simulated three-way admixture
using LAMP-LD, ELAI, RFMix, and MOSAIC in the Supple-
mental Material, Section S5, noting that MOSAIC has uni-
formly superior accuracy to the other approaches for our test
cases. For the simulations, we admix real chromosomes from
Europe, Asia, and Africa based on varying generations since
mixing. We then infer local ancestry using each method and
reference haplotypes from the three continents that do not
include individuals from the populations used to create the
admixed samples. The unique contribution of MOSAIC is that
specification of the potentially complex relationships between
reference haplotypes and ancestral mixing groups is not re-
quired, unlike all othermethods. Evenwhen this knowledge is
provided to the othermethods, MOSAIC is able to achieve the
highest correlation with true local ancestry (see Table S4). As
Wangkumhang and Hellenthal (2018) note, this is mainly
due to the fact that “one notable limitation is that most ap-

proaches rely on using surrogates for the original (unknown)
admixing sources, and it is unclear how accurate these sur-
rogates may be. For example, often modern-day samples are
used as surrogates despite themselves having recent admix-
ture from other sources.” MOSAIC does not rely on such
direct surrogates, but learns the indirect relationships be-
tween the latent ancestral groups and the panels of donor
haplotypes from the data.

MOSAIC Overview

In our approach, the unseen mixing source populations are
decoupled from the observed reference populations (ofwhich
there may be many), and the details of relationships between
the two are inferred as part of the algorithm. Our approach
takes one or more perhaps admixed genomes, compares to
previously labeled (e.g., by region of origin, or genetic clus-
tering) groups/reference panels of additional individuals,
and identifies and characterizes segments of local ancestry
for admixture of arbitrary numbers of populations. Note that
we do not require that the unobserved admixing ancestral
groups to be a close match to the observed labeled groups,
but, rather, we learn the genetic relationships between them.
We exploit LD information to decompose the genome into
segments, and use an HMM algorithm, similar in spirit to that
of HapMix, which forms a special case. Each admixing pop-
ulation copies from each panel according to a set of weight
parameters inferred by the method. For example, in Hazara
two-way admixture, we find that individuals possess admix-
ture segments from two groups, one preferentially copying
from donors that are North East Asian, and one from Central/
South Asian donors, matching previous findings (e.g., Hellenthal
et al. 2014).

To avoid phasing errors scrambling ancestry switch signals
within the inferential algorithm, we iteratively update hap-
lotypic phase [a similar approach, although with a different
underlying algorithm, to that used in e.g., RFMix (Maples
et al. 2013)], and infer time since admixture via the fitting
of exponential decay coancestry curves. We estimate the drift
between the unobserved ancestral groups and other groups
by constructing partial genomes from the admixed individu-
als themselves, representative of the original nonadmixed
ancestral individuals. These can then be compared to other
populations, allowing estimation of divergence as Fst.

Our software—MOSAIC—returns parameter estimates,
local ancestry estimates along the genome, coancestry curves
(including the best fit exponential curve corresponding to
estimated pairwise ages of admixture), ancestry informed
phase of the target haplotypes, and Fst estimates between
the ancestral mixing groups and between the mixing groups
and each panel.

Materials and Methods

The inputs are haplotypes from labeled subpopulations (pan-
els), target admixed haplotypes, and recombination rate
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Figure 1 MOSAIC proceeds by rounds of thin (see Thinning), EM (see EM Updates), phasing (see Rephasing). (a) is a cartoon version and (b and c) depict the
simulations used to test the approach in Simulation Studies. (a) The top row is a single observed admixed haplotype. The four panels beneath it each have three
reference haplotypes, in this case separable into two diverged groups (orange and blue). Local ancestry estimates (colors along the bottom) are estimated,
conditional on parameter estimates including the conditional probability of selecting a panel given the local ancestry (right hand side). Estimated local ancestry is
then used to update parameter estimates in an EM algorithm. A key innovation here is demonstrated by the segment second from the right, wherein a putatively
blue haplotype is copied under an orange ancestry. Filled and open circles denote reference and alternative allelic types, and the asterisks denote miscopied alleles.
(b) The phase-hunter method applied to a simulated admixed chromosome 10. The dots show the locations along a chromosome (x-axis) that are flipped for
phase by the algorithm at successive rounds of the phase-hunter (y-axis). Fewer sites are candidates (increased log-likelihood if flipped) in each round. Just four
forward-backward algorithm passes are required to find all single phase flips that increase the log-likelihood in this example. (c) Dating is estimated using the
coancestry curve fitting in Dating Admixture Events Using Coancestry Curves using the exponential decay of the ratio of probabilities of pairs of local ancestries
(y-axis) as a function of genetic distance (in centi-Morgans, x-axis). The green line depicts the fitted curve, the black line the across targets observed ratios, and the
grey lines the per target ratio. Along the top of each panel is the index of the pair of ancestries being examined as a:b followed by the estimated decay parameter
in brackets corresponding to the number of generations since admixture. In this case, 50 generations since admixture has been simulated and we demonstrate in
Section S2.1 of the Supplement that bootstrapped samples (see Simple two-way admixture analysis) of the inferred date are centered around this value.
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maps. Typically, thephasingof thehaplotypes is accomplished
algorithmically [here, we have used SHAPEIT2 (Delaneau
et al. 2013)]. Within our inferential algorithm, we allow
for, and attempt to correct, phasing errors in the admixed
targets.

Overview of the model

Figure 1 outlines our model in graphical form, with further
details below. Figure 1a depicts the phased part of our ap-
proach, while we describe phasing steps in Rephasing and
Figure 1b. Figure 1a shows 12 phased haplotypes sampled
from four labeled populations (panels). The target haplotype
is the result of two-way admixture from unknown ancestral
source groups. The labeled populations act as surrogates for
these sources. However their relationships with the source
groups is not known in advance, but learned from the data.
We model the target haplotype as a mosaic, copying seg-
ments from members of the labeled populations, via a
HMM related to that of Li and Stephens (2003). A matrix
of copying probabilities (right side of Figure 1a parameterises
how the surrogates relate to the underlying ancestry, and this
matrix is learned from the data to characterize the admixing
source groups. If a panel does not contain useful surrogate
haplotypes for the mixing groups, then the corresponding
row of the matrix will be near zero. Conversely, if several
panels contain good surrogates for an ancestry, then they will
share the conditional probability mass with obvious postfit
interpretation. Finally, if there is a panel that is similarly
admixed to the target individuals, this will be reflected as a
row in the copying matrix with multiple nonzero entries. The
hidden states in our HMM consist of two layers: each site (or
gridpoint, see Gridding on genetic distance) has both a hidden
local ancestry (blue or orange in the Figure) and another
hidden state specifying which donor haplotype is being cop-
ied from.

Two-layer HMM

Our approach may be viewed as a combination of HapMix
(Price et al. 2009) and GLOBETROTTER (Hellenthal et al.
2014). As per HapMix, admixture is directly incorporated
into the HMM. Unlike HapMix, our model works with any
multiple of ancestry sources1 and is more flexible; not only do
we allow for a rich variety of dependency between latent
ancestral sources and labeled modern populations, but we
also do not require prespecification of these dependencies
(see Transitions for how we parameterize these relation-
ships). As in GLOBETROTTER, MOSAIC infers the relation-
ship betweenmodern populations and ancient unseenmixing
populations from the data. The key difference is that our
method builds these relationships directly into the HMM,
which uncovers accurate local ancestry estimates along the

genome, whereas GLOBETROTTER fits a mixture model to
the output of an ancestry unaware HMM.

Gridding on genetic distance

We impose anevengrid on recombinationdistance along each
chromosome, to speed up the algorithm (we use fewer grid-
points than SNPs), and simplify HMM calculations (recombi-
nationdistances are constanton thegrid). SNPsaremapped to
their nearest gridpoint, according to genetic distance. This is
extremely fine (60 gridpoints per centimorgan) in contrast
with the single-ancestry windows imposed by existing admix-
ture models such as MultiMix (Churchhouse and Marchini
2013) and LAMP-LD (Baran et al. 2012). We make the sim-
plifying approximation that recombination only happens be-
tween successive gridpoints, which will be accurate for the
time frame on which we focus and greatly simplifies the
mathematics of our inference. There can now be 0, 1, or
multiple SNPs at any given gridpoint, and the HMM is de-
fined at all gridpoints. The emission probabilities (see
Emissions) for a gridpoint and potential donor haplotype de-
pend only on the number of matching and nonmatching SNPs
for that gridpoint and donor, which are calculated once and
stored. Phasing is also calculated only at gridpoints. The den-
sity of markers does not impact the speed of our inference,
aside from the initial additional overhead in reducing the
data to the grid, meaning that MOSAIC scales sublinearly
with the number of sites.

Transitions

We jointly model ancestry and haplotype, copying chunks
along the genome using a two-layer HMM. The first layer
involves ancestry switches along the genome, and the second
layer switches between copied haplotypes along the genome.
Ancestry switches occur at a slower rate than the haplotype
switches as they only occur postadmixture and each ancestry
switch enforces a haplotype switch in the model. The prob-
ability of making a switch from ancestry b to ancestry a be-
tween successive gridpoints is parameterised in our model as
P

ðnÞ
ba in target individual n. Note that this individual specific

A3A matrix (where A is the number of latent ancestries) of
switch rates encompasses all that the model knows about the
admixture event, i.e., the time of the event and the mixing
proportions, and is not constrained to be symmetric.

The probability of switching to any donor haplotype de-
pends on the size of the panel, and the underlying local
ancestry at the gridpoint. We parameterise by mpa; the prob-
ability of selecting from panel p when the local ancestry is a
(i.e., the copying probabilities on the right side of Figure 1a).
The columns of m are constrained to sum to unity, and we
scale these probabilities when used in our HMM by Np, the
number of donor haplotypes in panel p. Finally, we denote the
recombination within ancestry probability with r, i.e., this is
the recombination rate conditional on no ancestral switch.

The transition probability of making a switch from (ances-
try, haplotype) pair ðb; hqÞ to ða; hpÞ where hp is a donor hap-
lotype h in panel p for target individual n, is given by:

1 The limit to how many sources we model is a computational one as we necessarily
must sum over all possible ancestry pairs for each forward/backward pass of the
algorithm at each gridpoint; thus the overhead scales as OðA2Þ where A is the
number of ancestries we model.
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where PðnÞ
a� ¼ P

bPab.
Note that thePðnÞ terms are unconditional probabilities

(thus we do not multiply by r) and parameterise ancestry
switches, but not nonswitches, so the sum of the rows is
not constrained to be 1. The PðnÞ matrices are specific to
the admixed target individuals whereas m and r are as-
sumed to be common to the entire admixed population.
Other choices are available to our model (and code) and
can prove useful; for example, when a subset of admixed
targets have undergone a markedly different admixture
event to the rest, they should be modeled separately,
resulting in two sets of parameters. The interpretation of
the above choice is that the admixture is well character-
ized as being the mixing of a single set of well-defined
ancestral populations, but each target individual may have
experienced the mixing at a different point in their history
(and in a different ratio). The default individual-specific
PðnÞ can be changed to a single jointP;which equates to an
assumption that each admixed genome has a shared ad-
mixture profile. This choice is suitable in the presence of
panmixia postadmixture and an old admixture event.
Where this assumption holds, similar estimates for each
PðnÞ result. In this work, we assume a single scalar r; we have
experimented with ancestry specific versions of this parame-
ter, but the vector r is then confounded with PðnÞ.

Emissions

We deal with biallelic SNP data (denoted with a Y), and we
use u to parameterize the emission probability of a 1 at locus l
when copying donor haplotype h as

uð12 YlhÞ þ ð12 uÞYlh;

where Ylh ¼ 1 if donor haplotype h has biallelic SNP 1 at locus
l, else it is 0. Thus, u is the probability of a pointwise discrep-
ancy between the allele of the haplotype being locally copied
and the allele of the copying haplotype, i.e., the miscopying
rate. Note that, for notational simplicity, we have suppressed
here the index of the panel fromwhich that haplotype comes.
As panel being copied does not impact our calculation, we
could allow this to account for genetic drift between the
ancestral groups and the modern reference panels; however,
we do not believe it would result in large improvements in
inferences based on exploratory analyses.

As we have moved the observed markers to a grid, each
gridpoint may have zero, one, or multiple emissions (obser-
vations). This is handled simply by assuming a product of
emissionprobabilities formultipleobservations (or a sumover
the log-probabilities in practice). For gridpoints with no ob-
servations, the emission probability is simply 1. This has the
additional benefit of allowing our model to handle missing
data, as there is simply a lower count of observations at a
gridpoint when SNPs are missing.

Algorithm

Our inferential algorithm comprises initialization of all pa-
rameters (see Appendix Initialization), followed by a loop
over successive rounds of thinning (see Thinning), rephasing
(see Rephasing), and EM updates of the parameters (see EM
updates). We find that a low number (five for results pre-
sented here) of rounds of these three parts results in conver-
gence to a final phasing solution. Within each round, we
perform 10 EM iterations, with an additional final EM algo-
rithm run until convergence.

1. Initialization of all parameters: m; r; u, P.
2. Repeat until phase convergence:

a. thin.
b. rephase.
c. 10 EM iterations.

3. Final EM until convergence.
4. Coancestry curve fitting to estimate dates.

Thinning

Thinning refers to a local (gridpoint specific) reduction of the
set of possible donors available to copy for each target indi-
vidual, and is a computationally convenient approximation.
We fit a single-layer ancestry unaware model [similar to
chromopainter (Lawson et al. 2012)] to the full set of donors.
For each target individual, we then rank the donors at each
gridpoint, and pass only the top 100 to the ancestry-aware
two-layer HMM part of our model. For large reference data-
sets, this greatly reduces the state-space of the model with a
negligible reduction in accuracy, as, typically, only a handful
of donor haplotypes are likely to be copied from. The reason
we do this per individual rather than per target haplotype is
to make the donors relevant to both haplotypes available for

P
ðnÞ
ba

mpa

Np
a 6¼ b

��
12P

ðnÞ
a�

�
r þP

ðnÞ
aa

�mpa

Np
a ¼ b; hp 6¼ hq

��
12P

ðnÞ
a�

�
r þP

ðnÞ
aa

�mpa

Np
þ
�
12P

ðnÞ
a�

�
ð12 rÞ a ¼ b; hp ¼ hq;

;
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Figure 2 Comparison between MOSAIC and HapMix in two-way admixture simulations, as described in Simulation Studies. (a) Example diploid local
ancestry (orange or blue) in a simulated dataset. Top is truth, middle HapMix, bottom MOSAIC where rephasing is as per Rephasing. Both methods infer
similarly accurate local ancestry; however, MOSAIC is more confident, extends to more than two-way events, and does not depend on prior knowledge
of mixing groups. (b) Easy (Yoruba and French) and harder (Pathan and Mongola) admixture simulations. Left: r2 for HapMix against MOSAIC, showing
superior local ancestry estimation against the current state-of-the-art in two-way admixture, even though HapMix is provided with known reference
panels and MOSAIC is not. The plotting character is sized proportional to Rst. Left-center: true vs. inferred dates. Right-center: estimated coefficient of
determination of local ancestry E½r2� (Equation 2) vs. squared correlation between true and estimated local ancestry. Right: Rst (Equation 4) against
squared correlation between true and estimated local ancestry, showing that Rst can be used to identify challenging cases. In all plots, the black circle
highlights the simulation shown in (a).
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the rephasing part of the algorithm. See Appendix app:thin-
ning for full details.
Rephasing

Phasing errors can potentially mask real ancestry switches, or
cause our model to infer ancestry switches where there are
none. HapMix solves this issue by integrating over all possible
phasing at each locus (diploid mode), but this is computation-
ally intensiveandHapMixcannot run this option in conjunction
with EM inference of the model parameters. To consider all
possible phasing is intractable aswewould need to consider 2G

possible phasings per individual genome, where G is the num-
ber of gridpoints. Instead, we search for phase flips that would
lead to an increase in the likelihood of the data under our
model, and hill climb to a maximum likelihood solution
(“phase-hunting”). Although our software can also sample
viaMCMCother phase solutions, we find that our hill climbing
method is both fast and leads to a log-likelihood that is notwell
improved upon by a long run of the MCMC chain. We use a
pass of our fast forward-backward algorithm to see the
marginal change in log-likelihood under the model were we
to flip each gridpoint independently and examination of these
log-likelihood changes informs our phase-hunter as follows:

1. Identify intervals for which phase flips give positive values
in this expected log-likelihood change.

2. Flip all of the highest nonoverlapping (farther than
0:1 cM apart) intervals and refit our HMM.

3. Repeat this process as long as the log-likelihood increases.

In practice, we find fewer attractive phase-flips in each
successive pass; see Figure 1b. Figure S3a and Section S3
demonstrate the contribution of this rephasing step to the
overall model fit in comparison with HapMix (which inte-
grates over all possible phasings) in the context of a two-
way admixture problem.
EM updates

The EM algorithm (also referred to as Baum-Welch when used
in conjunctionwith aHMM) performs estimation of the hidden
states given a set of parameter estimates (E-step), and then
performsmaximum likelihoodestimation for themodel param-
eters given these estimates (M step). Iteration then proceeds
over the E and M steps until convergence to a steady set of
parameters and local ancestry estimates. At each step the log-
likelihood for the model is guaranteed to increase (although
convergence to the global maximum is not guaranteed).
Expected coefficient of determination

For simulated data, we report a measure of the accuracy of
MOSAIC’s local ancestry with the commonly used measure of
the squared sample correlation r2 between the estimated lo-
cal ancestry X (where Xag is the probability that the haplotype
belongs to ancestry a at location g on the genome) and the
true local ancestry Z. This is known as the Coefficient of De-
termination. However, in the absence of such a ground truth
Z for real data, we use an expectation of this coefficient, as
per Price et al. (2009).

For a given ancestry, a, we compute the expected value of this
based on the inferred local ancestry, Xa, without knowledge
of the true local ancestry, Za, for each individual as follows:

E
�
r2ðXa;ZaÞ

� ¼ E

h covðXa;ZaÞ2
varðXaÞvarðZaÞ

i

                                                               ’ E½covðXa;ZaÞ�2
varðXaÞE½varðZaÞ�;

(1)

where the expectations are with respect to the random var-
iables Za. Given inferred Xa, the Zag are assumed Bernoulli
distributed with PðZag ¼ 1Þ ¼ Xag. The sample variances are
covariance are computed across gridpoints on the whole ge-
nome g ¼ 1 . . .G.

To estimate the terms in Equation 1, we could take inde-
pendent samples of Zag based on Xag and use the samplemean
of Equation 1 evaluated on each sampled Za as an estimator
for the expectation; however, we can directly estimate what
each term will be. The sample variance of Xa over gridpoints
is directly given by:

varðXaÞ ¼
P

g
�
X2
ag
�

G
2

�P
gXag
G

�2
:

The expected covariance between Xa and Za is given by
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:

which we note is the same as varðXaÞ. The expected value of
the variance of Za is:

E½varðZaÞ� ¼ E
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Finally, cancelling terms, we get

E
�
r2ðXa; ZaÞ

� ’
P

gX
2
ag 2

�P
gXag

�2.G
P

gXag 2
�P

gXag
�2.G

:

This is then averaged over all ancestries a to return the
expected squared correlation between the inferred local an-
cestry and the unobserved true local ancestry.
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For diploid local ancestry, the haploid Xag is replaced by the
sum of these over the two chromosomes for an individual, say
Xag ¼ Xð1Þ

ag þ Xð2Þ
ag , where the superscript indexes the two

chromosomes. Each Zag is then assumed to be the sum of
two independent Bernoulli random variables with parame-
ters Xð1Þ

ag and Xð2Þ
ag . The expected value and variance of such a

random variable is given by Xag and Xag 2X2
ag þ 2Xð1Þ

ag X
ð2Þ
ag ;

respectively. The above calculations for the variance of Xa

(which takes values 0–2) and the expected covariance be-
tween this and the diploid true ancestry Za are unchanged,
but the expected variance of Za is then given by

E½varðZaÞ� ¼
Xag þ 2Xð1Þ

ag Xð2Þ
ag

G
2

�P
gXag
G

�2
:

For the diploid local ancestry, we therefore get

E½r2ðXa; ZaÞ� ’
P

gX
2
ag 2

�P
gXag

�2.G
P

g

�
Xag þ 2Xð1Þ

ag Xð2Þ
ag

�
2
�P

gXag
�2.G

(2)

Fst summaries

We use Fst to summarize the genetic divergence of the mixing
groups and further characterize each admixture event. As sam-
ples of themixing groups are not available, we first assign locally
segments of the target chromosomes to the ancestry; they are
maximally assigned a posteriori based on the HMM fit.2 These

partial, haploid genomes may now be thought of as drifted
versions of the ancestral groups that mixed to create the targets.
We then calculate Fst (see below) between these so created
“unadmixed” genomes and each panel (donor population) used
in themodel fit. If each panel represents good surrogates for one
(and only one) unmixed ancestral group, then the Fst between
these partial genomes and the donor panels will be strongly
negatively correlated with the corresponding elements of m. If
there is a panel that is comprised of individuals from a similar
population to the target admixed population, then it will have
high Fst to both ancestral groups (and thus to these partial
genomes), assuming accurate local ancestry deconvolution.

Fst calculations

Noting that naïve estimators of Fst may be biased, and that
there are many estimators in the literature, we refer to Bhatia
et al. (2013) to inform our choice. We follow the recommen-
dations of that paper and use a ratio of averages (rather than
an average of ratios) as this is numerically stable. To aggre-
gate across loci, we first define SNP s specific FðsÞst as the esti-
mated variance in the frequency between populations
(weighted by population size), divided by the estimated var-
iance of frequency across populations. We can then calculate
the genome wide F̂st ratios by summing the numerator and
denominator across the genome first and taking the ratio.

Note that we deviate from the recommended choice of
estimator for the numerator and denominator in Bhatia
et al. (2013). They recommend the Husdon estimator
(Bhatia et al. 2013, Equation 5) as this provides unbiased
estimates for both the numerator and denominator but
assumes equal and large sample sizes. As our sample size
for the ancestral groups (constructed as above using max-
imal assignment3 of local segments of admixed genomes)
varies along the genome, we prefer an estimator that is
robust to sample size variation and can aggregate site spe-
cific contributions to the numerator and denominator with
varying sample sizes. We therefore use the Weir and Cock-
erham (1984) estimator in a form that uses a ratio of aver-
ages. Specifically we use a variation of equation 6 in Bhatia
et al. (2013):

F̂st ¼ 12
PS

s¼12asbscsPS
s¼1ds þ ð2as 21Þbscs

; (3)

where s is the site index, and

as     ¼ n1sn2s
n1s þ n2s

;

bs     ¼ 1
n1s þ n2s2 2

;

cs     ¼ n1s½p̂1sð12 p̂1sÞ� þ n2s½p̂2sð12 p̂2sÞ�;

ds ¼ aðp̂1s2p̂2sÞ2:

Figure 3 Inferred dates from MOSAIC are plotted against inferred dates
from GLOBETROTTER, including bootstrapped62 SE bars for real data two-
way admixture events (see note in Simple two-way admixture analysis). The
GLOBETROTTER dates are from table S14 of Hellenthal et al. (2014). The
size of the each disc of each event is proportional to Rst (see Fst summaries).
For a table of estimated and bootstrapped intervals see Table S1.

2 We could sample ancestries along the genome, however using maximal ancestry
assignment will perform a similar averaging along the genome faster. 3 We assign local ancestries when the probability is .0.8.
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Note that a and b are unrelated to the a and b we used to
index ancestries; here, we are using the same notation as
Bhatia et al. (2013) for clarity. p̂is is the observed allele fre-
quency at site s for population i. The sample size for popula-
tion i is nis; and is fixed for the donor panels but varies for the
partial ancestral group genomes created from the admixed
haplotypes.

We also calculate Rst ¼ RðF̂stÞ as the estimated average-
over-panels relative squared difference in Fst between ances-
tral groups a and b to each panel as a measure of whether the
panels are useful in differentiating the groups:

Rstða; bÞ ¼ 1
P

XP

p¼1

ðF̂stða; pÞ2F̂stðb; pÞÞ2
0:5ðF̂stða; pÞ þ F̂stðb; pÞÞ

: (4)

Thus, Rst is the mean across panels measure of the ratio of the
squared difference in genetic divergence between the panel
and the ancestral groups to the sum of the genetic diver-
gences between panel and ancestral groups. Only panels that
are diverged by dissimilar degrees contribute, and Rst varies
between 0 and 2.

Rst is correlated with F̂st between the latent ancestries
(Pearson correlation of 0.23 with P-value of 0.00047
across all 95 real populations we analyzed); however, it
also takes into account the distances to the donor groups.
For example, the mixing groups could be far apart, as re-
ported by F̂st; however, the panels may be poor surrogates
due to drift since admixture. This causes each panel to have
a similar F̂st to both ancestral groups, and this will show in
a low Rst overall. The correlation between Rst and E½r2�was
0.3 with a P-value of 3:23 1026; whereas the correlation
between F̂st and E½r2� was 0.057 with a P-value of 0.4,
showing that Rst is the better indicator of accuracy of local
ancestry.

Examination of the Rst value sheds light on why E½r2� is
low; uncertain local ancestry estimates evidenced by a low
E½r2� could be due to one or more of the following reasons:
low divergence between mixing groups, inadequate panels, a
long time since admixture, a very minor contribution of one
of the mixing groups; a value of Rst that is low points toward
the utility of the panels. For this reason, we recommend ex-
amination of F̂st;Rst, and E½r2�. For example, Figure 2b dem-
onstrates that Rst identifies cases where the panels do not
contain good surrogates for the mixing groups (green points)
rather than the admixture event being too old to clearly
quantify.

Finally, it should be noted that, when there is no clear
admixture signal, MOSAIC sometimes returns very
small estimated minor ancestry proportions, and, in this
case, the estimated Fst between the latent ancestries is
meaningless. All segments are assigned to one ancestry,
and the Weir and Cockerham estimator breaks down. This
occurred for four model runs of the extended 95 popula-
tion Human Genome Diversity Project (HGDP) dataset
(see Application to human genome diversity project data),

all for two-way admixture models; Germany-Austria
(GerAus), Karitiana, Lahu, and Welsh. It is noteworthy that
GLOBETROTTER also found no strong evidence of admixture
for these populations.

Dating admixture events using coancestry curves

We wish to infer the times at which each pair of ancestral
groups admixed, based on ourmodel fit. The transition rates
matrix P does not provide a direct estimate of these times
(in number of generations), and so we rely on construction
of coancestry curves as per Hellenthal et al. (2014) with
best-fit exponential decay curves to estimate dates. In order
to create the coancestry curves (in black lines in Figure 1c)
and to find the best fit exponential curve (green lines), we
first estimate the probability of being in ancestry a at one
position and ancestry b at a position d away, relative to
genome-wide average probability. This naturally depends
on how many generations have occurred since the admix-
ture event. As shown in the Supplement to Hellenthal et al.
(2014) Equation S11, for two positions x1 and x2 that
are d apart, this relative probability Pða; b; dÞ is equal to
dabe2dlab þ tab, assuming a single admixture event. Here
tab is the asymptotic value and thus is known to be �1 as
it is the ratio of the probability of being ancestry a at any
locus and ancestry b at an unlinked locus to the genome-
wide average. lab is the generations since the admixture,
and we scale d by grid width so that lab is the number of
generations.

We therefore find constants dab; tab; lab that minimize the
squared difference between Pða; b; dÞ and this exponential
curve, averaging over all pairs of points these distances
d apart. We find that the numerical optimization is rela-
tively unstable, so we need to initialize with sensible
dab; tab; lab values. We note that tab ’ 1, at d ¼ 0 we have
dab ¼ Pða; b; 0Þ2 tab and at any nonzero distance d (e.g.,
where the height of the curve is halfway between the height
at 0 and its asymptote)

lab ¼
2logðPða;b;dÞ2 tab

dab
Þ

d
:

Thus, we have crude estimates of dab; tab, and lab with which
to start a numerical optimization routine, which derives the
best fit (green lines). Although Figure 1c demonstrates curve
fitting by imposing the assumption that lab is the same for all
values of a and b, we proceed all subsequent analysis with
this assumption relaxed and dates for events are the average
across a; b.

An assumption in MOSAIC is that of a single admixture
event for each pair of ancestries in each individual. Where
this assumption is not met, the coancestry curves will not be
well approximatedwith a single exponential decay as above.
The alternative is that of either multiple waves of admixture
or continuous gene flow between diverged populations.
These latter two are difficult to distinguish using these
coancestry curves [see S2.4 of the Supplement to
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Hellenthal et al. (2014)]. The single-exponential curve fit
can, in principle, be used to determine whether the assump-
tion of a single event should be rejected, but, although visual
inspection may suggest evidence of multiple admixture
times, MOSAIC does not provide a formal test for this.
Figure S1 of the Supplement demonstrates highly accu-
rate inference of admixture dates based on simulations
for both single-date and flexible-date versions of this
approach.

Interpretation of pairwise decay parameters for
multiway admixture

Examination of the pairwise coancestry plots does not
always yield a unique inference of the demographic history
of the admixed population. For an A-way admixture model
there are A2 1 events if we assume each population mixes
with the already admixed population that includes all pre-
viously separate populations; however, each event does not
necessarily involve mixture between the inferred ancestral
groups. For example, in a three-way admixture between
groups a,b, and c (without loss of generality) the history of
the admixed abc samples could have arisen via several possible
admixture sequences:

1. a+b+c (single event).
2. a+b then ab+c (two events).
3. a+b then b+c then ab+bc.

Other more complex histories are also possible involving
combinations of continuous and event based admixture. We
will restrict our focus to sequence types 1 and 2 above, that is
we will only consider cases wherein each ancestral popula-
tion mixes just once with the admixed group. We will also
restrict focus to admixed populations in which the individuals
all share an approximately common history. This precludes
for example a+b then b+c then a+c (three events and no abc
admixed individuals).

If we knew pairwise dates to be lab ¼ lac ¼ lbc; we
might infer that the history is of sequence 1 above (it could
also be that there were simultaneous but separate events
occurring). If we infer pairwise dates to be lab . lac and
lac ¼ lbc; the interpretation would be that a and b mixed
followed by ab mixing with population c (as per sequence
2 above). However, where lab . lbc . lac; we would infer
that the events were sequential and nonoverlapping. In
such cases the inference is that a and b mixed followed
by a mixture involving unadmixed (with respect to a) in-
dividuals of ancestries b and c, followed by a third event
involving admixture between a and c only (without b).
This is of course possible if we do not observe individuals
inferred to have all three ancestries occurring on their
genome. Sequence 3 is less straightforward to infer; lab
will depend on tracts with a length distribution based on a
mixture due to a and b admixing twice (with and without
the presence of c).

We do not know the pairwise l values, but estimate
them using the coancestry curves; uncertainty in which

history we should infer is confounded with the presence
of multiple waves of admixture or continuous gene flow
and manifests as bootstrapped l values that are highly
variable. For example, sequence 3 will give rise to lab val-
ues indistinguishable from those induced by two pulses of
admixture between a and b. For these reasons, we do not
claim to have made a definitive contribution to the recon-
struction of admixture histories based on local ancestry
estimation but simply interpret our multiway admixture
results in this context.

Data availability

An open source R package is available for download at
https://maths.ucd.ie/�mst/MOSAIC/. A browser for all
results on the extended HGDP dataset (from Hellenthal
et al. 2014; see Application to human genome diversity
project data) is also provided. The data are publicly avail-
able at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE53626 as per Hellenthal et al. (2014). Supplemental
material available at FigShare: https://doi.org/10.25386/
genetics.8144159.

Results

Simulation studies

Figure 1, b and c depicts a simple simulation study. We sim-
ulated admixture 50 generations ago using real haplotypes
from French and Yoruban chromosomes in a 50-50 split; thus
the ground truth local ancestry is known. Panels are then
formed from Norwegian, English, Ireland, Moroccan, Tuni-
sian, Hadza, Bantu-Kenya (BantuK), Bantu-South-Africa
(BantuSA), and Ethiopian individuals. MOSAIC inferred the
stochastic relationships between these groups and the under-
lying mixing groups, along with all other parameters using
the algorithm detailed in Algorithm. As can be seen from
Figure 1c, MOSAIC is able to accurately infer the correct
simulated admixture date. Under this simple simulation,
the algorithm was also able to infer that one ancestry heavily
copies from the West European populations and the other
from African populations.

The current state-of-the-art in local ancestry estimation
in the context of a two-way admixture is provided byHapMix
(Price et al. 2009). We therefore also ran HapMix in hap-
loid mode with EM to learn its model parameters, and
then performed a diploid (integration over all possible
phasings) run to estimate diploid local ancestry. Reference
panels were necessarily provided to HapMix in two sets of
proxy haplotypes for the two mixing groups (European and
African). This took 50 min 5 sec, in comparison with the
total MOSAIC run time of 29 min 8 sec (on a standard
laptop, which included the time taken to sample the simu-
lated data, fit coancestry curves, etc.) for full genomes. Fig-
ure 2a shows the true and estimated local ancestries under
both models along chromosome 2 for a single diploid
individual.

MOSAIC 879

https://maths.ucd.ie/~mst/MOSAIC/
https://maths.ucd.ie/~mst/MOSAIC/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53626
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53626
https://doi.org/10.25386/genetics.8144159
https://doi.org/10.25386/genetics.8144159


Figure 4 Inferred copying matrices for case studies of human admixture based on the HGDP dataset. The copying proportions mpa are scaled within
columns to % of the most copied donor population so that each cell shading is equal to 100:mpa=arg maxpmpa. Along the top are the estimated
genome-wide ancestry proportions averaged across all admixed target individuals, e.g., Hazara are 53% “orange” ancestry.
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We next report performance of MOSAIC on scenarios with
various levelsofdifficulty, andagaincomparewithHapMix.We
fit both models to simulations similar to the above, but for
varyingadmixturedates and for a secondmixture; the latter is a
mixture of Pathan and Mongolian genomes, and the reference

panels used are Iranian, Lezgin, Armenian, Sindhi, Brahui,
Georgian, Hezhen, HanNchina, Han, Tu, Oroqen, Daur, Xibo,
Tujia, and Yakut. Again, these must be provided to HapMix
as two sets of known surrogates, whereas MOSAIC infers
the relationships to the admixed genomes. See Figure 2b

Figure 5 (a) Hazara two-way. (b) Bedouin two-way. (c) Chuvash two-way. (d) Maya three-way. (e) SanKhomani four-way. Coancestry curves for
case studies of admixture within the HGDP dataset. On the top of each subplot, the ancestry sides are labeled according to the closest donor panel
as measured by F̂st (see Table 1, Table 2, Table 3, Table 4, and Table 5) and the estimated number of generations since admixture between each pair
of ancestries is given in brackets. The relative probability of pairs of local ancestries (y-axis) as a function of genetic distance (in centi-Morgans,
x-axis) is shown in black (across all individuals), gray (one per individual), and fitted exponential decay curve (green). The departure from the
exponential decay seen in the top right panel is due to the low African ð2%Þ and European ð10%Þ ancestry dosages coupled with the recent
admixture date, meaning that local ancestry switches between these two are rare. This low number of switches results in a noisy decay curve for
each individual (gray lines).
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for a summary ofMOSAIC’s andHapMix’s performances across
these scenarios. MOSAIC typically outperforms HapMix in
terms of r2 with the true local ancestry, especially for the more
difficult scenarios.

Figure 2b (right-center) demonstrates that E½r2� pro-
vides a useful predictor of local ancestry accuracy based
upon the MOSAIC output; however, it overestimates r2 with
the level of bias depending on the genetic divergence be-
tween the mixing groups and the reference panels (as mea-
sured by Rst). This bias is expected, as E½r2� estimates
squared correlation between the inferred local ancestry
(which is continuous) and the true local (which is 0,1, or
2 for diploid ancestry), assuming that true ancestries are
sampled from the inferred ancestry, i.e., that the model fit,
and, hence, the conditional ancestry probabilities, are accu-
rate overall. Hence, modeling departures or model mis-
identification are expected to result in overestimation of
confidence.

It must be stressed here that this is a setting that is ideal
for HapMix (two-way admixture with known, highly ap-
propriate reference panels), whereas MOSAIC generalizes
tomulti-way admixture, and can return useful results when
the reference panels are not good surrogates for the mixing
ancestral groups. Furthermore,MOSAIC infers the stochas-
tic relationships between panels and ancestries. Further
demonstration of the robustness of MOSAIC to imperfect
reference panels is shown in Section S4 for two-way ad-
mixture; Figure S4 demonstrates inference of admixture
within reference panels in terms of copying matrix values
m; along with accurate date of admixture estimates for a
simulation involving admixture between Spanish and Yor-
uban genomes, but with reference panels from only conti-
nental Africa. Table S3 shows that Fst between donor
panels and the panels used to simulate admixed genomes
is also accurately estimated from the partially recon-
structed ancestral genomes, leading to the conclusion that
MOSAIC can accurately estimate Fst between modern pop-
ulations and ancestral groups for real events.

We also verified the excellent performance ofMOSAIC by
performing three-way simulations of admixed individuals
with equal ancestry from French, Mandenkan, and Han
Chinese populations, which were then hidden as donors.
For full details, see Section S5 of the SupplementalMaterial.
Across admixture times from 5 to 100 generations ago, we
evaluated the performance of MOSAIC and the methods
ELAI, LAMP-LD, and RFMix, which can handle multi-way
admixture. We varied the donor groups available to detect
ancestry segments, including simulationswherein one of the
reference panels is created with admixture similar to the
target genomes (Figure S6 and Section S5.1). MOSAIC
performed extremely well for cases with recent admixture
(five generations), particularly when the donor groups were
similar to the true admixinggroups, but still captured . 75%
of the information regarding ancestry segments, even for
events 50 generations ago (Figure S5 and Tables S4 and
S5). Moreover, for every simulation scenario, MOSAIC uni-
formly outperformed all of the alternative approaches, even
though these alternative approaches were provided with
parameter values (as necessary) chosen to match those of
the simulations, and were also provided with panels most
closely representing each respective ancestry, among those
available. In contrast, MOSAIC inferred all properties of the
underlying latent ancestries and other model parameters
using the data.

Application to human genome diversity project data

We reanalyze the same 95 population dataset in Hellenthal
et al. (2014), which is an extended version of the HGDP. For
details on these populations see Table S6.1 of the Supple-
ment to Hellenthal et al. (2014).

Simple two-way admixture analysis

MOSAIC handles multiway admixture and provides accurate
local ancestry inference; however, we first restrict to the case
of two-way admixture events in order to compare results
with the current state-of-the-art method GLOBETROTTER

Figure 6 Hazara estimated local an-
cestry on chromosomes 1 and 2 across
two individuals. There is a roughly
50–50 ancestry contribution from
two sources �20 generations ago.
The orange source is Pathan like
and the blue is Mongolian like (see
Table 1 for details). The colors are
consistent with Figure 4, which shows
scaled copying proportions for each
donor panel.
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(Hellenthal et al. 2014). This method infers admixture pro-
portions and timings without specification of surrogates
for the mixing groups; however, it does not estimate local
ancestry. Figure 3 shows the inferred dates for the target
populations that were found to have experienced a single
two-way admixture event according to Hellenthal et al.
(2014). The x-axis shows the inferred dates 6 2 SE (in gen-
erations since admixture) and the y-axis shows the MOSAIC
inferred dates.

We do not propose an explicit model comparison method
for selecting the number of ancestries but advise careful
comparisonof results for variousmodels, asanyfitwill depend
upon which panels were available. Where MOSAIC returns
low E½r2� and/or low Rst, or if other parameter estimates are
not compatible with an interpretable model fit (such as
inferred generations since admixture being ,1), we advise
fixing on a lower number of ancestries. Section S1 provides
additional details on these two-way results. Although the
results in this section are presented only for two-way
admixture, we include three- and sometimes four-way results
for all 95 populations at http://maths.ucd.ie/�mst/MOSAIC/
HGDP_browser/.

The GLOBETROTTER paper creates bootstrapped chro-
mosomes, and finds the sample distribution of dates based
on these—a protocol we follow here. Although MOSAIC
models a single admixture event that may be experienced
at different times by different admixed individuals, here, we
fit a set of coancestry curves with a common rate parameter
for consistency with Hellenthal et al. (2014) and to provide
a direct comparison. In Figure 3, most date estimates have
�95% confidence intervals intersecting the line y ¼ x, so
are consistent between the two approaches. MOSAIC pro-
vides tighter bootstrapped confidence intervals, on average,
but we observe that there are three cases for which MOSAIC
infers a far more recent admixture with very narrow confi-
dence intervals (bottom right of Figure 3), and several
warning flags are raised when we analyze the output from
MOSAIC for these three populations for a two-way admix-
ture event.

The Rst statistic (which is based only on the MOSAIC re-
sults) is smallest for the target populations that have the
strongest disagreement with GLOBETROTTER (Georgia,
San-Namibia, and India; labels appear below and to the right
of plotting points in Figure 3 for these populations). For In-
dia, Sindhi is the closest (smallest F̂st) to both admixing

groups. Similarly, for San-Namibia, the San-Khomani are
the best match to both ancestries. In the Georgian case, the
Armenians and Russians are extremely close in F̂st to both
ancestries. GLOBETROTTER is more suited to very old
admixture events, and does not require the ability to infer
admixture breakpoints along the genome. In the GLOBE-
TROTTER analysis of India, the major ancestry is represented
by South Central Asian populations (Sindhi, Pathan, Indian
Jew); however, the minor ancestry ð14%Þ is highly diverse,
consisting of Asian populations (Cambodian, Mongola, Han)
as well as Ethiopian and Papuan. We find a similar E½r2� for
two- and three-way admixture (0.604 and 0.601, respec-
tively), although neither exhibit a clear admixture signal
as measured by the Rst statistic (0.0045 and 0.016,
respectively).

Note that the bootstrapped SE for the dates in Figure 3 are
created using a single rate parameter estimate, whereas the
plots shown here estimate one such parameter for each
unique unordered pair of ancestries (i.e., 12 1; 12 2; 22 2
for two-way admixture). For a three-way (or higher) model,
a single date may be invalid, and we therefore provide one
such coancestry plot for each pair of ancestries in Figure 5
(see Interpretation of pairwise decay parameters for multiway
admixture).

We now turn our attention to a number of case-studies,
specifically Hazara, Bedouin, and Chuvash two-way,
Maya three-way, and San-Khomani four-way admixture
models, to understand how MOSAIC performs relative to
previous analyses of these groups. Figure 4 depicts the
inferred copying matrix m for each of these case-studies,
and Figure 5 shows the coancestry curves used to date the
events.

Hazara two-way admixture

Hellenthal et al. (2014) find that the Hazara—an ethnic
group mainly living in Afghanistan—“show the clearest sig-
nal of admixture in the entire dataset”; this is reflected by
MOSAIC inferring tightly coupled coancestry curves (Figure
5a), with highly confident local ancestry estimates (Figure
6). MOSAIC identifies the two admixing groups as close
matches to the modern-day Pathan and Mongola ð47%Þ pop-
ulations (Table 1), confirming the likely Mongol origin ad-
mixture with local Iranian-like populations in this group (e.g.,
Hellenthal et al. 2014). We have chosen to include local

Table 1 Fst estimates between local ancestries and the closest five
panels in Hazara two-way

Pathan 0.0066 Mongola 0.0075
Iranian 0.007 Xibo 0.0084
Turkish 0.0078 Daur 0.0089
Balochi 0.0089 Oroqen 0.01
Sindhi 0.0089 Hezhen 0.011

F̂st between the inferred local ancestries is 0.087.

Table 2 Fst estimates between local ancestries and the closest five
panels in Bedouin two-way

Saudi 0.007 BantuK 0.025
Jordanian 0.0076 Yoruba 0.031
Syrian 0.0082 BantuSA 0.033
Palestinian 0.0093 Mandenka 0.034
Cypriot 0.0095 Sandawe 0.034

F̂st between the inferred local ancestries is 0.13.
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ancestry estimates for two individuals along two chromo-
somes, but these are representative of the entire population
of 22 individuals.

Bedouin and Chuvash two-way admixture

The Bedouin (a nomadic Arab group in North-East Africa/
Arabian peninsula) are fit by MOSAIC as a two-way ad-
mixture between groups most closely related to groups
from the Middle-East (91%, see Figure 4) and present-
day sub-Saharan African groups (Table 2), �28 genera-
tions ago (Figure 5b). In Possible selection signal at the
HLA in North Africa, we further discuss results of applying
MOSAIC to these 45 Bedouin individuals along with other
groups from North Africa that show similar admixture
structure.

The Chuvash population were previously analyzed after
removing several distinct Eastern European donor popula-
tions Hellenthal et al. (2014), due to somewhat similar ad-
mixture events in the removed groups. The MOSAIC analysis
of 16 Chuvash individuals (Fst Figure 5c and Table 3) iden-
tified a signal of admixture between European and East Asian
(24%) populations at an estimated admixture date of �33
generations ago, broadly corroborating previous results
Hellenthal et al. (2014), without requiring the removal of
such samples, supporting the robustness of MOSAIC to
admixed panels. We also fitted a three-way admixture model
(Section S2.2 of Supplement), which again showed 900-year-
old admixture from East Asian groups, but also suggested
additional complexity involving ancestry from Caucasus-like
(15% of the global Chuvash ancestry), East-Asian like ð24%Þ
and East-European populations, at different times, including
more recently.

Maya three-way admixture

The Maya are a Central American population that exhibit
recent (17th century) three-way admixture between Euro-
pean (10%), African (2%), and Native American (88%)
groups in the 21 individuals analyzed here, according to
our analysis. The E½r2� values for two-way (0.96) and
three-way (0.957) MOSAIC runs are close, suggesting sup-
port for the three-way model. See Table 4 for modern pop-
ulations that are closest in terms of Fst to the mixing groups.
As per Hellenthal et al. (2014), these results corroborate
known colonial era migration from Spain and West Africa
from the 15th and 16th centuries, and a single admixture
event involving all three ancestries is compatible with the

pairwise coancestry curve estimates in Figure 5d as they all
heavily overlap for each pair of ancestries with uncertainty
obtained via a bootstrap routine.

San-Khomani four-way admixture

As per Choudhury et al. (2017), we find evidence of four-way
admixture between Bantu-speakers, Khoesan, Europeans,
and populations from southern Asia in San-Khomani individ-
uals from Southern Africa. Analyzing 30 individuals, we ob-
tain E½r2� ¼ 0:896 for a four-way analysis with the minor
ancestry contributing 5%. Choudhury et al. (2017) explained
that the lack of availability of whole genome sequencing
data for (unadmixed) Khoesan source populations re-
stricted their ability to perform analyses such as admixture
mapping and local ancestry inference. A strength of MO-
SAIC is that it can leverage haplotypes from particular an-
cestry sources embedded within admixed donor genomes
(for example Khoesan ancestry haplotypes within admixed
San-Namibia population genomes), to overcome this chal-
lenge. Further, the Fst-based analysis (see Table 5) is able
to separate the actual haplotypes involved so that a clear
disambiguation between all four ancestry components is
achieved.

Figure 7a illustrates the local ancestry estimation for three
individuals chosen to have markedly different ancestry
components:

2 two-way admixture between Bantu 32% and Khoesan
68%.

1 three-way admixed Bantu 45%, Khoesan 51%, and Euro-
pean 4%.

19 four-way admixed Bantu 13%, Khoesan 45%, European
26%, and Asian 16%.

This illustrates the flexibility of the method, as it success-
fully infers the variable mixing proportions across individuals
in a single model fit.

Figure S2b of the Supplement shows the sample density
over 500 bootstrap samples of the estimated dates. From this,
we infer that, for the San-Khomani, the estimated chronolog-
ical order of pairwise events are (Bantu+ San), (San+West-
Europe), (San + South-Asia), (West-Europe + South-Asia),
(Bantu + South-Asia), and (Bantu + West-Europe). In this
case, there is heavy overlap between all but the oldest event
although the high degree of uncertainty surrounding (Bantu+
South-Asia)means that this event does overlap it. The simplest

Table 3 Fst estimates between local ancestries and the closest five
panels in Chuvash two-way

Russian 0.0046 Oroqen 0.032
Polish 0.0048 Yakut 0.033
Belorussian 0.0051 Mongola 0.036
Hungarian 0.0055 Xibo 0.037
GerAus 0.0057 Daur 0.038

The Fst estimate between the inferred local ancestries is 0.11.

Table 4 Fst estimates between local ancestries and the closest five
panels in Maya three-way

Spanish 0.014 BantuK 0.029 Colombian 0.035
Romanian 0.015 Yoruba 0.032 Pima 0.057
French 0.016 Mandenka 0.035 Karitiana 0.077
Tuscan 0.016 Sandawe 0.036 Hazara 0.099
Bulgarian 0.016 BantuSA 0.036 Uygur 0.1

The Fst estimate between the inferred local ancestries is 1 3 2 = 0.17 1 3 3 = 0.18
2 3 3 = 0.29.
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explanation for this is that Bantu and San like ancestors mixed
first 13.5 generations ago, followedbyadmixturewith all other
groups from �10 generations ago onwards.

Online results browser

Details for results of applying MOSAIC analysis to 95 global
populations, including those shown above, are available at
http://maths.ucd.ie/�mst/MOSAIC/HGDP_browser/. High-
lights include the presence of a small but detectable signal of
1–3% Central Asian ancestry in Eastern European popula-
tions. e.g., in Belorussian (2%), Hungarian (2%), Bulgarian
(3%), Romanian (3%), and Polish (1%) in a two-way admix-
ture with North-West European groups the major ancestral
component. Admixture appears to have occurred between
�24 and 35 generations ago, with the central Asian groups
most similar to modern day Uzbek, Uygur, and Hazara
groups. The Bulgarian and Romanian results show support
for three-way admixture as they have similar (or higher)E½r2�
values for two-way and three-way models. In these cases, the
results suggest Southern European ð54:5%Þ, North and West
European ð43%Þ, and Central Asian ð2:5%Þ ancestries. Section
S6 provides results on three additional case studies, namely
Moroccan two-way, Chuvash three-way, and North African
two-way. A number of populations cause MOSAIC to issue a
warning that there may be no admixture signal detected (for
the analyzed samples using the available panels). For example,
Ireland and Scotland results in less than one generation since
admixture, with no detectable difference between mixing
groups (F̂st and Rst both zero). Germany-Austria and Welsh
results in all individuals having estimated minor ancestry pro-
portions of zero.

Possible selection signal at the human leukocyte
antigen region in North Africa

If particular ancestral backgrounds are associated with adap-
tively beneficial alleles, then, following admixture, we expect
the average population proportions of such ancestries to rise
nearby, producing peaks in average ancestry (see Figure S12
and Section S8 of the Supplement for simulations of such a
scenario). To examine this in practice, we explored a region of
North Africa and the Middle East, collectively possessing a
sample size of 220 individuals with a proportion of sub-
Saharan ancestry (see Section S6.3 of Supplement for addi-
tional details), derived from admixture events which we date
to � 31 generations ago, sufficient for such selection to plau-
sibly occur. Identifying ancestry segments by including Euro-

pean-like and sub-Saharan African groups in a MOSAIC
analysis, we observe a genome-wide significant peak of African-
like ancestry around the human leukocyte antigen (HLA), the
strongest such signal in the genome (Figure 8). Other possi-
ble selection signals are observed (e.g., on chromosome 1)
but these correspond to narrow spikes relative to the inferred
admixture date, and, so, rather than postadmixture selection,
are more likely to reflect more ancient events. The HLA is a
gene complex that includes many proteins responsible for
regulation of the immune system, and are, therefore, a region
upon which natural selection is believed to act; indeed HLA
loci are identified to be among the fastest evolving in the
human genome (de Bakker et al. 2006). Altered ancestry
proportions in the HLA have been inferred previously in Mex-
ican individuals (Zhou et al. 2016), and the HLA shows an
apparent excess of identical-by-descent (IBD) sharing
(Botigué et al. 2013), but whether such patterns truly reflect
selection remains controversial (Price et al. 2008) due to
complex LD patterns in the HLA, for example, due to ancient
balancing selection (de Bakker et al. 2006). Additionally, un-
usual linkage structure and increased variation at the HLA
has been linked to balancing selection (de Bakker et al.
2006). To test whether LD patterns within the HLA itself
might explain the observed patterns, we excluded all SNPs
within this region and reapplied MOSAIC (see Figure S9 and
Section S7.1), which still showed a clear peak, implying a
broad-scale signal, consistent with postadmixture selection
toward African ancestry.

We further tested robustness of the signal by expandingour
reference panel to include all groups not directly considered
for admixture here. Strikingly, the peak at the HLA was
eliminated (Figure S10 and Section S7.2), due to a number
of haplotypes of previously uncertain butAfrican-like ancestry
having similar copies in southern European groups. This
sharing of haplotypes between North Africa and southern
European countries (which also have low levels of African
ancestry) implies that, if the peak in inferred ancestry truly
reflects selection for African ancestry in theHLA, this selection
extends across the Mediterranean. In any case, it implies the
extreme, rapid spread of similar haplotypes across a wide
geographic region, at the HLA.

This increased selection of HLA types from the minor
(African) ancestry could be explained either as an example
of positive selection due to African HLAs being more effective
in (for example) dealingwith African continent pathogens, or
an example of balancing selection to advantageous immune
response diversity (Bronson et al. 2013). This second hypoth-
esis is possible, because the Sub-Saharan ancestry has a
larger effective population size and is the minor contributor
to the admixture event, both of which result in increased
diversity with increased ancestry from this side. Further in-
vestigation of this event is, however, warranted; although
MOSAIC is designed to be robust to the presence of admix-
ture (with respect to the ancestral mixing groups) in the
donor panels at a genome-wide level, if there is the same
selection signal in the donors then the signal in the targets

Table 5 Fst estimates between local ancestries and the closest five
panels in SanKhomani four-way

BantuSA 0.0066 SanNamibia 0.02 French 0.011 Uygur 0.024
BantuK 0.01 BiakaPygmy 0.09 Welsh 0.011 Uzbekistani 0.025
Yoruba 0.012 BantuSA 0.09 Bulgarian 0.012 Sindhi 0.025
Mandenka 0.018 Sandawe 0.099 Romanian 0.012 Hazara 0.026
Sandawe 0.022 MbutiPygmy 0.11 Spanish 0.012 Indian 0.027

The Fst estimate between the inferred local ancestries is 1 3 2 = 0.1 1 3 3 = 0.14
1 3 4 = 0.14 2 3 3 = 0.27 2 3 4 = 0.27 3 3 4 = 0.066.
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becomes masked. Finally, we simulated admixture 31 gener-
ations ago using the closest donor panels to the ancestral
groups and the remaining panels were used in a MOSAIC
fit. Were bias toward African copying at the HLA due to the
linkage structure and increased variation, wewould expect to
see this manifest in plots of the average local ancestry; how-
ever, no such pattern was observed under repeated simula-
tions (see Figure S13 and Section S8).

Discussion

We have created freely available software that implements an
efficient and highly accurate model for fitting multi-way admix-
ture events. We call this method, and the associated software,
MOSAIC. It cannotonlyhandlemulti-wayadmixtureeventsbut,
unlike all currently available methods, it infers the stochastic

relationship between groups of potential donors to use in the Li
and Stephens’ type HMM and the underlying ancestral groups.
Thus, a close relationship between donor surrogate haplotype
panels and ancestral groups is not required.

We have demonstrated that, even in the case of available
and known direct surrogate donor panels for the mixing
groups, we can more accurately estimate both local ancestry
along the genome and the parameters governing the event
(number of generations since admixture and proportion
of mixing ancestries) than the current state-of-the-art ap-
proaches. We have presented results on selected case studies
of admixture that include replication of known well charac-
terized two-way admixture events as well as some novel
multiway results. An online browser at http://maths.
ucd.ie/�mst/MOSAIC/HGDP_browser provides access to
interactive viewing of a total of 95 global populations, each

Figure 7 Details of San-Khomani four-way admixture model fit. Each color represents one of four latent ancestries, which in this case correspond to four
different ethnicities. The orange source is Bantu-like, blue is San, green is European, and purple is Asian (see Table 5 for details). The colors in these plots are
consistent with Figure 4, which shows scaled copying proportions for each donor panel. On Figure 4, the San-Khomani column gives the genome-wide
proportion (across all 30 analyzed individuals) of these four ancestries, and this figure shows ancestry proportions per individual as stacked bar plots. (a) San-
Khomani estimated local diploid ancestry dosage (four colors) on chromosomes 1 and 2 across two individuals. The first individual has no inferred “Asian”
like ancestry (see Table 5), but the other two do. (b) Diagram showing the inferred proportions of the three ancestries in the San-Khomani.
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of which is analyzed using two-, three-, and (as required)
four-way admixture models.

Finally, we have shown that MOSAIC can be used to detect
and investigate postadmixture selection effects. Bias in across-
individuals local ancestry toward the sub-Saharan like ances-
try is found in North Africans at the HLA.
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Appendix: Computational Efficiencies

Unique Haplotype Lists

In order to reduce thememory footprint of themodel and algorithm,we store only the unique haplotypes at each gridpoint for the
donors and target admixed genomes. These lists grow sublinearlywith the number of samples and size of reference panels so that
themethodscales tohugedatasets.Wefirst read in thedataSNPbySNP;each locus is assignedto thenearestgridpoint so that some
gridpointshaveseveral, someone,andsomenoobservations.Theemissionprobabilitiessimplyrequireknowledgeofthenumberof
matches between any potential donor and each target and the number of observations of each at that gridpoint. This is stored
efficiently in a table for fast lookup as required, i.e., we require a table of all possible values of uX and ð12 uÞðW2XÞ;where u is
the estimated copying error rate, X is the number ofmis-matches, andW is the number of observations.We enumerate all possible
values of X and W once after compression and update the lookup table (which is modest in size, depending on the density of
markers and number of individuals in the study) after each re-estimation of u in our EM algorithm. Amap from (donor, recipient,
gridpoint) to this lookup table is also constructed exactly once to complete the compression to a grid.

Thinning of Donors

The total number of hidden states in our two-layer HMM is A3N;where A is the number of admixing populations, and N is the
total number of donor haplotypes. However, in practice, the forward-backward algorithm will place a non-negligible proba-
bility on only a small subset of the donors at any one position. We exploit this fact for computational efficiency as follows:

1. Fit the ancestry unaware single layer HMM using all potential donor haplotypes.
2. Use this to rank the donors at each gridpoint from highest to lowest forward-backward probability.
3. Record the vector of top ng such donors at each gridpoint for each haplotype such that over 99% of the probability is

captured, up to a maximum of 100 donors.
4. Create the superset of the donors for both haplotypes of each individual at each gridpoint.
5. Use only these locally thinned set of donors at each gridpoint in the full two-layer ancestry aware HMM.

Weuse the top rankeddonors for both haplotypes for each individual so that the thinningdoes not overly effect the phasing (see
Rephasing), i.e., both haplotypes can see and use the potential donors of the other haplotype belonging in each target individual.
Wefind that using,100 of these local best donors gave results almost identical to allowing local copying fromany of the full set of
donors. For example, themedian number of donors required to capture.99% of the copying probability in the ancestry unaware
modelwas 66 for admixture simulated between French andYoruban genomes, and 59 for admixture betweenFrench andEnglish.

Thinning in this waymeans that the ancestry aware parts of the algorithm scale independently of the number of donors in the
dataset. The thinning steps scale linearly with the number of donors and independently of the number of hidden ancestries, but
these steps need only be performed several times in total (Algorithm). Once the HMM states have been so reduced, we need to
track locally at each gridpoint which donors occur where in the thinned set, one gridpoint to the left (forward algorithm) and
one gridpoint to the right (backward algorithm) as we need to calculate the probability of switches to the same haplotype. We
therefore include two additional lists of donors at each gridpoint; the indices of thematching donors (should they appear in the
top 100) to the left and to the right of each gridpoint.

Computational Tricks for the HMM

In the forward (and backward) algorithms at each gridpoint, we need to compute the probability of switching from each hidden
state into every other hidden state which is OðA2N2Þ. However, as per Fearnhead and Donnelly (2001) and Li and Stephens
(2003), we do not need to examine all pairs of donor haplotypes. All switches are equally likely (given the latent ancestry
switch status), except the nonswitch, where the same haplotype is copied for consecutive gridpoints. Thus, when examining
the possible switches between gridpoint g2 1 and g, we only need sum over all probabilities for copying any donor haplotype at
g2 1 and multiply our transition and emission probabilities by this with a small correction for self-switches.

Initialization

To initialize our model, we first fit a single layer HMM that is ancestry unaware to the full set of donors genome-wide. This is
similar to a gridded version of chromopainter (Lawson et al. 2012).WeperformEMuntil convergence to estimate r; u;M, where
the latter is simply a vector of copying probabilities for each group.

Wenowwishto initializevalues for theancestryawarepartof themodel, i.e., anM copyingmatrixwithonecolumnperhiddenancestry
and themarginal probabilities of each ancestrya.Wefirst imposewindows of size 0:5 cM across the genome and calculate the expected
number of switches into each donor group in each window. This window size is chosen so that there is typically one latent ancestry per
window butmultiple donor groups are copied from the number of generations undergoing recombination until we expect a single event
in awindow is 200.We then use EM to fit amixturemodel where the number ofmixtures is the number of hidden ancestries wewish to
model. For haplotype h in window w, the expected number of switches Ŝ

ðhÞ
;w into the panels is modelled as a mixture of Multinomials.
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